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A B S T R A C T

Introduction and aims: Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disorder

influenced by internal metabolic disruptions and external exposures, known as expo-

somes, which increase disease risk. Identifying salivary metabolites is a promising method

to detect biomarkers for both endogenous and environmental factors. This study utilised a

dual approach to profile salivary endogenous metabolites and exposomes, aiming to pro-

vide a comprehensive understanding of T2DM by integrating biological and environmental

factors, thereby improving biomarker discovery and risk prediction.

Methods: Salivary metabolites were analysed via ultraperformance liquid chromatography

coupled with Q-Exactive mass spectrometry in samples from women with T2DM (n = 39) and

healthy controls (n = 40). The groups were matched for age, sex, periodontitis, dyslipidaemia,

and hypertension. The identified metabolites were mapped to the Human Metabolome Data-

base and the Blood Exposome List usingU.S. Environmental Protection Agency resources.

Results: Principal component analysis revealed distinct clusters for endogenous metabo-

lites and exposomes, leading to separate analyses. In the endogenous metabolite category,

64.5% of the metabolites significantly differing between DM and non-DM groups were

dipeptides (false discovery rate <0.05, variable importance for the projection >2). Among

the dipeptides, Gln-Trp and Phe-Asn were identified as the top predictors of T2DM, with an

area under the curve of 0.87, while His-Phe, His-Tyr, Met-Tyr, and Leu-Gln had area under

the curve of 0.85. In the exposome category, univariate regression revealed significant

associations between synthetic dipeptides and agrochemical exposomes and fasting

plasma glucose levels, with daminozide exhibiting the greatest effect size.

Conclusion: Leveraging saliva’s noninvasive collection, these findings underscore the diag-

nostic potential of salivary dipeptides and emphasise the importance of addressing expo-

somes in T2DMmanagement.

Clinical relevance: By integrating endogenous and exposome profiling, this study offers a novel

approach for identifying metabolic and environmental risk factors, advancing biomarker dis-

covery and risk prediction to improve early diagnosis and personalisedmanagement of T2DM.

� 2025 The Authors. Published by Elsevier Inc. on behalf of FDIWorld Dental Federation. This

is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction

The number of people with type 2 diabetes mellitus

(T2DM) is anticipated to increase by 25% by 2030 and 51%

by 2045 from the current level of just under half a billion.1

To ensure early detection of diabetes and reduce compli-

cations, it is essential to implement practical, reliable, and

cost-effective screening measures. While traditional gly-

caemic markers, such as glucose and HbA1c,2 and new

glycaemic markers, such as glycated albumin,3 fructos-

amine,4 and 1,5-anhydroglucitol,5 have proven effective at

reflecting glycaemic status, they all require blood samples.

Blood sampling is invasive, necessitating the expertise of

a phlebotomist, and since diabetes requires regular moni-

toring, repeated blood draws can cause significant patient

discomfort. Saliva, on the other hand, offers a promising

noninvasive and cost-effective alternative for assessing

and monitoring the physiological status of healthy individ-

uals and T2DM-affected individuals.6

Recent advances in metabolomics, particularly using mass

spectrometry (MS)-based untargeted approaches, have revealed

that, like blood, saliva is also a rich source of low-molecular-

weight metabolites, comprising carbohydrates, lipids, amino

acids, vitamins, organic acids, and thiols, which can serve as

important indicators of health and disease.7,8 Through a multi-

platform approach complemented by computer-aided literature

mining, 853 nonredundant salivary metabolites were identified

and annotated.9 This emerging information on the salivary

metabolome has helped identify distinct metabolomic finger-

prints in the saliva of patients with colorectal cancer,10 breast

cancer,11 schizophrenia,12 periodontal disease,8,13 or burning

mouth syndrome.14 Since T2DM is a metabolic disorder, a

metabolomics approach is particularly promising for biomarker

discovery because it reveals the molecular pathways involved

in its development and progression.15 However, profiling of the

salivary metabolome in people with T2DM has not yet reached

its full potential for biomarker discovery, primarily because the

existing studies explored the association of T2DM with other

coexisting conditions, such as periodontitis or cardiometabolic

traits 16,17 or failed to discriminate between type 1 and type 2

diabetes,18 limiting our understanding of T2DM-specific salivary

metabolites.

Over the last two decades, transformative research has

emphasised that environmental factors, known as exposomes,

play a more significant role in the risk of chronic diseases,

including T2DM, than genetic or endogenous factors.19 Expo-

somes encompass all the exogenous environmental exposures

a person encounters throughout their lifetime, such as chemi-

cal, pollutant, and lifestyle factors, which interact with their

biological system to influence health outcomes.20 Researchers

are now using a balanced strategy to investigate both endoge-

nous factors and exposomes to determine the causes of chronic

diseases.21 Saliva contains valuable molecular information that

can be explored through exposome-wide association studies to

discover exposure−risk factors for chronic diseases.22 Based on

the literature and open-source saliva−metabolome database,

Bessonneau et al22 categorised the exposomes in saliva accord-

ing to their origins, including food, drugs, pollutants, microbes

and metals, in addition to metabolites originating from the

host’s endogenous sources. These were mapped to human
metabolic diseases, central nervous system diseases, and

neoplasms, indicating that the salivary metabolome cap-

tures a biologically meaningful fraction of exposomes

associated with human diseases. Despite this progress, no

studies have examined environmental salivary metabolites

influencing T2DM.

Endogenous metabolites can serve as diagnostic markers

reflecting the physiological and pathological state of the host.

In contrast, exposome metabolites provide insights into

external risk factors that may contribute to disease develop-

ment or progression. To this end, we conducted an explor-

atory salivary metabolomics study to identify signature

metabolites linked to T2DM, uniquely integrating endoge-

nous and exposome metabolites to capture intrinsic biologi-

cal changes and extrinsic environmental factors. This dual

approach, combined with a matched and adjusted case-con-

trol group for periodontitis, cardiometabolic (dyslipidaemia

and hypertension), and anthropometric factors (age and sex),

addresses gaps in current research and enhances the preci-

sion of biomarker discovery for T2DM.
Methods

Study population

All subjects in this cross-sectional study were recruited from

the Diabetes and Metabolic Centre at Singapore General Hospi-

tal between October 2021 and December 2022. The study

included 79 women, comprising 39 diagnosed with T2DM (DM

group) and 40 free of T2DM (non-DM group). T2DM is defined

based on the recommendations of the American Diabetes Asso-

ciation: fasting plasma glucose (FPG) ≥126 mg/dL (7.0 mmol/L),

2-hour postplasma ≥200 mg/dL (11.1 mmol/L) during an oral

glucose tolerance test, or HbA1c ≥6.5% (48 mmol/mol).23 The

controls were matched to the patients for age (§3 years), as

these factors influence metabolic profiles24,25 and are thus

potential confounders in the association between metabolites

and diabetes risk. Information on demographics, anthropomet-

ric measurements, and medical history was obtained from the

hospital’s medical records. Body mass index (BMI) is defined as

an individual’s body weight divided by the square of his or her

height (kg/m2). All individuals were enrolled voluntarily and

provided written informed consent. The study was approved by

the SingHealth Centralized Institutional Review Board (CIRB Ref

No. 2020/2698).

Oral examination and saliva collection

A single examiner carried out the oral examination (PB). Peri-

odontitis was defined as an interdental clinical attachment

level detectable at ≥2 nonadjacent teeth or by the presence of

a buccal or lingual/palatal clinical attachment level ≥3 mm

with pocket depth >3 mm detectable at ≥2 teeth.26 Bleeding

on probing was assessed by gently inserting a periodontal

probe into the gingival sulcus at six sites per tooth, and the

presence of bleeding was recorded within 30 seconds. For

saliva sample collection, subjects were asked to refrain from

eating, drinking, or performing oral hygiene procedures for at

least 30 to 60 minutes before collection. Participants
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subsequently rinsed their mouths with water for 1 minute to

remove any remaining food particles. Afterwards, unstimu-

lated saliva was collected using the spit technique according

to published protocols.27
Untargeted liquid chromatography coupled with MS (LC‒MS)-
based metabolomics

The separation and detection of metabolites were performed

on a Waters UPLC I-Class Plus (Waters Corporation) coupled

with a Q Exactive high-resolution tandem mass spectrometer

(UPLC-Q Exactive MS) (Thermo Fisher Scientific). For chro-

matographic separation, 5 mL of extracted saliva was injected

into a Waters Acquity UPLC BEH C18 column (1.7 mm, 2.1

mm £ 100 mm;Waters Corporation), and the column temper-

ature was maintained at 45°C. A pooled QC sample was ini-

tially injected five times to ensure system equilibrium, and

then, it was injected every 10 samples during saliva sample

detection to further monitor system stability (Figure S1). The

mobile phase consisted of 0.1% formic acid (A) and acetoni-

trile (B) in positive mode and 10 mM ammonium formate (A)

and acetonitrile (B) in negative mode. The gradient conditions

were as follows: 0 to 1 minute, 2% B; 1 to 9 minutes, 2% to 98%

B; 9 to 12 minutes, 98% B; 12 to 12.1 minutes, 98% B to 2% B;

and 12.1 to 15 minutes, 2% B, with a flow rate of 0.35 mL/min.

The normalised collision energy was set to 20, 40, and 60 eV.

The ESI parameters were as follows: sheath gas flow rate, 40

£; auxiliary gas flow rate, 10 £; spray voltage, 3.80 kV; and

negative-ion mode, 3.20 kV; capillary temperature, 320°C; and
auxiliary gas heater temperature, 350°C. MS data were

acquired using Q Exactive (Thermo Fisher Scientific) in full-

scan range mode at 70 to 1050 m/z with a mass resolution of

70,000. The automatic gain control target for MS data acquisi-

tion was set to 3e6 with a maximum ion injection time of

100 ms. Sample preparation, instrument parameters, and

data processing were performed at the Beijing Genome Insti-

tute (BGI LTD).
Metabolite ion peak extraction and metabolite identification

The generated raw data were processed using Compound Dis-

coverer 3.2 (Thermo Fisher Scientific) for ion peak extraction,

peak alignment, and peak integration. In brief, the raw files

were aligned using an adaptive curve setting with a parent

ion mass deviation of <5 ppm, a fragment ion mass deviation

of <10 ppm, and a retention time deviation of <0.2 minutes.

Metabolites identified in the processed raw data with mass

spectral peaks were searched against bmdb (BGI metabolome

database), the ChemSpider online database, the mzCloud

spectral library, the Human Metabolome Database (HMDB),

and PubChem. The data matrix, containing information such

as metabolite peak area and metabolite identification results,

was acquired into MetaX28 for data preprocessing. The data

were normalised by applying probabilistic quotient normal-

isation methods to improve the comparability between sam-

ples,29 and quality control-based robust loess signal

correction was used to correct batch effects.30 Metabolites

with a coefficient of variation greater than 30% in the QC sam-

ples were removed (Figure S2).
Statistical analysis

The demographic and clinical data are presented as the mean

§ SD for continuous data and as the frequency (percentage)

for categorical variables. T tests and chi-square tests were

used to compare differences between two groups for categori-

cal and continuous data, respectively.

The metabolites selected for analysis were filtered using

HMDB,31 and the exposomes were identified using the Blood

Exposome List from U.S. Environmental Protection Agency

(EPA) resources.32 Principal component analysis (PCA) was

also conducted to compare exposomes and endogenous

metabolites, and a PERMANOVA was performed to assess

these differences statistically. The analyses were performed

in R using the ‘vegan’ and ‘factoextra’ packages. Metabolomic

data analysis was performed using MetaboAnalyst 6.0 sepa-

rately for endogenous metabolites and exposomes. Initial

data filtering was conducted with an interquartile range (IQR)

threshold of 40% to remove low-variance metabolites. The fil-

tered data was normalised by log transformation (base 10)

and Pareto scaling (mean-centred and divided by the square

root of the standard deviation of each variable). Multivariate

analysis was performed using orthogonal partial least

squares discriminant analysis (OPLS-DA) to distinguish and

visualise the discriminatory metabolites between the DM and

non-DM groups. The OPLS-DAmodel was validated using per-

mutation testing with 100 permutations to assess the signifi-

cance of the model’s predictive ability, and the empirical P

value for Q2 was less than 0.05 for both the endogenous

metabolite and exposome datasets, indicating that the model

has a statistically significant predictive ability. The variable

importance for the projection (VIP) score from the OPLS-DA

model was used to measure each metabolite’s impact

strength and explanatory power in discriminating DM and

non-DM group samples. For univariate analysis, we used an

equal variance and false discovery rate correction with a sig-

nificance threshold set at q < 0.05 to account for multiple tests

and identify significantly altered metabolites. The criteria for

differentially abundant metabolite screening were defined as

a false discovery rate <0.05 and a VIP > 2.

Receiver operating characteristic (ROC) curve analysis

was performed on endogenous metabolites ranked by VIP

score using MetaboAnalyst’s Explorer module, including

age and BMI. ROC curves were generated using linear sup-

port vector machine models, and Monte Carlo cross-vali-

dation with balanced subsampling was employed to

ensure robust performance evaluation. The area under the

curve (AUC) was computed using bootstrapping with 95%

confidence intervals. For the exposome metabolites, uni-

variate regression analysis was conducted using the ‘stats’

package in R, with FPG as the dependent variable and

adjusting for age and BMI.
Results

Clinical measurements

Table 1 shows the clinical characteristics and measurements

of the DM and non-DM groups. The DM group had



Table 1 – Demographic and clinical characteristics of individuals with type 2 diabetes mellitus (DM) and without (non-DM).

DM (n = 39) Non-DM (n = 40) P value

Age in years 50.4§ 11.8 54.6 § 11.3 .10

BMI in kg/m2 26.8§ 4.1 23.2 § 5.2 <.01
Smoking

Current smoker (N/%) 2 (5.1%) 0 .16

Nonsmoker (N/%) 37 (94.8%) 40 (100%)

FPG in mmol/L 9.3§ 3.1 5.3 § 0.6 <.0001
HbA1c (N (mean § SD)) 38 (8.3 § 1.5) 19 (5.4 § 0.3) <.0001
Insulin therapy (N/%) 21 (53.8%) NA -

Oral antidiabetic drugs (N/%) 36 (92.3%) NA -

History of hypertension (N/%) 15 (38.4%) 9 (22.5%) .09

History of dyslipidaemia (N/%) 15 (38.4%) 10 (25.0%) .14

Periodontal parameters

Percentage of sites affected 14.4§ 17.7 9.0 § 13.5 .13

PD > 3 mm 4.0§ 0.1 4.0 § 0.1 .48

PD > 5 mm 6.8§ 0 0 -

CAL > 3 mm 4.4§ 0.5 4.3 § 0.3 .47

CAL > 5 mm 6.1§ 0.2 6.1 § 0.3 .71

Bleeding on probing 39.3§ 18.4 30.9 § 17.7 .05

Mean plaque score 51.0§ 16.2 47.5 § 15.4 .30

BMI, body mass index; CAL, clinical attachment level; FPG, fasting plasma glucose; HbA1c, glycated haemoglobin; PD, pocket depth.

The data are expressed as the mean § SD unless otherwise indicated. Continuous variables were compared with t tests, and categorical variables

were compared with chi-square tests. Statistical significance was defined as a P value < .05 and is indicated in bold.
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significantly greater FPG and HbA1c levels than the non-DM

group (P < .001). The BMI of participants with T2DM was sig-

nificantly greater than that of participants without diabetes

(P < .01). Periodontal parameters and cardiometabolic factors

like dyslipidaemia and hypertension showed no statistically

significant differences between the groups.
Fig. 1 –A box plot depicting the distribution of principal

component 1 (PC1) scores by category. The plot illustrates

the variability of PC1 across different groups, with each box

representing the interquartile range (IQR) of the PC1 score

and the line within the box indicating themedian value.

The dotted grey line at zero marks the baseline reference

point for PC1. The upper and lower whiskers extend to the

maximum andminimum values within 1.5 times the IQR

from the quartiles, respectively. Data points outside this

range are shown as outliers. *Represents a P value <.01.
Salivary metabolome profile

Salivary metabolomics data were acquired using UPLC-Q

Exactive MS. After removing mass ions with a relative

standard deviation >30%, 3216 metabolites were identified

in both positive and negative ion modes. These metabo-

lites were mapped to the HMDB, which identified 2020

metabolites. Among these, 1005 metabolites were identi-

fied as exposomes based on the Blood Exposome List from

the U.S. EPA resources. Since the study did not focus on

the effects of therapeutic agents on T2DM, 337 metabolites

identified exclusively as drugs were excluded. Conse-

quently, 1683 metabolites were selected for further analy-

sis; these included 758 metabolites that were categorised

as ‘Exposomes’, and the remaining 925 metabolites were

categorised as ‘Endogenous Metabolites’. Exposomes refer

to the metabolites derived from external exposures, while

endogenous metabolites originate within the body as

physiological metabolic byproducts. Details of the selected

metabolites in the two categories are provided in the Sup-

plementary File (Table S1).

PCA was conducted to determine whether there were dis-

tinctions between endogenous and exposome metabolites. A

significant difference was noted between the two categories,

with the first principal component (PC1) accounting for 84.5%

of the variance (R2 = 0.008, P = .002) (Figure 1). Due to the dif-

ferent origins and biological relevance of the endogenous and
exposome metabolites, the two categories were analysed

independently using MetaboAnalyst to decipher the differen-

ces in metabolic profiles between the DM and non-DM

groups.
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Characterisation of endogenous metabolites

Data filtering of the endogenous metabolites using an IQR

threshold of 40% eliminated 370 low-variance metabolites. By

setting an IQR threshold of 40%, we ensured that we retained

metabolites that exhibited sufficient variability to detect sig-

nificant associations while filtering out those that were less

likely to be informative. The remaining 555 metabolites were

subsequently normalised via log transformation and Pareto

scaling. The OPLS-DA score scatter plot demonstrated separa-

tion between the DM and non-DM groups, with an overlap for

the filtered endogenous metabolites (Figure 2A). Of the 555

metabolites analysed, 48 significantly differed between the

DM and non-DM groups, meeting the screening criteria of VIP

> 2 and q < 0.05 (Table S2). Among these, 32 (66.6%) were

dipeptides. Notably, 14 out of the 15 metabolites identified by

VIP scores were dipeptides, underscoring their potential as

key discriminators between the two groups (Figure 2B,

Table 2). In addition to dipeptides, the melatonin radical, a

metabolite of the melatonin hormone, was also significantly

increased in DM patients.

Given the significant contribution of dipeptides in distin-

guishing between patients with and without diabetes, as indi-

cated by their high VIP scores, we focused subsequent

analysis exclusively on these endogenous dipeptides. Endog-

enous metabolites are intrinsic to physiological processes

and are ideal biomarkers for identifying disease states.

Hence, ROC curve analysis was used to evaluate the diagnos-

tic performance of the selected dipeptides, as it quantitatively

measures their ability to distinguish between the DM and

non-DM groups, validating their potential as biomarkers.

This model also included age and BMI for each dipeptide
Fig. 2 –Salivary profile of metabolites in the Endogenous metabo

nant analysis (OPLS-DA). A score plot illustrating the separation

with type 2 diabetes mellitus (DM) and those without (non-DM).

indicating the respective group. (B) A variable importance in proj

individual metabolites for distinguishing between the DM and n

boxes are dipeptides.
because they are well-established risk factors for T2DM. A

multivariate ROC model was generated using a linear support

vector machine for the 14 dipeptides to assess their perfor-

mance across all possible thresholds via Monte Carlo cross-

validation. Notably, the top predictive performances were

observed for the dipeptides Gln-trp and Phe-Asn, with an

AUC of 0.87, followed by His-phe, His-tyr, Met-tyr, and Leu-

gln, with an AUC of 0.85 (Table 3).

Characterisation of exposomes

Data filtering of the exposomes using an IQR threshold of 40%

eliminated 303 low-variance metabolites. The remaining 454

metabolites were subsequently normalised via log transfor-

mation and Pareto scaling. The exposome category analysis

revealed moderate separation between salivary metabolites

from the DM and non-DM groups on the OPLS-DA score scat-

ter plot (Figure 3A). A total of 16 metabolites significantly dif-

fered between the groups, meeting the stringent screening

criteria of VIP > 2 and q < 0.05 (Table S3). Interestingly, among

the 15 metabolites identified by VIP scores, nine were dipepti-

des, and five were agrochemicals (Figure 3B, Table 4). L-

coprine was significantly lower in DM participants.

Exposomes are external exposures that may influence

health outcomes. Unlike endogenous metabolites, for which

we utilised ROC analysis to identify biomarkers, we applied

regression analysis to exposomes. This approach allows us to

investigate the potential of these factors as risk factors for

T2DM bymodelling and quantifying the associations between

specific exposures and health outcomes. Using the top 15

metabolites identified by VIP scores in exposome categories

as independent variables, univariate linear regression
lite category. (A) Orthogonal partial least squares discrimi-

of salivary endogenous metabolites between individuals

Each data point represents a saliva sample, with colours

ection (VIP) score plot displaying the discriminant power of

on-DM groups. The metabolites marked within the blue



Table 2 – Comparison of salivary metabolites between individuals with type 2 diabetes mellitus (DM) and those without
(non-DM) diabetes mellitus in the endogenous metabolite category.

HMDB ID FDB ID Metabolite VIP Fold change
(DM/non-DM)

FDR

28744 111800 Asn-val 2.401 1.901 0.002

28808 111854 Gln-trp 2.456 2.205 <0.001
28892 111921 His-phe 2.366 1.682 0.002

28897 111926 His-tyr 2.512 2.097 0.001

28927 111954 Leu-gln 2.465 2.016 0.001

28946 111969 Lys-asn 2.279 1.913 0.001

28949 111972 Lys-gln 2.269 1.809 0.001

28961 111984 Lys-thr 2.310 1.999 0.001

60070 - Melatonin radical 2.349 1.994 0.002

28985 112005 Met-tyr 2.291 1.782 0.002

28990 112010 Phe-asn 2.509 2.397 <0.001
28993 112013 Phe-gln 2.519 2.229 <0.001
29095 112099 Trp-tyr 2.358 1.650 0.004

29117 112120 Tyr-tyr 2.407 1.921 0.001

29136 112137 Val-ser 2.287 1.461 0.019

FDB, food database; FDR, false discovery rate; HMDB, humanmetabolome database; VIP, variable importance for the projection.

6 b a l an e t a l .
analysis was performed with FPG as the dependent variable

after adjusting for age and BMI. All the exposomes except

Arg-pro and L-coprine were significantly associated with the

FPG level (Table 5). This included eight dipeptides and five

agrochemicals. Among them, daminozide had the greatest

effect size, with a coefficient = 0.20 and 95% CI [0.06, 0.34],

P = .006.
Discussion

The present study investigated the salivary metabolomic pro-

files of individuals with and without T2DM using an MS-

based untargeted metabolomics approach. Our study repre-

sents a novel approach by categorising the salivary metabo-

lome into endogenous and exposome-derived metabolites,

accounting for periodontitis, cardiometabolic, and
Table 3 – A multivariate receiver operating characteristic
(ROC) curve model including age and BMI for type 2 diabetes
mellitus prediction.

Multivariate ROC

Metabolite AUC 95% CI

Gln-trp 0.87 0.76; 0.97

Phe-asn 0.87 0.77; 0.97

Met-tyr 0.85 0.73; 0.96

His-phe 0.85 0.75; 0.95

His-tyr 0.85 0.74; 0.96

Leu-gln 0.85 0.75; 0.95

Phe-gln 0.84 0.72; 0.94

Tyr-tyr 0.84 0.73; 0.95

Lys-asn 0.83 0.73; 0.95

Lys-gln 0.83 0.71; 0.95

Lys-thr 0.83 0.73; 0.95

Trp-tyr 0.83 0.71; 0.94

Asn-val 0.83 0.71; 0.94

Val-ser 0.81 0.68; 0.93

95% CI, 95% confidence interval; AUC, area under the ROC curve.
anthropometric factors. This novel annotation identified

endogenous salivary dipeptides as potential biomarkers for

T2DM disease detection and synthetic dipeptides and agro-

chemical exposomes as potential risk factors for T2DM after

adjusting for age and BMI.

Endogenous metabolites originate from diet or drug intake

and are utilised in various physiological and metabolic path-

ways, becoming part of the body’s internal biochemistry. In

contrast, exposomes are synthetic chemicals derived from

the diet and drugs in the form of food additives, pesticides, or

medical-grade plastics that can disrupt normal physiological

processes, contributing to disease development or affecting

overall health. We employed an untargeted metabolomics

approach to profile salivary metabolites and annotated

endogenous metabolites using the HMDB and exposomes,

utilising resources from the U.S. EPA. PCA demonstrated a

significant difference between endogenous metabolites and

exposomes, indicating that distinct metabolic signatures

were associated with endogenous and exogenous factors. As

the levels of endogenous metabolites are expected to be

higher than those of the exposomes, it is more effective to

investigate metabolites from the two categories distinctly.33

Hence, considering the different origins and biological rele-

vance of endogenous and exposome metabolites, we per-

formed independent analyses to decipher their role in

discriminating between the DM and non-DM groups.

The analysis of endogenous metabolites revealed numer-

ous dipeptides as key discriminators in T2DM patients.

Among the statistically significant metabolites, 66.6% were

dipeptides, and 14 of the 15 metabolites with the highest VIP

scores were dipeptides. Dipeptides are organic compounds

containing a sequence of exactly two amino acids joined by a

peptide bond.31 While few dipeptides are known to have

physiological or cell-signalling effects, most of these proteins

serve as incomplete breakdown products of protein digestion

or protein catabolism. There are three potential causes for

the elevated levels of dipeptides in the saliva of patients with

diabetes. Firstly, diabetes is often associated with altered



Fig. 3 –Salivary profile of metabolites in the exposome category. (A) Orthogonal partial least squares discriminant analysis

(OPLS-DA). A score plot illustrating the separation of salivary exposomes between individuals with type 2 diabetes mellitus

(DM) and those without (non-DM). Each data point represents a saliva sample, with colours indicating the respective group.

(B) A variable importance in projection (VIP) score plot displaying the discriminant power of individual metabolites for distin-

guishing between the DM and non-DM groups. The metabolites marked within the blue boxes are dipeptides, and those

within the red boxes are agrochemicals.
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protein metabolism, which leads to increased protein break-

down.34 This process may produce dipeptides and amino

acids in the body, which are subsequently excreted in saliva.

The entry of proteins and dipeptides into whole saliva via sal-

ivary glands or gingival crevices is facilitated by the enhanced

basement membrane permeability associated with microvas-

cular defects in diabetes.35,36 Second, the overrepresentation

of dipeptides in the DM group could be produced by the

enhanced peptidase and hydrolase activities of the salivary
Table 4 – Comparison of salivary metabolites between individ
(non-DM) diabetes mellitus in the exposome category.

HMDB ID DTXSID Metabolite

34266 974419 L-coprine

253405 8034665 Imazapyr

259742 70303398 Val-met

29088 10199717 Trp-lys

13209 20874543 Ala-trp

28977 60392372 Met-leu

31360 4044244 L-cis-cyclo(Asp-phe)

28955 70426798 Lys-leu

29140 40959967 Val-val

28717 70178886 Arg-pro

253404 3034664 Imazamox

11741 995841 Gamma-glu-tyr

40573 5040752 Tetraacetylethylenediamine

250838 9020370 Daminozide

36577 2044397 Trifluoromethanesulfonic a

DTXSID, distributed structure-searchable toxicity (DSSTox) substance iden

VIP, variable importance for the projection.
gland, which can break down the protein-rich saliva typical

of individuals with diabetes.37,38 A previous study using non-

obese diabetic mouse models showed that saliva and salivary

glands exhibit high proteolytic enzyme activity, resulting in

abnormally processed protein constituents.39 Moreover,

patients with T2DM have a higher total protein content in

their saliva than healthy individuals, providing abundant

substrates for dipeptide formation.40,41 Finally, a high abun-

dance of dipeptides in saliva could be the product of oral
uals with type 2 diabetes mellitus (DM) and those without

VIP Fold change
(DM/non-DM)

FDR

2.57 0.43 0.002

2.32 2.70 0.001

2.29 2.39 0.001

2.23 2.27 0.001

2.23 1.89 0.001

2.22 2.32 0.001

2.21 2.23 0.001

2.21 1.98 0.001

2.16 1.96 0.002

2.14 0.48 0.024

2.14 2.91 0.002

2.09 2.05 0.001

2.11 2.00 0.002

2.05 1.40 0.015

cid 2.02 2.50 0.002

tifier; FDR, false discovery rate; HMDB, human metabolome database;



Table 5 – Univariate linear regression analysis for salivary
exposomes after adjusting for age and BMI.

Exposome Coefficient (95% CI) P value

Cyclo (Asp-Phe) 0.13 (0.04; 0.21) .003

gamma-Glu-tyr 0.10 (0.04; 0.15) .001

Met-Leu 0.06 (0.02; 0.09) .004

Val-met 0.06 (0.02; 0.11) .004

Trp-lys 0.10 (0.04; 0.16) .002

Ala-Trp 0.10 (0.05; 0.16) .001

Arg-pro −0.03 (−0.09; 0.03) .350

Lys-leu 0.11 (0.04; 0.18) .002

Val-val 0.08 (0.02; 0.14) .011

L-coprine −0.07 (−0.16; 0.01) .080

Daminozide 0.20 (0.06; 0.34) .006

Imazamox 0.08 (0.03; 0.14) .002

Imazapyr 0.11 (0.05; 0.17) .001

Tetraacetyl ethylenediamine 0.09 (0.01; 0.16) .020

Trifluoromethanesulfonic acid 0.05 (0.01; 0.10) .016

95% CI, 95% confidence interval.

Significance was set at a P value <.05.
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bacterial metabolism. Periodontal bacteria possess dipeptidyl

peptidases (DPPs) and exopeptidases in their periplasmic

space, which release various dipeptides from the N-terminus

of polypeptides.42 However, since the DM and non-DM groups

had comparable levels of periodontitis, this explanation is

less likely.

The dipeptides identified in our study have not been previ-

ously reported or discussed in the literature. Consequently,

the source and pathophysiological mechanisms underlying

their association with diabetes remain largely unknown.

However, these findings can be attributed to the altered pro-

tein metabolism associated with diabetes, according to the

available evidence. A cross-sectional study revealed that

muscle histidine-containing dipeptides increased with pro-

gressive glucose intolerance.43 Since T2DM is linked to a

greater proportion of fast glycolytic type 2 muscle fibres,

which store abundant histidine-containing dipeptides, this

shift towards faster fibre types in diabetic muscle likely con-

tributes to elevated dipeptide levels.44 In diabetic rats, the

increased levels of the collagen-derived dipeptides Ala-Pro

and Pro-Pro were attributed to heightened prolidase activity,

leading to augmented collagen breakdown and dipeptide

release.45,46 T2DM patients also exhibit elevated circulating

DPP-4 levels, which cleave incretin hormones such as gluca-

gon-like peptide-1 and glucose-dependent insulinotropic

polypeptide, exacerbating hyperglycemia.47 Despite its rela-

tively specific substrate preference, DPP-4 has been shown to

cleave various protein substrates to form dipeptides in phar-

macological, in vitro, and animal studies.48 These findings

suggest elevated dipeptide levels in diabetes patients are

likely linked to increased protein content and proteolytic

activity. The high predictive power of some of the dipeptides

identified in this study emphasises the significance of dipep-

tides as biomarkers and highlights the need for further inves-

tigation into their potential roles and mechanisms in T2DM

development.

The analysis of metabolites in the exposome category

revealed more distinct clusters on the OPLS-DA plot than did

the analysis of endogenous metabolites, suggesting that the
exposomes of individuals with and without diabetes are

more differentiated than their endogenous metabolomes are.

A comparison between the DM and non-DM groups revealed

that dipeptides, agrochemicals, and mushroom-derived L-

coprine were the primary discriminators of T2DM, as these

compounds had the highest VIP scores. Regression analysis

showed that all exposomes, except Arg-pro and L-coprine,

were significantly associated with FPG levels. Although dipep-

tides were also found in the endogenous metabolites cate-

gory, the dipeptides identified as exposomes are not naturally

occurring and may have potential health implications. The

dipeptide cyclo(Asp-Phe) was positively associated with FPG,

with an estimated coefficient of 0.13 in the regression model.

It is a metabolite of the dipeptide sweetener aspartame,

which decomposes to cyclo-Asp-Phe when beverages are

exposed to elevated temperature, pH, and moisture

extremes.49 Although cyclo(Asp-Phe) was detected in diabetic

saliva with notable significance, its presence is rather

expected in participants with diabetes and is not inherently

pathological. Gamma-Glu-Tyr and Trp-Lys, with regression

coefficients of 0.1, have been identified as novel DPP-IV inhib-

itors, suggesting their potential use as alternative treatments

for T2DM.50,51 However, these metabolites are listed in the

Comparative Toxicogenomic Database and are considered

chemicals of emerging concern.52,53 Other dipeptides, such as

Met-Leu and Lys-Leu, have been detected but not quantified

in animal meat, except for Val-Met.54 Its presence in humans

is predicted to result from likely exposure to far-field pesti-

cides and residential chemicals.54

Numerous epidemiological studies have linked human

pesticide exposure to the prevalence of insulin resistance-

related metabolic diseases, including T2DM.55 For example,

daminozide, which had the highest regression coefficient

among all exposomes analysed, is a plant growth regulator

and is a known inhibitor of KDM2A (lysine demethylase 2A),

which is a negative gluconeogenesis regulator.56 Imazapyr

and imazamox are imidazolinone herbicides. Imazamox-

based herbicide formulations reduce the size of b-islet cells

and increase serum glucose and calcium levels.57 Tetraacety-

lethylenediamine, a bleach activator and antimicrobial pesti-

cide used in food-contact paper, dairy processing equipment,

and food processing equipment,58 is produced by acetylation

of ethylenediamine, which is reported to exacerbate diabetes

in partially depancreatised rats via activation of the anterior

pituitary-adrenal cortex axis.59 Trifluoromethanesulfonic

acid, a perfluorinated compound, is used in the pharmaceuti-

cal, agrochemical and fine chemical industries.60 Exposure to

low concentrations of trifluoromethanesulfonic can disturb

liver lipid metabolism, possibly by altering the gut micro-

biota, suggesting health risks.61 Although the regression coef-

ficient for exposome-related risk factors for T2DM was

relatively low, this does not diminish their potential impact

on disease development. Exposomes typically enter the body

in small quantities. However, continuous daily exposure to

these endocrine-disrupting chemicals, even at concentra-

tions below the established tolerance threshold for individual

substances in the human body, can significantly elevate the

risk of hormonal and metabolic disorders, including diabe-

tes.62 Our findings suggest that inadvertent and persistent

exposure to exposomes plays a critical role in diabetes
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management, as it can disrupt metabolic pathways and

impair insulin sensitivity, thereby increasing the risk of dia-

betes development. These factors may hinder dietary control

and therapeutic efforts by interfering with the body’s meta-

bolic processes and responses to interventions. Conse-

quently, a comprehensive diabetes management strategy

should incorporate measures to reduce dietary and environ-

mental exposures to mitigate disease risk effectively.

While saliva collection after a 30 to 60-minute fasting

period minimised the likelihood of food contamination, sup-

porting the endogenous origin of the dipeptides, a key limita-

tion of this study is the lack of dietary information, which

could have offered further insights into altered protein

metabolism and the dipeptides’ endogenous nature.

Although the global incidence of T2DM is greater in men than

in women, we selected only women for this study because

they face a more significant burden of risk factors at the time

of their T2DM diagnosis, mainly due to obesity.63 Women’s

lives are marked by substantial hormonal fluctuations and

body changes driven by reproductive factors, which differen-

tiate their metabolic profiles from those of men.64 Exposomes

also differ between women and men due to variations in

exposure patterns and biological factors resulting from differ-

ences in lifestyle behaviours. Women may encounter distinct

physicochemical exposures through personal care products,

household cleaners, and dietary and environmental pollu-

tants, leading to different health outcomes between sexes.65

Given these sex-specific differences in risk factors, comorbid-

ities, complications, and exposures, focusing on women in

this study allows us to more effectively identify relevant sali-

vary biomarkers associated with T2DM in this population.

In this study, we accounted for endogenous metabolites,

exposomes, and systemic and anthropometric attributes,

capturing a broader spectrum of risk factors for T2DM. Firstly,

detecting a significantly elevated number of dipeptides in the

saliva of patients with T2DM, irrespective of their endoge-

nous or exogenous origin, suggests a strong association

between dipeptide formation and T2DM. Secondly, even low-

level exposure to agrochemicals through dietary intake could

affect diabetes status, highlighting the need for additional

research and regulatory scrutiny.
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