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Abstract
Platelet granules are unique among secretory vesicles in both their content and
their life cycle. Platelets contain three major granule types—dense granules,
α-granules, and lysosomes—although other granule types have been reported.
Dense granules and α-granules are the most well-studied and the most
physiologically important. Platelet granules are formed in large, multilobulated
cells, termed megakaryocytes, prior to transport into platelets. The biogenesis
of dense granules and α-granules involves common but also distinct pathways.
Both are formed from the  -Golgi network and early endosomes and maturetrans
in multivesicular bodies, but the formation of dense granules requires trafficking
machinery different from that of α-granules. Following formation in the
megakaryocyte body, both granule types are transported through and mature in
long proplatelet extensions prior to the release of nascent platelets into the
bloodstream. Granules remain stored in circulating platelets until platelet
activation triggers the exocytosis of their contents. Soluble N
-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins,
located on both the granules and target membranes, provide the mechanical
energy that enables membrane fusion during both granulogenesis and
exocytosis. The function of these core fusion engines is controlled by SNARE
regulators, which direct the site, timing, and extent to which these SNAREs
interact and consequently the resulting membrane fusion. In this review, we
assess new developments in the study of platelet granules, from their
generation to their exocytosis.
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Introduction
Platelets are anucleate, discoid-shaped blood cells essential for 
hemostasis, which serves to maintain the integrity of the vascu-
lature upon injury. The functional role of platelets has expanded 
in recent years to include processes such as inflammation,  
innate immunity, growth and development, angiogenesis, wound 
healing, and cancer metastasis1. Platelet granule exocytosis is  
central to platelet function and participates in the full repertoire 
of platelet activities. Platelets contain at least three major types 
of granules—α-granules, dense granules, and lysosomes—which  
carry distinct cargos and vary in biogenesis, trafficking, and  
exocytosis. In addition, platelets have peroxisomes and recently 
described T granules. This review focuses on the biogenesis of 
platelet α- and dense granules and mechanisms of their exocytosis.

Platelet granules
α-Granules are unique to platelets and are the most abundant of 
the platelet granules, numbering 50–80 per platelet2. These gran-
ules measure 200–500 nm in diameter and account for about 10% 
of platelet volume. They contain mainly proteins, both membrane-
associated receptors (for example, αIIbβ3 and P-selectin) and  
soluble cargo (for example, platelet factor 4 [PF4] and fibrinogen). 
Proteomic studies have identified more than 300 soluble proteins 
that are involved in a wide variety of functions, including hemos-
tasis (for example, von Willebrand factor [VWF] and factor V),  
inflammation (for example, chemokines such as CXCL1 and  
interleukin-8), and wound healing (for example, vascular endothe-
lial growth factor [VEGF] and fibroblast growth factor [FGF])3.  
The classic representation of α-granules as spherical organelles  
with a peripheral limiting membrane, a dense nucleoid, and  
progressively lucent peripheral zones on transmission electron  
microscopy is probably simplistic and may be in part a prepara-
tion artifact. Electron tomography with three-dimensional recon-
struction of platelets is notable for a significant percentage of  
tubular α-granules that generally lack VWF4. More recent work 
using transmission electron microscopy and freeze substitution 
dehydration of resting platelets shows that α-granules are ovoid 
with a generally homogeneous matrix and that tubes form from  
α-granules upon activation5. Thus, whether or not there exists  
significant structural heterogeneity among α-granules remains to  
be completely resolved. α-Granule exocytosis is evaluated prima-
rily by plasma membrane expression of P-selectin (CD62P) by  
flow cytometry or estimation of the release of PF4, VWF, or other 
granule cargos6.

Dense granules (also known as δ-granules) are the second most 
abundant platelet granules, with 3–8 per platelet. They measure 
about 150 nm in diameter2. These granules, unique to the plate-
lets, are a subtype of lysosome-related organelles (LROs), a group 
that also includes melanosomes, lamellar bodies of the type II  
alveolar cells, and lytic granules of cytotoxic T cells7. Dense  
granules mainly contain bioactive amines (for example, sero-
tonin and histamine), adenine nucleotides, polyphosphates, 
and pyrophosphates as well as high concentrations of cations,  
particularly calcium. These granules derive their name from their  
electron-dense appearance on whole mount electron micros-
copy, which results from their high cation concentrations8. Dense  
granule exocytosis is typically evaluated by ADP/ATP release 

by using luciferase-based luminescence techniques, release 
of preloaded [3H] serotonin, or membrane expression of lyso-
some-associated membrane protein 2 (LAMP2) or CD63 by flow  
cytometry6.

Other platelet granules have been described. Platelets contain 
about 1–3 lysosomes per platelet and peroxisomes, the platelet-
specific function of which remains unclear. Lysosomal exocy-
tosis is typically evaluated by estimation of released lysosomal  
enzymes such as beta hexosaminidase. An electron-dense  
granule defined by the presence of Toll-like receptor 9 (TLR9) 
and protein disulfide isomerase (PDI), termed the T granule, has 
also been described, although its existence remains controversial9.  
PDI and other platelet-borne thiol isomerases have been reported 
to be packaged within a non-granular compartment derived  
from the megakaryocyte endoplasmic reticulum (ER), which  
may be associated with the dense tubular system10,11.

Biogenesis of platelet granules
Formation of platelet granules begins in megakaryocytes, but 
maturation continues in circulating platelets12,13. Human platelet  
granule deficiency syndromes, also referred to as storage pool 
disorders, and their related murine models have been a major  
source of study of platelet granulogenesis. Gray platelet syn-
drome (GPS), an α-granule deficiency disorder, and Hermansky– 
Pudlak syndrome (HPS), a group of dense granule deficiency  
syndromes, are two such examples. GPS platelets contain  
normal dense granules, whereas HPS6 platelets contain normal  
α-granules, which suggests that these granules have distinct  
pathways of biogenesis7,14,15. In recent years, many inherited  
disorders due to defects in transcription factors such as 
RUNX1, GATA1, FLl1, GFI1b, and ETV6 have been found to 
impact megakaryopoiesis and impair platelet production and  
maturation16–21. Many of these disorders are associated with one 
or more granule deficiency states and have helped elucidate the  
role of these genes in platelet granulogenesis.

α-Granule biogenesis
α-Granule proteins derive from both synthetic and endocytic  
pathways22. Synthetic pathways traffic translated proteins from 
ER to α-granules. The endocytic pathway enables megakaryocytes 
and mature platelets to acquire plasma proteins by the process of  
endocytosis at the plasma membrane23. Multiple individual 
proteins and protein complexes mediate trafficking of these  
separate pathways (Figure 1A). Such proteins include coat  
proteins such as clathrin, adaptor proteins AP1 and AP2, and  
proteins required for vesicle trafficking, including soluble  
N-ethylmaleimide-sensitive factor (NSF) attachment protein  
receptor (SNARE) proteins, SNARE regulators, particularly  
Sec1/Munc18 proteins, and small GTPases such as Rabs. As a first 
step, soluble clathrin molecules recruited to either trans-Golgi 
network (TGN) or plasma membrane self-assemble into a lattice  
structure and interact with APs to form clathrin-coated pits.  
Platelets contain clathrin-associated adaptor proteins AP1, AP2, 
and AP324. Since AP2 localizes only to plasma membrane where 
it functions in the endocytotic pathway and AP3 is critical for  
lysosomal and LRO trafficking, the deficiency of which leads  
only to dense granule deficiency as in HPS subtype 2, AP1 is 
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Figure 1. Working models of platelet α-granule and dense granule formation in megakaryocytes. (A) α-Granules derive from two 
major pathways: synthetic and endocytic. The synthetic pathway originates at the trans-Golgi network (TGN). Soluble clathrin molecules 
recruited to the TGN self-assemble into a lattice structure and interact with coat proteins, presumed to be adaptor protein 1 (AP1), to 
form clathrin-coated pits. These pits invaginate to bud off early membrane-bound vesicles that are ultimately directed to early endosomes. 
Endocytic vesicles originate similarly at the plasma membrane employing adaptor protein 2 (AP2) and ultimately merge into early endosomes.  
α-Granules mature in multivesicular bodies (MVBs), a process that requires proteins VPS33B, VPS16B, and NBEAL2. (B) Dense (δ) granules 
are lysosomal-related organelles, which are derived from the endosomal compartment. The current understanding of biogenesis of dense 
granule is highly speculative and was extrapolated from the biogenesis of melanosomes. Early endosomes provide input for developing 
dense granules, which may mature in MVBs. In melanosomes, BLOC1 is required for the exit of tubular structures carrying cargo from the 
endosomes, which are directed to the developing melanosomes by BLOC2. Alternatively, cargoes can be directed to developing dense 
granules by an AP3-dependent pathway, which may or may not require BLOC2. BLOC, biogenesis of lysosome-related organelles complex.
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assumed to be employed by the synthetic pathway in α-granule 
biogenesis, although there is no direct evidence for this or for the 
role of other coat proteins such as COPI in α-granule biogenesis25. 
Vesicles carrying α-granule cargo budding off from either TGN 
or plasma membrane are subsequently directed to multivesicular  
bodies (MVBs) via endosomes26.

MVBs are transient late endosomal structures that contain  
internal vesicles formed from inward budding of the limiting  
membrane of the endosome27. Initially assumed to only direct  
proteins to be degraded in the lysosomes, these structures are 
now known to have multiple other functions, including granule  
trafficking in various cell types. MVBs serve as an intermediate 
stage of granulogenesis in megakaryocytes26. α-Granule cargoes 
from both synthetic and endocytic pathways can be identified 
in MVBs26. Both α- and dense granules mature from MVBs but  
use distinct machinery26. For example, defects in VPS33B and 
NBEAL2 lead only to α-granule deficiency but not to dense  
granule defects. VPS33B, a Sec1/Munc18 protein deficient 
in arthrogryposis, renal dysfunction, and cholestasis (ARC)  
syndrome, was the first protein involved in α-granule biogenesis 
to be identified28,29. VPS16B, its partner, works in association30.  
Although many platelet-specific details remain poorly under-
stood, the SNARE binding function of VPS33 and VPS16 in  
vesicular trafficking as a component of two large protein com-
plexes—class C core vacuole/endosome/tethering (CORVET), 
containing isoforms VPS33B and VPS16B, and homotypic  
fusion and protein sorting (HOPS), containing isoforms VPS33A 
and VPS16A—has been characterized in yeast31. The other 
proteins of these complexes have membrane-, AP-, and Rab- 
binding properties, thus bringing together the basic machinery 
required for endosomal maturation. NBEAL2 deficiency as a  
cause of GPS was first described in 201114,32,33. Nbeal2-/- mice 
exhibit a phenotype similar to that of patients with GPS, includ-
ing macrothrombocytopenia, splenomegaly, and myelofibrosis,  
but the exact molecular function of NBEAL2 is not known34. It 
acts at a later state of α-granule development, independently of  
VPS33B, as Nbeal2-/- platelets express some P-selectin that  
externalizes upon platelet activation. NBEAL2 is under direct  
transcriptional control of GATA1, a mutation in which results 
in a syndrome similar to GPS, in addition to myelodysplasia35.  
It is one of the nine BEACH (beige and Chediak-Higashi) domain-
containing proteins, hypothesized to be scaffolds for fission  
and fusion membrane events36. Genetic defects in Chediak- 
Higashi syndrome 1 (CHS1), another member of this family, lead 
to platelet dysfunction secondary to dense granule deficiency in  
addition to immunodeficiency and other manifestations36.

Protein sorting and packaging into the developing α-granule  
occur via varying mechanisms dependent on the protein type.  
Many membrane proteins, such as P-selectin, contain signal  
peptides that direct them to the developing granule37. Notably,  
P-selectin uses distinct signal peptides for trafficking to the  
α-granules in platelets and Weibel–Palade bodies in endothe-
lial cells38. Another mechanism is protein aggregation, which 
is employed by large soluble proteins such as multimerin and 
VWF39,40. VWF self-assembles into large homoaggregates that 
ultimately form tubular structures occupying a distinct sub- 
compartment within α-granules41. Sorting sequences contribute to 

trafficking of many smaller soluble proteins to α-granules. PF4 is 
one such protein that has a four-amino acid sequence within its  
hydrophilic loop that directs it to the maturing α-granule42. 
Other examples of small proteins that employ sorting sequences 
are RANTES and NAP2. Cationic glycosaminoglycans within  
α-granules may also serve to retain these small chemokines43.  
Exogenous proteins are trafficked through an endocytic path-
way into α-granules via either receptor-mediated endocytosis or  
pinocytosis. Fibrinogen, which is internalized via integrin 
αIIbβ

3
, is a classic example of this route, which subsequently 

uses adaptor protein Disabled-2 for formation of clathrin-coated  
vesicles44,45. Proteins that are incorporated into platelets via 
pinocytosis include immunoglobulins as well as angiogenesis  
regulators such as VEGF, endostatin, and FGF23,46. Vesicle- 
associated membrane protein 3 (VAMP-3), a v-SNARE  
(discussed below), regulates platelet endocytosis. VAMP-3-/-  
platelets show impaired αIIbβ

3
-mediated fibrinogen uptake47. 

In addition, loss of VAMP-3 impairs trafficking of both endocy-
tosed and pinocytosed cargo between Rab4 (early endosomes)  
and Rab11 (recycling endosomes) positive compartments,  
although its mechanism remains unclear. Endocytosis of plasma 
proteins starts in megakaryocytes but continues in mature  
circulating platelets. For example, platelets from patients with  
complete factor V deficiency endocytose and release factor V  
supplemented in transfused plasma for prolonged periods greater 
than the half-life of factor V48.

Dense granule biogenesis
Dense granules are platelet-specific LROs7. These granules are  
distinct from classic secretory granules in that they are derived 
from the endosomal system instead of directly from TGN  
(Figure 1B). They also share some characteristics with lyso-
somes as their intra-granular pH is acidic and they possess  
lysosome-resident proteins, such as the tetraspanin CD63. 
However, CD63 is not restricted to dense granules in platelets,  
and the lack of other specific cargoes that can be followed  
biosynthetically has made evaluation of dense granule biogenesis 
challenging. There is evidence that early endosomes contribute 
to dense granule biogenesis49. In addition, like α-granules, dense  
granules are believed to be sorted in MVBs, although the 
only direct evidence of this is the accumulation of CD63 and  
serotonin in MVBs in megakaryocytes50. HPS and related  
disorders together with their murine counterparts have served 
as a great source of understanding of biogenesis of LROs, and  
melanosomes are the prototype organelle that has been studied.

In total, at least 10 different HPS genes encode subunits of 
four distinct ubiquitously present protein complexes: adaptor  
protein-3 (AP3) and biogenesis of lysosome-related organelles 
complex (BLOC) 1, 2, and 351–54. These complexes local-
ize mainly to the endosomal compartment and are essential for  
biogenesis of LROs. Deficiency or alteration in these proteins 
results in two common manifestations: albinism due to abnormal  
melanogenesis and a bleeding disorder due to dense granule  
deficiency. Some HPS subtypes display other manifestations,  
such as pulmonary fibrosis, inflammatory bowel disease, and 
immunodeficiency51. Functions of these individual proteins and 
protein complexes are being understood with increasing detail. 
In melanosomes, BLOC1 (complex of HPS7, HPS8, HPS9,  
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Muted, Cappuccino, Snapin, BLOS2, and BLOS3) is required 
for the exit of melanosome cargoes from endosomes into tubu-
lar transport carriers55. BLOC2 (complex of HPS3, HPS5, and 
HPS6) directs these carriers specifically to the melanosomes.  
Alternatively, cargoes can be directed into developing melano-
somes in an AP3-dependent pathway, which in turn can be  
BLOC1-independent or -dependent55–58. BLOC3 (complex of 
HPS1 and 4) functions after cargo delivery in pathways out 
of melanosomes, specifically in retrieval and recycling of the 
BLOC1-dependent v-SNARE VAMP-759. Owing to concur-
rence of albinism and dense granule deficiency in HPS, pathways 
similar to those described above are thought to function in dense 
granule biogenesis in megakaryocytes, although there is no direct  
evidence. The exact molecular functions of many of the HPS 
and related proteins are also being characterized, mainly in  
melanosomes. HPS9, or Pallidin, a component of BLOC1, is 
known to interact with syntaxin 13, a SNARE protein involved 
in vesicle membrane fusion during trafficking60. BLOC2  
constituents HPS3 and HPS6 have been described to bind  
clathrin and dynactin p150Glued, respectively61,62. BLOC3  
functions as a guanine nucleotide exchange factor for cell type-
specific Rab GTPases, such as Rab32 and Rab38 in melano-
cytes63,64. A direct role of Rab32 and Rab38 in dense granule  
biogenesis in megakaryocytes has also been implicated13,64. RUNX1 
mutations lead to dense granule but not α-granule deficiency  
due to dysregulation of Pallidin (HPS9) transcription65.

Dense granule contents, such as bioactive amines and adenine 
nucleotides, are transported into the maturing dense granules via 
specific membrane pumps, such as vesicular nucleotide transporter 
(VNUT), which has been proposed as a candidate for ADP and  
ATP accumulation in dense granules, and multidrug resistance-
associated protein 4 (MRP4), which uptakes cAMP into dense 
granules66–68. MRP4-/- mice show significant platelet dysfunction 
due to cytosolic accumulation of cAMP and lack of cAMP in  
dense granules, as do inhibitors of MRP4, such as probenecid67,69. 
York platelet syndrome is characterized by thrombocytopenia  
and striking giant electron-opaque organelles. It is caused by a  
calcium-selective release-activated calcium (CRAC) channelopa-
thy, which results in defective calcium storage70.

Platelet granule exocytosis
Platelet granule exocytosis is a classic example of regulated  
secretion. Upon agonist stimulation, cargo stored in platelet  
granules is released, and rates and extent are dependent on the  
stimulation strength71. Dense granule exocytosis is fastest and 
most sensitive to agonists, whereas lysosome exocytosis is slow 
and requires more stimulation. α-Granule exocytosis is con-
sidered to be intermediate. The kinetics and extent of platelet  
exocytosis vary depending on the concentration and potency 
of the agonist used, but whether the composition of released 
cargo follows any agonist-dependent patterns remains contro-
versial71. The distinct cellular localization of two major platelet  
v-SNAREs—VAMP-7 and VAMP-8, discussed in greater 
detail below—suggests a functional heterogeneity in granule  
exocytosis72,73. However, studies extensively characterizing cargo 
released using multiple agonists, employing both immunoassays 
and proteomics, suggest that there may not be any thematic  

patterns of cargo release74. Thus, whether or not function- 
specific platelet exocytosis of α-granule subpopulations occurs 
under physiological conditions remains to be established.

Fusion of vesicle membrane with the plasma membrane is 
the general scheme of exocytosis in nucleated cells. Platelets  
follow this general rule but with some atypical features.  
Platelet granules, which are uniformly distributed throughout the  
platelet, move centrally upon platelet stimulation and spreading, 
although this may be artefactual. Second, in addition to fusion 
with the plasma membrane, most granule exocytosis follows  
fusion of platelet granules with the open canalicular system  
(OCS), which are plasma membrane invaginations that  
increase platelet surface area by at least two- to three-fold75,76.  
α-Granules fuse with the membrane individually as well as in 
the form of large multi-granular compartments that result from  
granule–granule fusion. This pattern of granule–granule fusion  
followed by granule–plasma membrane fusion occurs exclusively 
in α-granules at higher agonist concentrations77.

SNAREs
Membrane fusion is facilitated by SNARE proteins, a family 
of highly conserved eukaryotic proteins essential for vesicle  
fusion78. SNARE proteins are classified into two groups on the  
basis of their location: v-SNAREs, located on the vesicle/granule 
membrane, and t-SNAREs, located on the target membrane  
(for example, plasma membrane). Related v- and t-SNAREs  
interact through SNARE domains, which are α-helices of about  
60 amino acids, assembled into amphipathic, heptad repeats. 
SNAREs can also be classified as R-SNAREs (typically  
v-SNAREs) or Q-SNAREs (typically t-SNAREs), depending on 
the presence of an arginine or glutamine residue, respectively, 
in the central position of the SNARE domain79. Four SNARE  
domains—one each from the v-SNARE plus three t-SNAREs—
form a coiled-coil structure that brings the two opposing mem-
branes together (for example, granule and plasma membrane) 
against repulsive electrostatic forces of the two lipid membranes  
in an aqueous environment (Figure 2)80.

VAMPs constitute the largest group of v-SNAREs. Platelets 
contain VAMP-2, -3, -7, and -8; VAMP-8 is the most abundant 
and functionally important in human platelets, followed by  
VAMP-781. Loss of VAMP-8 in mice causes defective α- and  
dense granule exocytosis, and platelet thrombus formation  
in vivo, without excessive bleeding82. On the other hand, loss 
of VAMP-7 in mice leads to defective platelet spreading, and  
altered α- and dense granule exocytosis, without impacting  
platelet thrombus formation or bleeding73. Moreover, VAMP-7 is 
located peripherally in the spreading platelet whereas VAMP-8 
concentrates in the central granulomere72. These observations  
suggest a distinct role for these v-SNAREs in platelet func-
tion. Interestingly, VAMP-8 has also been linked to early-onset  
myocardial infarction in genome-wide association studies, 
suggesting a syndrome of platelet hyper-responsiveness83.  
VAMP-3, which is important in the endocytotic pathway of  
α-granule biogenesis, has minimal function in platelet exocytosis47. 
The role of platelet-specific VAMPs has not been well established 
in granulogenesis.
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Figure 2. SNARE-mediated platelet granule exocytosis. The pathway of platelet granule exocytosis involves (1) granule docking, (2) 
priming, and (3) membrane fusion and cargo release. Rab27b and its effectors syntaptotagmin-like protein and Munc13-4 present on vesicle 
membrane are required for granule docking. Platelet activation promotes conformation change in syntaxins, sequestered by Munc18b in the 
resting state. This activation results in “priming” with subsequent formation of a four-helical bundle consisting of one R-SNARE provided by 
VAMP (red) and three Q-SNAREs provided by syntaxin and SNAP-23 (shades of green). In addition, syntaxin binding protein 5 (STXBP5) 
regulates t-SNARE function by binding syntaxin-SNAP-23 heterodimers. SNARE engagement ultimately leads to formation of the membrane 
fusion pore and cargo release. SNAP, soluble NSF attachment proteins; SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein 
receptor; VAMP, vesicle-associated membrane protein.

Of the t-SNAREs, proteomic studies suggest that platelet  
contains syntaxin 2, 4, 6, 7, 8, 11, 12, 16, 17, and 18 and solu-
ble NSF attachment proteins (SNAPs) 23, 25, and 2984. Of these, 
syntaxin 11 and SNAP 23 are the only t-SNAREs found to be  
essential for platelet granule exocytosis. As with v-SNAREs,  
most data come from mouse models lacking one or more specific 
t-SNAREs. Loss of syntaxin 11, which forms complexes with  
SNAP 23 and VAMP-8, is associated with abnormal exocytosis 
of all three of the major platelet granules85. In humans, familial  
hemophagocytic lymphohistiocytosis type 4 is caused by lack 
of syntaxin 1186. Loss of syntaxin 8 has been associated with  
minor defects in dense granule exocytosis87.

SNARE regulators
To prevent indiscriminate release of granular content, fusion of 
vesicle and target membranes is tightly regulated by SNARE  
regulators. Some SNARE regulators are chaperones (for example, 
Munc18b), while others promote formation of membrane-fusion 
complexes and direct where the fusion occurs (for example, 
Munc13-4, Munc18 isoforms, Rabs, STXBP5/Tomosyn 1, and 
exocyst complex).

Munc18b is the most important syntaxin chaperone belonging  
to the Sec/Munc family of proteins present in the platelet,  

forming specific complexes with t-SNAREs. Munc18b defi-
ciency leads to decreases in platelet levels of syntaxin 11, con-
sistent with its role as a chaperone, resulting in impaired granule  
exocytosis88. Homozygous deficiency, as seen in familial  
hemophagocytic lymphohistiocytosis type 5, leads to severe  
defects in all platelet granule exocytosis, whereas heterozygous 
deficiency leads to intermediate defects89. VPS33B, discussed  
in α-granule biogenesis above, also belongs to the Sec/Munc  
family of proteins29.

Syntaxin binding protein 5 (STXBP5), or tomosyn 1, binds to 
the cytoskeleton and to t-SNARE heterodimers (syntaxin 11 and 
SNAP-23) through the presence of a v-SNARE-like domain at 
its C-terminal. Its deficiency causes defective granule exocyto-
sis, and mice lacking STXBP5 show excessive bleeding90. Inter-
estingly, STXBP5 negatively regulates VWF release from the  
endothelial cells, and polymorphisms in STXBP5 gene are  
associated with increased plasma VWF levels and cardiovascular 
disease91.

Rab proteins that belong to the Ras superfamily of GTPases  
function as master regulators of the complex network of intra-
cellular membrane trafficking pathways92. Rabs perform this  
regulatory function by binding to effector proteins in the 
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GTP-bound, or “on”, state93. Some of these Rab effectors are  
SNARE regulators. Multiple Rabs, including Rab3b, 6c, and 8, 
are phosphorylated upon platelet activation, and their inhibition 
decreases platelet exocytosis94. Among these, Rab4 is crucial for 
α-granule exocytosis whereas Rab27b is a key regulator of dense 
granule biogenesis and exocytosis95,96. Munc13-4 is a Rab27b  
effector protein, essential for dense granule function. Munc13-
4 forms calcium-dependent bridges between the dense granule 
and plasma/OCS membrane, facilitating membrane fusion97,98.  
Rab27-/- and Munc13-4-/- platelets have defective dense gran-
ule exocytosis and a bleeding diathesis. These platelets also  
display defective exocytosis of α-granules and lysosomes, which 
can be overcome by the addition of ADP, a key dense granule 
component99. This reversal by ADP, as also occurs in HPS 
platelets, demonstrates the critical role of autocrine signal-
ing from released dense granule cargo for complete platelet  
activation15,100.

Synatotagmin-like proteins (SLPs), particularly SLP1 and 
SLP4, that bind calcium/lipids are also known to regulate dense  
granule exocytosis and may act as calcium sensors. SLP1— 
which forms a complex with Rap1, a Ras-like GTPase, and 
RAP1GEF2, its guanine nucleotide exchange factor—is a  
negative regulator of dense granule release101. SLP4, a Rab27 
effector, on the other hand, is a positive regulator of dense granule 
release102.

Tethering complexes, particularly the exocyst complex, which 
is known to play a role in polarized secretion, may also be  
involved in the regulation of dense granule exocytosis103.  
Exocyst complex is targeted to the plasma membrane by Ral, 
a Ras-like GTPase, which is expressed in platelets and activated  
upon platelet stimulation. Blocking of Ral-GTP binding to exocyst 
complex impairs dense granule exocytosis.

NSF and soluble NSF attachment proteins (SNAPs) are also  
important regulators of platelet exocytosis104. These proteins  
disassemble SNARE complexes to allow recycling of v-SNAREs 
and t-SNAREs for the next round of membrane fusion105.  
The inhibitory effect of nitric oxide on platelet exocytosis is at  
least partly due to its reversible inhibition of NSF106.

Many SNAREs and their regulators, such as SNAP23 and  
Munc18, are known to be protein kinase C substrates, link-
ing platelet activation and ensuing signaling cascades to the  

exocytosis machinery. Platelet signaling and protein phosphor-
ylation and their role in regulated platelet exocytosis are beyond  
the scope of this review. The reader is referred to excellent  
reviews on this topic107–109.

Conclusions
Regulated release of platelet granules is central to normal  
platelet function, which includes a variety of biological processes 
such as inflammation and immunity, in addition to hemostasis and 
thrombosis. Human platelet granule deficiency syndromes and 
their murine models, as well as the study of other cell types such 
as melanocytes and chromaffin cells92, have been major sources 
of understanding of the protein machinery involved in platelet 
granulogenesis and exocytosis. Despite significant progress in  
identifying this machinery, many questions remain unanswered. 
What are the roles in granulopoiesis of the different vesicular  
trafficking proteins identified by genetic studies? What are the  
exact platelet-specific functions of SNARE regulators critical 
for platelet exocytosis, such as STXBP5, Munc13-4, and SLPs? 
Do platelet α-granules demonstrate a function-specific pattern 
of release, as may be inferred by evidence of different α-granule  
pools? How do secondary signaling mechanisms generated  
upon platelet activation control the distal exocytosis machinery? 
The answer to these questions will enable a clearer view of the 
life cycle of platelet granules, which is central to understanding  
platelet function in varied pathophysiologic processes.
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