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Abstract

Motivation: The diversity of the immune repertoire is initially generated by random rearrange-

ments of the receptor gene during early T and B cell development. Rearrangement scenarios are

composed of random events—choices of gene templates, base pair deletions and insertions—

described by probability distributions. Not all scenarios are equally likely, and the same receptor

sequence may be obtained in several different ways. Quantifying the distribution of these re-

arrangements is an essential baseline for studying the immune system diversity. Inferring the prop-

erties of the distributions from receptor sequences is a computationally hard problem, requiring

enumerating every possible scenario for every sampled receptor sequence.

Results: We present a Hidden Markov model, which accounts for all plausible scenarios that can gen-

erate the receptor sequences. We developed and implemented a method based on the Baum–Welch

algorithm that can efficiently infer the parameters for the different events of the rearrangement

process. We tested our software tool on sequence data for both the alpha and beta chains of the

T cell receptor. To test the validity of our algorithm, we also generated synthetic sequences produced

by a known model, and confirmed that its parameters could be accurately inferred back from

the sequences. The inferred model can be used to generate synthetic sequences, to calculate the prob-

ability of generation of any receptor sequence, as well as the theoretical diversity of the repertoire.

We estimate this diversity to be �1023 for human T cells. The model gives a baseline to investigate

the selection and dynamics of immune repertoires.

Availability and implementation: Source code and sample sequence files are available at https://bit

bucket.org/yuvalel/repgenhmm/downloads.

Contact: elhanati@lpt.ens.fr or tmora@lps.ens.fr or awalczak@lpt.ens.fr

1 Introduction

The ability of the adaptive immune system to identify a wide range

of threats rests upon the diversity of its lymphocyte receptors,

which together make up the immune repertoire. Each such receptor

can bind specifically to antigenic molecules, and initiate an immune

response against the threat. T cell receptors (TCR) are composed of

two protein chains, called alpha and beta. B cell receptors (BCR)

share a very similar structure, with a light chain and heavy chain

playing the same role. Each chain is produced according to the same

process of V(D)J rearrangement. In each new cell and for each of the

two chains, two germline segments for alpha chains (Va and Ja

genes), or three segments for beta chains (Vb, Db and Jb genes), are
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assembled together to form the recombined gene coding for the

chain. In addition, at the junctions where the segments are joined,

the ends of the segments are trimmed, and random nucleotides

are inserted (see Fig. 1a for a diagram describing the alpha chain re-

arrangement process). This process creates a large initial diversity

of possible receptors, which are later selected according to their rec-

ognition functionality. An important property of this process is

that it is redundant, as many different V(D)J rearrangements may

lead to the exact same sequence. It is thus impossible to unambiguously

reconstruct the scenario from the sequence alone, a problem that is

aggravated by sequencing errors.

The rearrangement process is random, as is each of the elements

composing it—choice of germline segments, number of deleted nu-

cleotides, number and identity of insertions. Since the rearrangement

process is the basis of repertoire diversity, it is important to study its

distribution quantitatively. With recent advances in high throughput

sequencing, there is a growing body of data on repertoires for both

T and B cells, in a variety of situations (Bolotin et al., 2012;

Georgiou et al., 2014). Using large sequence datasets of rearranged,

non-productive genes, the probability distribution of rearrangement

events in human TCR beta chain and BCR heavy chains could be

inferred using statistical methods, gaining important insights into

the random processes underlying repertoire diversity (Elhanati et al.,

2015; Murugan et al., 2012). However, these studies are based on a

brute force approach, which enumerates every possible rearrange-

ment scenario for each observed sequence. This is a very computa-

tionally costly procedure, which is unrealistic for very large datasets.

In this report we present a dynamic programming approach to

learn the distribution of rearrangement scenarios from large num-

bers of non-productive sequences in an efficient way. This approach

is based on a Hidden Markov Models (HMM) formulation of the

problem, and learns its parameters using a modified Baum–Welch

(BW) algorithm to avoid the full enumerations of all scenarios.

Many studies have described algorithms designed to process or post-

process large numbers of rearranged TCR or BCR genes and extract

the template V(D)J genes of the rearrangement (Bonissone and

Pevzner, 2015; Brochet et al., 2008; Frost et al., 2015; Gadala-

Maria et al., 2015; Ga€eta et al., 2007; Munshaw and Kepler, 2010;

Ohm-Laursen et al., 2006; Paciello et al., 2015; Ralph and Matsen,

2015; Russ et al., 2015; Souto-Carneiro et al., 2004; Thomas et al.,

2013; Volpe et al., 2006; Wang et al., 2008; Ye et al., 2013).

These tools process each sequence separately to obtain the best (but

often incorrect) alignment to a V(D)J combination, sometimes using

dynamic programming or HMM (Ga€eta et al., 2007; Munshaw

and Kepler, 2010; Ralph and Matsen, 2015; Volpe et al., 2006), and

assume an implicit, ad hoc prior on rearrangements. By contrast,

our algorithm explores all plausible alignments for each sequence

from data to learn accurately the distribution of rearrangement

events.

Once the model of rearrangement has been learned by our pro-

cedure, the entire distribution of possible sequences and their proba-

bilities is accessible. Our algorithm can calculate the probability of

any sampled sequence, even if it is not part of the data used to learn

the model, and it can generate arbitrary numbers of synthetic se-

quences with the exact same statistics as the data. Such large sam-

ples can be used to investigate the origin of shared sequences, or

public repertoires, between different individuals. The procedure can

also calculate the entropy of the rearrangement process—a classical

measure of sequence diversity. This enables us to further our under-

standing of the generation process, quantify the baseline state

of the immune system and evaluate subsequent processes such as

somatic selection. Finally, our work produces insights not just on

the data sequences, but on the underlying biological processes.

2 Methods

2.1 Model
The algorithm assumes a general form for the probability distribu-

tion of possible rearrangements, and then finds the parameters of

that distribution that best fit the sequence data (Elhanati et al.,

2015; Murugan et al., 2012). For simplicity we first describe the

model for the alpha chain of TCRs. The case of the beta chains will

be described later.

The model specifies probability distributions for each of the re-

arrangement events: V and J gene choices P(V, J), number of deletions

conditioned on the gene being deleted PðdelVjVÞ and PðdelJjJÞ, and in-

sertion length and nucleotide identity PðinsÞ. Together these

V1 V2 J1 J2… …

V
JI

V J

MV1V2 MVmG1

MG1G2
MIeG2

MG2J2

V1 V2 Vm Vend

Start

G1

I1 I2 Iend
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J1 J2 Jend

(a)
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I

Fig. 1. (a) Schematic description of the rearrangement process for the alpha

chains. Random V and J genes are chosen from the genome. A random num-

ber of nucleotides are trimmed from their facing ends. These ends are then

joined with an insertion segment of variable length and composition. (b)

Markov model for this rearrangement process, when the V and J gene

choices are known. By progressing one path following the arrows, the model

produces a rearranged receptor gene. Each state denoted by a circle emits a

nucleotide. V and J states each emit one nucleotide from the chosen tem-

plate, up to an error rate. Emissions from the I states are drawn from a speci-

fied distribution. The states represented by squares are nonemitting ghost

states. The arrows represent the allowed transitions, some of them are

marked on the diagram with MSS 0 . The probabilities of the transitions and

emissions are the parameters of the HMM, as described in the main text
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distributions form the parameter set h ¼ fPðV; JÞ;PðdelVjVÞ; . . .g.
The probability of a given rearrangement scenario r ¼ ðV; J;delV; delJ

; insÞ is then given by:

PrearrðrjhÞ ¼ PðV; JÞPðdelVjVÞPðdelJjJÞPðinsÞ: (1)

The specific form of the model assumes some dependencies be-

tween the events. In the above formula, for instance, the probabilities

of each V and J choice can be dependent, but the insertion is inde-

pendent from both, while the deletion probabilities are dependent

only on the identity of the gene being deleted. The model choice

is done based on biological knowledge, and has been validated by pre-

vious work in the case of the beta chain (Murugan et al., 2012).

To avoid confounding factors related to thymic or peripheral se-

lection, the inference of the parameters is performed on non-prod-

uctive genes. During the maturation of cells, some rearrangement

events produce non-productive genes that are either out of frame,

having the wrong combination of insertions and deletions, or con-

tain a stop codon. When this happens, the other chromosome in the

same cell may undergo a second successful rearrangement event,

ensuring the survival of the cell. Yet the non-productive rearrange-

ments remain and are part of the sequence dataset. Since these se-

quences have no effect on the cell in which they reside, they have not

been selected. Studying their statistics is thus equivalent to studying

the generation process itself, with no selection. Nonproductive reads

may also result from sequencing errors or problems in the assembly

of sequences. However, contigs are typically designed to cover

the entire CDR3, limiting such frameshifts to the genomic regions,

typically to the longer V segment. To ensure that we analyze

truly non-functional sequences, we exclude the very rare sequences

with a frameshift in the genomic V segment, and restrict our analysis

to sequences with a frameshift within the CDR3.

More generally, standard error correcting techniques applied

to the raw sequencing data, such as correction using molecular

barcodes and clustering methods, has been shown to limit the num-

ber of errors and misattributions of out-of-frame sequences (Bolotin

et al., 2012; Georgiou et al., 2014; Robins, 2013; Shugay et al.,

2014).

Specifically, the data analyzed in this work were error-corrected

by clustering raw reads as explained in Robins et al. (2009) and

Zvyagin et al. (2014).

While the model specifies the distribution over rearrangement

scenarios, the data consists of recombined sequences, denoted by s,

which can be the result of different scenarios r. The recombination

events are hidden variables, and the likelihood of a sequence is

the sum of the probabilities of all scenarios leading to it,

PðsÞ ¼
X

r!s
PrearrðrÞ. The likelihood of the sequence dataset cannot

easily be maximized with respect to the model parameters. To over-

come this problem, the Expectation–Maximization (EM) algorithm

can be used to maximize the likelihood in an iterative manner.

In each iteration, new model parameters h0 are chosen to increase

the likelihood until the maximum is obtained. In the expectation

step, the log-likelihood of hidden rearrangements is averaged

over their posterior distribution under the current model h, to form

Qðh0jhÞ ¼
Xn

a¼1

X
r
PðrjsðaÞ; hÞlog Parranðrjh0Þ, where the sum on a

runs over the n sequences ðsð1Þ; sð2Þ; . . . ; sðnÞÞ in the dataset. The max-

imization step consists of maximizing Qðh0jhÞ over h0 to obtain

the new parameter set. Because of the simple factorized form of Eq.

1, this second step is equivalent to calculating the frequency of each

rearrangement event under the posterior PðrjsðaÞ; hÞ ¼
Pðr; sðaÞjhÞ=PðsðaÞjhÞ. For example, P(V, J) is updated according to:

P0ðV; JÞ ¼ 1

n

Xn

a¼1

X

r:V;J

PðrjsðaÞ; hÞ; (2)

where the sum on r : V; J runs over scenarios with gene choices V

and J. Similar update rules are used for the other model parameters

PðdelVjVÞ; PðdelJjJÞ, and PðinsÞ. The sums over possible scenarios,

for each data sequence sðaÞ, are computationally heavy. To make

them easier, we now introduce an equivalent HMM formulation of

the model.

2.2 HMM formulation
The almost linear structure of rearrangements allows for their descrip-

tion as a Markov chain. Hidden Markov models lend themselves to

the much more efficient forward-backward algorithm for marginal es-

timations, and in combination with Expectation–Maximization, the

Baum–Welch (BW) algorithm, for parameter inference. In general

however, the V and J gene choices may be correlated in their joint dis-

tribution P(V, J), breaking the Markovian nature of the rearrangement

statistics. To preserve the Markovian structure, we built a separate

HMM for each choice of the pair of germline genes (V, J), and use the

forward-backward algorithm to calculate the marginals of the other

rearrangement events conditioned on that choice. These conditional

marginals will then be combined for all (V, J) to perform the maximi-

zation step of EM.

For a chosen (V, J) pair, a Hidden Markov Model (HMM) is

constructed to yield the recombined sequences in accordance with

Eq. 1. Figure 1b shows a diagram of the model. The model proceeds

through a sequence of hidden states S, which emit nucleotides si, for

i ¼ 1; . . . ;L where L is the sequence length, thus producing the en-

tire sequence s ¼ ðs1; . . . ; sLÞ.
We distinguish between two types of emitting states, represented

by circles in Figure 1b. First, ‘genomic states,’ or V and J states, are

defined for each position on the genomic templates V and J, and are

denoted by V1;V2; . . . ;Vend for V states, and likewise for J states.

These states emit the nucleotide encoded in the genomic template at

the corresponding position, or, with a small error probability perr, a

different nucleotide. These non-templated emissions can be caused

by sequencing errors, B cell hypermutations or uncharted alleles.

Second, ‘insertions states’ emit random nontemplated nucleotides

according to a distribution. I1 corresponds to the first inserted nu-

cleotide, I2 to the second one and so on. In addition, we introduce

two ‘ghost states’ G1 and G2, represented by rectangles in Figure 1b,

between the V and I states, and between I and J states. These states

do not emit nucleotides and their sole function is to reduce the num-

ber of possible transitions between states by isolating the state types,

thus easing computations.

Each sequence is the result of a stochastic path through a series

of states, defined in Figure 1b, and their random emissions. To illus-

trate how the HMM operates, we follow a possible path leading to

the production of a light chain for a given choice of V and J. The

chain starts from the V1 state, going along the V gene and emitting

nucleotides from the gene. Most of these nucleotides are those of

the genomic template, up to the error rate. At some point (possibly

before all V states are exhausted to account for potential V dele-

tions) the process transitions to the first ghost state G1. From G1

the process goes to the first insertion state I1, or directly to G2 if

there are no insertions. Each insertion state emits a nucleotide. After

a certain number of insertions, the process moves to the second

ghost state, G2, and then on to a J state (but not necessarily J1 to ac-

count for J deletions). Finally the process will continue along the J

states until Jend, completing the sequence.
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The HMM is defined by two sets of parameters which map dir-

ectly onto hnPðV; JÞ. The first set of parameters is the transition

probabilities MSS0 between any two states S and S0 connected by an

arrow in Figure 1. The transition rates between V states and G1, and

between G2 and J states, can be mapped onto the deletion profiles of

the V and J genes respectively, and the transition rates between the I

states and G2 can be mapped onto the distribution of the number of

insertions. The transition matrix MSS0 is very sparse, thanks in part

to the ghost states, allowing for quick computations as we will see

below. The second set of parameters are the emission probabilities

ESðsÞ that nucleotide s is emitted by state S. If S is a genomic (V or J)

state, then ESðsÞ ¼ 1� perr if s is the template nucleotide, which we

denote by rS, and perr=3 otherwise. If S is an insertion state, it is

given by a distribution EIðsÞ, which we assume to be common to all

insertion states, i.e. independent of the order of insertions.

2.3 A modified Baum–Welch algorithm
The Baum–Welch (BW) algorithm finds the parameters for a given

HMM which maximize the likelihood of producing the observed se-

quences (Bishop, 2006; Durbin et al., 1998). It is an instance of the EM

algorithm, where the maximization step is performed using the for-

ward-backward algorithm. Since our HMM is conditioned on the

knowledge of the (V, J) pair, which is itself a hidden variable, BW can-

not be applied without modification. However, we can still use the for-

ward-backward algorithm to calculate the posterior probabilities of

rearrangement events for a given sequence s ¼ ðs1; . . . ; sLÞ and a given

putative (V, J) choice, and combine these probabilities at the end.

The forward pass of the forward-backward algorithm calculates

aiðSÞ, the joint probability of the model being in a specific state

S and emitting the sequence up to the ith nucleotide, (s1; . . . ; si). The

backwards pass does the same for biðSÞ, the conditional probability

of emitting the sequence upstream from position i, given that the

state in this position is S:

aiðSÞ :¼ Pðs1; . . . ; si; SjV; JÞ; (3)

biðSÞ :¼ Pðsiþ1; . . . ; sLjS;V; JÞ: (4)

These probabilities are calculated using the following recursion

relations:

aiðSÞ ¼ ESðsiÞ
X

S0

MSS0ai�1ðS0Þ; (5)

biðSÞ ¼
X

S0

ES0 ðsiþ1ÞMS0Sbiþ1ðS0Þ: (6)

Since our transition matrix MSS0 is very sparse, the sum over S0

has few terms and can be calculated efficiently. Having obtained

these forward and backward probabilities for a sequence given a

choice of V and J genes, the posterior marginal probabilities for each

transition (S! S0), as well as the posterior emission probabilities

are calculated as

PðS! S0jV; J; sÞ /
X

i

aiðSÞMS0SES0 ðsiþ1Þbiþ1ðS0Þ; (7)

PðerrjV; J; sÞ /
X

i

X

S2V;J

aiðSÞbnðSÞð1� drS ;si
Þ; (8)

PinsðsjV; J; sÞ /
X

i

X

S2I

anðSÞbnðSÞds;si
; (9)

up to a normalization constant, where d denotes Kroeneker’s delta.

The existence of ghost states requires making a small adjustment

to this scheme. Each ghost state introduces an offset between the

state index and the corresponding position on the sequence. Thus, V

states in the n position correspond to position n in the sequence, I

states to position n – 1 in the sequence, and J states to position n – 2.

Once the posterior marginals have been evaluated for each data

sequence, and for each putative choice of V and J, we can combine

them to obtain the update equations of our modified Baum–Welch

algorithm:

MS0S  
1

n

Xn

a¼1

X

V;J

PðV; JjsðaÞÞPðS! S0jV; J; sðaÞÞ; (10)

perr  
1

n

Xn

a¼1

X

V;J

PðV; JjsðaÞÞPðerrjV; J; sðaÞÞ; (11)

ESðsÞ  
1

n

Xn

a¼1

X

V;J

PðV; JjsðaÞÞPinsðsjV; J; sðaÞÞ; (12)

where the posterior probability PðV; JjsðaÞÞ is calculated using Bayes’

rule, / PðsðaÞjV; JÞPðV; JÞ, with PðsðaÞjV; JÞ ¼
X

S
aLðSÞ.

Finally, the algorithm outputs the probability that any sequence

s was generated as PðsÞ ¼ PðsjV; JÞPðV; JÞ. This probability can be

used to calculate the log-likelihood of the model,
Xn

a¼1
log PðsðaÞÞ,

and track the progress of the BW algorithm at each iteration.

2.4 Pre-alignments
For a given sequence, there may be many potential candidates for

the segments (V, J), but not all are equally plausible, especially when

sequence reads are long, and not all should be considered. Before

starting the inference procedure, the sequences are locally aligned

against all genomic templates using the Smith-Waterman algorithm.

By creating a shortlist of genomic genes that had an alignment score

larger than a tunable threshold, the inference procedure can exclude

certain gene choices a priori. This saves considerable computation

time by omitting rearrangement scenarios that would have a negli-

gible effect due to high numbers of errors.

In addition, this pre-alignment procedure provides us with a

mapping between the positions along the sequence read and each

genomic gene. Thus, each of the V and J states of the HMM may

only be present at a single position along the sequence, drastically

limiting the number of states that we need to consider at each pos-

ition and improving the speed of computations.

2.5 Beta chains
For the beta chain of the TCR, the model is similar to the one in Eq. 1,

with the addition of a D gene choice, its deletions from both the left

and right sides (delDl;delDr) and two independent insertion events at

the VD and DJ junctions (insVD; insDJ):

PrearrðrjhÞ ¼ PðV;D; JÞPðdelVjVÞPðinsVDÞ

�PðdelDl;delDrjDÞPðinsDJÞPðdelJjJÞ: (13)

A similar HMM as for the alpha chain can be built by adding

genomic D states and having two types of insertion states, for the

VD and DJ junctions, and extra ghost states to separate them. Then,

the procedure described above can be applied mutatis mutandis.

In addition to the V and J gene, the D gene has to be chosen.

An HMM is built for each triplet of genomic segments (V, D, J).

D genes are short and deleted on both sides. For this reason, they are

much harder to align. Even the position of a candidate genomic D

1946 Y.Elhanati et al.



segment along the sequence is no longer unambiguous as is the case for

V and J segments. For this reason, we do not pre-align the D genes to

the sequence. Instead, for each sequence all D genes with all possible lo-

cations are considered. Technically this means that the sequence pos-

itions at which D states may occur are not pre-specified.

During the rearrangement process D genes are deleted from

both sides. The number of bases truncated from the left and right

ends of the gene are correlated—in the extreme case, the sum of both

deletions cannot exceed the length of the gene. Since the left and

right D deletions correspond to transitions from non-adjacent states,

this correlation cannot be described using a Markov model. We have

addressed this issue by enumerating all the possible deletions from the

left and the right as separate states. In practice, we define different

types of D states for each choice of deletions, as depicted in Figure 2.

Each D deletion profile ðdelDl;delDrÞ defines a separate subchain of

the Markov chain going along the D gene, which is entered from the

previous ghost state with probability PðdelDl; delDrjDÞ.

2.6 Entropy estimates
The inferred model can be used to characterize the diversity of the

distribution of all possible receptors, and not just of the sampled se-

quences used when inferring that distribution. We quantify the di-

versity of a stochastic quantity X using the Shannon Entropy:

HðXÞ ¼ �
X

X
PðXÞlog 2PðXÞ (measured in bits). For instance, HðsÞ

gives a measure of sequence diversity. Since a uniform distribution

with 2H outcomes has entropy H, the number 2H can, even for non-

uniform distributions, be interpreted as an effective diversity num-

ber, sometimes called true diversity. The entropy of rearrangements

can be calculated explicitly thanks to the factorized form of the dis-

tribution. For example, for alpha chains:

HðrÞ ¼ HðV; JÞ þ
X

V

PðVÞHðdelVjVÞ þ
X

J

PðJÞHðdelJjJÞ þHðinsÞ:

(14)

This expression clearly separates the contributions from (V, J)

segment choice, deletions and insertions. The entropy of sequences

HðsÞ cannot be calculated in this way since receptor sequences can

be produced by multiple rearrangements, but can easily be estimated

by averaging log PðsÞ, where PðsÞ is calculated by the forward-back-

ward algorithm as explained above.

3 Results

3.1 Implementation
The method was implemented in Cþþ (std11) as a command line

tool. OpenMP was used for parallelization.

The main pipeline has two parts, the alignment module and the

inference module. The input for the entire pipeline is a FASTA or

plain text file with unique recombined and non-productive nucleo-

tide sequences, and FASTA files with the genomic templates for the

different V, J germline segments (as well as D in the case of heavy or

beta chains). Genomic files can be obtained from genomic databases

such as IMGT (Giudicelli et al., 2005). The alignment code was

written to read IMGT FASTA files and extract gene names.

Between the alignment and inference procedures, alignments

below a certain threshold are discarded to improve performance.

The threshold can be tuned for different datasets. Sequences that do

not align well to at least one known gene of each type are completely

eliminated as a quality control. Setting the thresholds should be

done carefully, keeping a large majority of the sequences with at

least one good alignment, but excluding ones which had only low

score alignments. To this end, an auxiliary module is included that

outputs statistics on the best alignment score for each sequence.

Curated alignment files are saved at the end of the alignments stage,

and used as input for the inference. Apart from the alignments, the

only parameters needed for inference are the maximum numbers of

insertions and deletions.

The output of the main pipeline is the value of the model param-

eters: the joint distribution of segment usage; the distributions of de-

letions at each of the deletion sites conditioned on the gene; the

distribution of the number and composition of inserted nucleotides

at the junctions; and a global error rate accounting for sequencing

errors, hypermutations or genomic variants.

Two more modules are included. First, given a list of sequences

and an inferred model, the software can compute generation proba-

bilities for all sequences. Second, a synthetic sequence generation

module that can produce sequences from a given model. This mod-

ule can be used to study the properties of the distribution or to verify

the inference algorithm using a known model, as we will see below.

3.2 Application to alpha chain data
The algorithm was applied to human TCR alpha chain sequences

from Zvyagin et al. (2014). The data consist of around 60 000

unique non-productive sequences, each 151 bp long, covering both

G2

D0,21 D0,22 D0,23

G3

D1,12 D1,13

D2,23

D1,14

G1

G2

V1 V2 Vend

I1 I2 Iend

G3

G4

I1 I2 Iend

J1 J2 Jend

D

PdelD(0,2)

PdelD(1,1)

PdelD(2,2)

Fig. 2. Subdiagram of Markov model for beta chain, focusing on the D gene. Each row corresponds to a different pattern of deletions ðdelDl;delDrÞ for the left

and right ends of the D segments. State D
ðdelDl;delDrÞ
d corresponds to the dth base in the D gene, when l bases are deleted from the left and r from the right. Each

row is entered from the ghost state G2 with probability PdelD ðl; rÞ ¼ P ðdelDl;delDrÞ, and then proceeds deterministically until G3.
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the V and J segments. Sequences were aligned to lists of genomic se-

quences from the IMGT online database (Giudicelli et al., 2005),

and then given as input to the inference algorithm. The model con-

verged rapidly as can be seen by the quick saturation of the likeli-

hood (Fig. 3a).

The entropy of the rearrangement process quantifies the diversity

of possible scenarios. It was calculated using Eq. 14 and found to be

32 bits (Fig. 3b, top line). This entropy can be partitioned into con-

tributions from each of the rearrangement events—segment choice,

insertions and deletions (bottom line). The largest contribution to

the entropy comes from the insertions, followed closely by gene

choice. We also estimated the entropy of the sequence distribution

(middle line), which is smaller than the rearrangement entropy be-

cause of convergent rearrangements—multiple rearrangements lead-

ing to the same sequence (grey box). This estimate was based on

samples of simulated sequences. Undersampling bias and error were

corrected for by using samples of different sizes and validating the

convergence of the entropy. The entropy of the alpha chain se-

quences is 30 bits, which corresponds to a diversity number of about

109. Inferred insertion and deletion profiles for the alpha rearrange-

ments are shown in Figure 3c and d, with the deletion profile aver-

aged over genes. The peak of the insertion distribution is at 5 bp,

similar to previous results for the beta chain.

The joint distribution of gene usage for V and J, represented in

Figure 3e, shows a wide variety of gene usage probabilities, with

clear dependencies on the ordering of genes according to their loca-

tion on the chromosome (Lefranc and Lefranc, 2001). To better see

these dependencies, in Figure 3f we plotted PðV; JÞ � PðVÞPðJÞ as a

measure of the correlation between V and J choices. In Warmflash

and Dinner (2006) and Hawwari and Krangel (2007), it was pro-

posed that rearrangements can occur in several steps, following ear-

lier accounts in mice (Huang and Kanagawa, 2001). When a V and

a J segment are joined, the genomic segments that were between

them are excised, but the segments located on the outer flanks re-

main. Then, successive rearrangements joining these outer segments

might occur. It was hypothesized that early joining events involve V

and J genes that are close to each other, hence proximal to the

boundary between the V and J cassettes. Later joining events, on the

other hand, should involve more distal genes as the proximal genes

are likely to have been excised. This phenomenon is expected to lead

to correlations between pairs of genes which are either both distal or

both proximal, which is consistent with the results of Figure 3f.

Notice also that in the intermediate range our model predicts low

correlation within a certain window of distances between the V and

J genes.

To control for the finite size of the datasets, we ran our model

on subsamples of the data. The distributions inferred using half of

the dataset (30 000 sequences) differed by only 1% from the whole

dataset, as measured by the Kullback–Leibler divergence normalized

by the entropy.

3.3 Test on synthetic data
In order to check the validity of the algorithm, we ran it on se-

quences that were produced according to a known model. We gener-

ated 100 000 synthetic sequences according to the model learned in

the previous section, and relearned a model from these sequences

using our algorithm. In Figure 4 we compare the parameters of the

model used for generation to those of the inferred model. Sampling

was repeated 5 times to estimate sample noise, which was found to

be very small for all parameters, except for gene usage (error bars in

Fig. 4b).

The insertion bias, i.e. the usage of the different nucleotides in in-

serted segments, is inferred almost perfectly, as seen in the inset of

Fig. 4a. The probabilities for each V,J choice also show excellent

agreement, within sampling errors (Fig. 4b). The distribution of the

number of insertions also agrees very well (Fig. 4a). However, when

Fig. 3. TCR alpha chain rearrangement distribution inferred from sequence

data taken from Zvyagin et al. (2014). (a) The log-likelihood of the data given

the model saturates as a function of the number of iterations of the

Expectation–Maximization algorithm. (b) Shannon entropy of rearrangements

(top row) and sequences (middle row). The sequence entropy is lower than the

total recombination entropy because of convergent rearrangements. The re-

arrangement entropy is the sum of entropies of its elementary events (bottom

row). (c) Distribution of the number of inserted nucleotides (solid curve).

For comparison, the same distribution obtained by the MiXCR software is rep-

resented by a dashed line. (d) Distributions of the number of deletions for

both V and J genes, averaged over genes. (e) Joint distribution for V and J

usage, P(V, J). Genes are ordered by position along the genome. (f) The covari-

ance P ðV ; JÞ � P ðV ÞP ðJÞ clearly shows strong correlations for genes that are

either close to the separation between the V and J segments, or far from it
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inferring the same model, but with a higher error rate (1%), we

found that the inferred insertion distribution noticeably overesti-

mated the probability of zero insertions.

3.4 Comparison to existing tools
Results and performance can be compared with existing tools based

on deterministic methods, which rely on the best alignment to the

V and J genomic segments to call the number of deletions, inser-

tions, and calculate their distributions. Here we compare our results

to MiXCR (Bolotin et al., 2015), a recent, representative and fast

implementation of this method. We expect other existing software

tools (Brochet et al., 2008; Ga€eta et al., 2007; Thomas et al., 2013;

Ye et al., 2013) to give equivalent results.

The distributions obtained by summarizing the MiXCR align-

ments are shown in Figure 3c and d, and do not agree with our infer-

ence. MiXCR assignments overestimate zero insertions by a twofold

factor, and underestimate the central peak. This distortion is also

apparent in synthetic data, for which we know the true distribution

(Fig. 4a). In this case, our method infers the correct distribution of

insertions with high accuracy, while MiXCR does not, and even

identifies a spurious second peak in the distribution at zero

insertions.

Because it treats each sequence in a fully probabilistic manner,

our method is slower than MiXCR. On a multicore PC with 46

AMD Opteron processors, one iteration over a 50 000 database of

alpha chains sequences takes about 200 s. For comparison, MiXCR

could run over the same sequences in about 10 s. Note that the

memory requirements of repgenHMM do not limit its performance.

This slower time must be balanced by the obvious advantage con-

ferred by the inference of the correct distribution. An accurate esti-

mate of the distribution of insertions can be crucial for

understanding the mechanistic details of the insertion process by

TdT (Gouge et al., 2015) or for estimating the number of cells with

invariant receptors (NK or MAIT, for instance) (Gapin, 2014;

Greenaway et al., 2013) or zero-insertion clonotypes in cells that do

not express TdT (Komori et al., 1996).

3.5 Sharing of alpha chain sequences
The generation module of our software, which has no equivalent in

existing tools, can be used to investigate important biological ques-

tions, such as the origin of receptor sharing between unrelated indi-

viduals. Sharing of receptor sequences is sometimes interpreted as

resulting from convergent selection in response to common patho-

gens. However, it has recently been proposed that sharing could sim-

ply arise by chance, through the independent recombination of the

same receptors in different individuals (Shugay et al., 2013; Venturi

et al., 2011). In fact, we expect this to be the main source of sharing

in non-productive sequences, because they are not subject to selec-

tion (Murugan et al., 2012).

We investigated the sharing of alpha out-of-frame sequences in

two unrelated individuals from Zvyagin et al. (2014). The data con-

tained 1:7� 10�7 shared sequences for every pair of sequences in

the two individuals. We learned a distinct model for each of the two

individuals, then generated a large number of sequences from each

model, and counted the number of shared sequences between the

two sets. The two generated datasets shared 1:4� 10�7 sequences

per pair, in good agreement with the data, confirming that inde-

pendent convergent recombination was the main source of shared

sequences between these two individuals.

3.6 Application to beta chain data
The beta and heavy chain algorithm was applied to the human TCR

beta data that was already analyzed in (Murugan et al., 2012) using

brute-force methods. The inferred model parameters were all very

similar to those reported in Murugan et al. (2012), confirming the

validity of our algorithm. The distribution of the number of inser-

tions and deletions are displayed in Figure 5. Remarkably, insertion

profiles at the two insertion sites are very close to each other, as pre-

viously reported, but they also closely match the insertion profile of

the alpha chain (Figure 5a). Nucleotide usage in each of the two in-

serted regions (between V and D, and between D and J) is shown in

the inset. The VD insertion base usage is similar to the usage of the

complementary bases (antisense) in the DJ region, suggesting that

the biological mechanism is operating on the opposite strands for

both insertions types, as previously noted (Murugan et al., 2012).

From the computational point of view, because the algorithm enu-

merates both the D gene choice and its deletions, its benefit is

smaller for beta chains than for alpha chains.

4 Discussion

The strength of the adaptive immune system lies in its inherent di-

versity. This dynamic diversity is the result of several stochastic bio-

logical mechanisms, including complex enzymatic reactions that

alter the DNA structure and composition. The action of some of the

enzymes such as RAG and TdT have been studied extensively (see

Schatz and Swanson, 2011; Jung and Alt, 2004; Schatz and Ji, 2011

for reviews). In our work we have studied the way in which the di-

versity is generated in a top down approach, focusing on statistical

properties as inferred from sequenced receptor genes. In principle,

this is a computationally difficult problem, due to the very large

number of possible rearrangement scenarios.
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Fig. 5. TCR beta chain rearrangement distribution inferred from sequence

data previously analyzed in (Murugan et al., 2012). (a) Distribution of the num-

ber of insertions at both VD and DJ junctions, and comparison with the distri-

bution of insertion in the alpha chain from Figure 3c. Inset: The nucleotide

usage is identical for VD and DJ insertions when considered on opposite

strands. (b) Distribution of the number of deletions on both the V and J genes,

averaged over different genes

Fig. 4. Performance of the algorithm on synthetic data. Sequences generated

using a known model were given as an input to the inference algorithm. The

results of the inference are compared to the true model used for generation,

for (a) the distribution of the number of insertions (inset: usage of inserted nu-

cleotides) and (b) V, J gene usage. The error bars, which correspond to sam-

ple noise, are smaller than symbol size for (a). In (a) we also report the

distribution of insertions obtained using MiXCR
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The algorithm described here can be used to study the properties

of generation of receptor chains of T cells in any species, from

large sequence datasets. Our dynamic programming approach,

which is a variant of the Baum–Welch algorithm, takes advantage of

the linear structure of rearrangements to avoid a full enumeration of

scenarios. In a brute-force approach such as the one presented in

Murugan et al. (2012) and Elhanati et al. (2015), the algorithmic

complexity scales as the product of the numbers of each independent

rearrangement event. By contrast, the complexity of the method

we presented here is additive with the number of insertions and

deletions.

Despite technological advances, sequencing techniques still

introduce errors. In addition, allelic variants and hypermutations in

B-cells introduce additional discrepancies between known template

genes and sequence reads. Our method can be used with models

that account for such events. In the presented version of the algo-

rithm, substitution errors are already fully accounted for, and can be

partially interpreted as hypermutations, as has already been demon-

strated for B cell heavy chains in Elhanati et al. (2015), albeit

with a different implementation. Hypermutations are known to be

context dependent (Cowell and Kepler, 2000; Dunn-Walters et al.,

1998; Oprea et al., 2001; Spencer and Dunn-Walters, 2005). Our

method could be modified to take this into account, by having the

substitution rate depend on the local sequence motif around the lo-

cation of the substitution. Insertion and deletion errors could like-

wise be handled by adding transitions that skip or repeat

bases. Other potential future software developments include a more

general model of nucleotide insertions, where each insertion depends

on the previous one, or the addition of palindromic insertions.

These modifications can be implemented readily, as they do not af-

fect the Markovian structure of the process. In addition, a module

calculating the probability of generation of amino-acid se-

quences (and not just nucleotide sequences) could be imple-

mented using a similar approach with Markov transitions between

codons.

We find many common features of generation for the alpha and

beta chains of the TCR. There is a difference of diversity, due to the

greater length and complexity of the beta compared to the alpha

chain. The diversity number of the beta chain repertoire, estimated

to be approximately 1014 in Murugan et al. (2012), is therefore

much larger than that of the alpha chain reported here, 109.

Assuming that the rearrangements of the alpha and beta chains are

independent, the total TCR diversity is about 1023.

Inferring statistical properties of the underlying biological proc-

esses can be thought of as a diagnostic tool for the properties of the

immune system, and could be used in a variety of clinical settings.

The generation process and subsequent selection shape the initial di-

versity of the immune system, and we have found this process to

be remarkably universal across normal, healthy humans, expect for

slight variations in gene usage (Murugan et al., 2012; Elhanati et al.,

2015). However, infections or irregularities in the immune system

can be seen as perturbations that will change these distributions.

By comparing the normal distributions to different pathological situ-

ations, information on the reaction of the immune system can be ex-

tracted. This information could in turn be used for diagnosis, using

fast computational tools such as the one presented here.

With more and more immune repertoire sequence data being col-

lected, efficient algorithms are needed. The ability to quickly infer

and analyze large datasets is essential both for our basic understand-

ing of the adaptive immune system and also for specific clinical

applications.
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