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Abstract: Graphene family nanomaterials (GFNs), including graphene, graphene oxide (GO), reduced
graphene oxide (rGO), and graphene quantum dots (GQDs), have manifold potential applications,
leading to the possibility of their release into environments and the exposure to humans and other
organisms. However, the genotoxicity of GFNs on DNA remains largely unknown. In this review, we
highlight the interactions between DNA and GFNs and summarize the mechanisms of genotoxicity
induced by GFNs. Generally, the genotoxicity can be sub-classified into direct genotoxicity and
indirect genotoxicity. The direct genotoxicity (e.g., direct physical nucleus and DNA damage) and
indirect genotoxicity mechanisms (e.g., physical destruction, oxidative stress, epigenetic toxicity, and
DNA replication) of GFNs were summarized in the manuscript, respectively. Moreover, the influences
factors, such as physicochemical properties, exposure dose, and time, on the genotoxicity of GFNs are
also briefly discussed. Given the important role of genotoxicity in GFNs exposure risk assessment,
future research should be conducted on the following: (1) developing reliable testing methods;
(2) elucidating the response mechanisms associated with genotoxicity in depth; and (3) enriching the
evaluation database regarding the type of GFNs, applied dosages, and exposure times.

Keywords: graphene family nanomaterials; genotoxicity; DNA damage; safety; toxicity

1. Introduction

Graphene, a two-dimensional crystal repeatedly peeled from graphite, is a single
layer of carbon atoms with a sp2-hybridized structure (Figure 1a) [1,2]. Graphene and its
derivatives, including graphene oxide (GO), reduced graphene oxide (rGO), and graphene
quantum dots (GQDs), exhibit various excellent physical, electrochemical, and optical
advantages [3–5]. GO is an amphiphilic sheet-like graphenic carbon and contains fewer
oxygen functional groups (Figure 1b) [6,7]. rGO is prepared by oxidative exfoliation
of graphite and has lower C/O ratios than GO (Figure 1c) [8]. GQDs are similar to
graphene but have unique zero-dimensional structures due to their nanoscale sized lateral
dimensions (Figure 1d) [9].

Currently, GFNs, as promising nanomaterials, have attracted increasing attention in
the scientific community and are in commercial production for many applications, such as
energy storage [10–17], medicine [18–25], environmental protection [26–31], and industrial
manufacturing [32–34]. For example, the market for graphene-based products is forecast to
reach $675 million by 2020 [35]. With rapid developments in application and production
of GFNs, their potential for release into the environment and the environmental risks of
GFNs have become emerging issues [36–38]. Consequently, many studies have shown
that adverse effects can be induced by GFNs in vivo and in vitro, such as organ (e.g., lung,
liver, and spleen) toxicity, cytotoxicity, immunotoxicity, neurotoxicity, and reproductive
and developmental toxicity [3,39]. Moreover, the toxicity mechanisms of GFNs to organ-
isms, including physical destruction, oxidative stress, inflammatory response, apoptosis,
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autophagy, and necrosis, are summarized in Table 1. However, the genotoxicity of GFNs
on DNA (e.g., DNA damage) remains largely unknown.
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Genotoxicity is broadly defined as ‘damage to the genome’ and also a distinct and im-
portant type of toxicity, as specific genotoxic events are considered hallmarks of cancer [40].
Generally, the genotoxicity can be sub-classified into direct genotoxicity and indirect geno-
toxicity in cells or the nucleus [41–43]. Nanoparticles (NPs) can be uptaken by the nucleus
and induce DNA damage, leading to direct genotoxicity on organisms [42]. While many
studies have shown that most NPs cannot enter the nucleus, they still indirectly affect
genotoxicity by oxidative stress, epigenetic changes, inflammation, and autophagy [42].
Moreover, genotoxicity plays a key role in assessing the safety of NPs on human health and
the environment [44–47]. Although there has been many researches about the genotoxicity
of NPs in recent years, it is mainly focused on traditional artificial nanomaterials, such as
TiO2, carbon nanotubes, and silver and gold NPs [48–50]. However, the existing literature
on genotoxicity of GFNs remains limited and conflicting. A few studies showed that
GFNs had no adverse effects on genotoxicity [51]. In contrast, many researchers have
reported that the small size and sharp edges of GFNs (e.g., GO and GQDs) can induce
genotoxicity on aquatic organisms (e.g., fish and algae) [52–54]. However, the direct and
indirect genotoxicity mechanisms of GFNs remain unclear, despite genotoxic phenomena
being widely reported.

The purpose of this article is to critically review the existing literatures on the genotox-
icity of GFNs. This review will focus mainly on the genotoxicity mechanisms of GFNs in
order to (1) expand our understanding of possible mechanisms underlying the promotion
of DNA damage by GFNs; (2) highlight the direct and indirect genotoxicity of different
subsets of GFNs; and (3) explore the factors that influence the genotoxicity of GFNs. This re-
view will provide new insights into the genotoxicity and environmental risks of engineered
nanoparticles (ENPs).
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Table 1. The toxicity of GFNs in vivo and in vitro.

Products Supplier or
Synthesis Methods Dose Animal or Cell

Models
Toxicological
Mechanisms

Adverse
Effects Ref.

graphene
nanoplatelets

cheaptubes.com
(Brattleboro, VT,

USA)
0.3, 1 mg/rat rat oxidative stress,

inflammation
lung

inflammation [55]

commercial GO
and rGO

Nanjing XFNANO
Materials Tech Co.,

Ltd., (China)

2.0 mg/kg body
weight rat transcriptional

and epigenetic
liver zonated
accumulation [56]

amination
GQDs

carboxylated
GQDs

hydroxylated
GQDs

Nanjing XFNANO
Materials Tech Co.,

Ltd., (China)
100, 200 µg/mL A549 cells autophagy cytotoxicity [57]

GO and rGO
oxidated from

carbon
nanofibers

Grupo Antolin
(Spain)

0.1, 1.0, 10, 50
mg/L erythrocyte cell oxidative stress genotoxicity [58]

GO nanosheets Sigma-Aldrich (St.
Louis, MO, USA) 40, 60, 80 mg/L

Human
SH-SY5Y

neuroblastoma
cell

oxidative stress,
autophagy–
lysosomal
network

dysfunction

cytotoxicity [59]

pristine rGO

Chengdu Organic
Chemicals Co., Ltd.,

the Chinese
Academy of Sciences

1–100 mg/L Earthworm
coelomocytes oxidative stress immunotoxicity [60]

single layer GO
(product no.
GNOP10A5)

ACS Materials LLC
(Medford, MA, USA)

1, 10, 50, 150,
250, 500 mg/L Escherichia coli physical

destruction
toxicity against

bacteria [61]

GO modified Hummers
method 25 mg/L THP-1 and

BEAS-2B cells

lipid
peroxidation,

membrane
adsorption,
membrane

damage

cytotoxicity [62]

GO modified Hummers
method 2 mg/kg rat

lipid
peroxidation,

membrane
adsorption,
membrane

damage

acute lung
inflammation [62]

GO
Nanjing XFNANO
Materials Tech Co.,

Ltd., (China)
0–100 mg/L zebrafish

embryos oxidative stress developmental
toxicity [63]

GO modified Hummers
method 10 mg/L Caenorhabditis

elegans oxidative stress toxicity [64]

graphene,
GO

modified Hummers
method 3.125–200 mg/L

human
erythrocytes

and skin
fibroblasts

oxidative stress cytotoxicity [65]

graphene
exfoliated form

graphite,
GO oxidated
from carbon

fibers

Grupo Antolin
Ingeniería (Burgos,

Spain)
1, 10 mg/L primary

neurons

inhibition of
synaptic

transmission,
altered calcium

homeostasis

neurotoxicity [66]
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2. Direct Genotoxicity of GFNs

Adsorption on DNA is a critical physiochemical process at the DNA–GFNs interface
due to large surface area and surface-active properties of the GFNs. This process can
(1) induce the direct genotoxicity of GFNs (e.g., DNA damage); and (2) alter the function of
DNA through coating and modification by GFNs. In reviewing the current literature, the
adsorption of GFNs on DNA and molecular interactions were investigated.

2.1. Direct Physical Nucleus Damage by GFNs

After GFNs exposure, monolayer or a few-layer GFNs (GO and rGO) sheets are able
to cut and penetrate cell membranes and the cell wall (if present), resulting in direct phys-
ical membrane damage [67,68]. Moreover, small pieces of GFNs will enter the nucleus,
interacting directly with DNA [69]. Generally, nuclear DNA is the main target of gene
toxicity [42]. Prokaryotes (e.g., bacteria) only have naked DNA without a nuclear enve-
lope. GFNs can directly contact bacteria RNA/DNA hydrogen groups, interrupting the
replicative stage after internalization [70]. During mitosis, GFNs are likely to interact with
DNA, leading to DNA aberration when the nuclear membrane ruptures [3]. As shown
in Figure 2, the nuclear uptake and nuclear response related to contact with GQDs have
been systematically reported by using atomic force microscopy (Figure 2a,b), confocal
microscopy (Figure 2c,d), transmission electron microscopy (Figure 2e,f), and high content
screening (Figure 2g,h) [69]. GQDs are mainly uptaken into cells via energy-dependent
endocytosis, phagocytosis, and caveolae-mediated endocytosis. More than half of GQDs
are exposed and accumulated in the nucleus by microscopy investigation. The accumulated
GQDs may direct contact with DNA strand, thereby causing physical damage. After 1 h
exposure, the rGO nanoplatelet can pierce the nucleus of the human mesenchymal stem
cells (hMSCs), leading to DNA fragmentation and chromosomal aberrations at 0.1 and
1.0 mg/L. Notably, rGO sheets with the same size or larger size showed no genotoxicity in
the hMSCs after 24 h exposure at 100 mg/L [71]. The single-layer rGO nanoribbons can
penetrate into the hMSCs nucleus at 100 mg/L detected by confocal fluorescence imaging,
and cells showed a high degree of DNA fragmentation. The above DNA damage is mainly
related to oxidative stress caused by DNA released, rather than DNA damage within the
nucleus. Interestingly, rGO nanoribbons showed no significant cytotoxicity at 1.0 mg/L
but can induce genotoxicity through DNA fragmentation and chromosomal aberrations in
the hMSCs [72]. In a word, GFNs can interact directly with chromatin and DNA, causing
DNA damage and thus exhibiting genotoxicity.
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blank control groups, and (b,d,f,h) are the exposed groups of 200 mg/L GQDs for 24 h, reproduced from [69], from BioMed
Central, 2018.
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2.2. Interaction Mechanisms between DNA and GFNs

Interaction between GFNs and DNA is critical for understanding and assessing direct
genotoxicity. DNA is a biological macromolecule with a repetitive nucleotide structure that
controls biological functions. The backbone of DNA is a regular sequence of deoxyribose
sugar and phosphate groups. DNA is always negatively charged at most pH values [73].
The oxidized domains of GO are rich in oxygen-containing groups (e.g., epoxides, hydroxyl,
carboxyl, and carbonyl groups). The negatively charged carboxyl groups would electro-
statically repel negatively charged DNA and use hydrogen bonding as the main attraction
force [47]. The GFNs mainly interact with DNA via H-bonding and π–π stacking, casing
the DNA distortion and even DNA cleavage. The DNA damaging mechanism of GQDs
depends on their size. The small GQDs easily enter the DNA molecule leading to DNA base
mismatch. Large GQDs tend to stick to the ends of the DNA molecule, causing the DNA
to unfold [74]. The zipper-like unfolding of double-stranded DNA caused by graphene
wrinkles has been investigated by using molecular dynamics simulations. The results
show that the zipper pattern brings more DNA bases into contact with the wrinkled region,
resulting in accelerated deformation of double-stranded DNA [75]. The GO combining
with copper ions can intercalate into DNA molecules and cleave DNA fragments, and the
system of this DNA cleavage is oxidative and hydrolytic [76]. Unlike AuNPs, which rely on
stronger DNA base coordination, the adsorption of GO is weak, owing to the weak binding
affinity [77]. Furthermore, the GO surface shows great heterogeneity for DNA adsorption
and hydrophobic regions for exclusion of DNA. Thus, both the external environment and
the physicochemical property (e.g., oxidized degree and size) have a strong influence on
the adsorption capacity of GO [47,76–78]. Further research into the direct effects of GFNs
on DNA or genetic material is important to explain GFN-mediated targeted genotoxicity.

3. Indirect Genotoxicity of GFNs

Although GFNs can induce direct genotoxicity, most of the current studies focus on
GFNs’ indirect genotoxicity on the indirect effect on gene normal tissue expression. Indirect
genotoxicity covers different aspects. Here, we describe the indirect genotoxicity of GFNs
in the following aspects: oxidative stress, epigenetic toxicity, DNA replication, repair and
transcription affected by GFNs, and inflammation and autophagy.

3.1. Oxidative Stress

The internalization NPs by organism can induce intracellular reactive oxygen species
(ROS) generation and antioxidant defense. ROS generation can lead to typical oxidative
DNA damage (e.g., single- and double-stranded DNA breaks, DNA cross-links, and base
modifications) [78–80]. Indirect genotoxicity of GFNs mediated by oxidative stress has
been explored in vivo and in vitro. For instance, ROS generation and ROS-dependent DNA
damage and genotoxicity were observed in human retinal pigment epithelium (ARPE-19)
cells after 24 h exposure to GO and rGO [81]. Similarly, GO and rGO can also trigger
genotoxicity of female C57BL/6J mice by induction of oxidative stress [82]. Exposed to
few-layer graphene (FLG), the indirect DNA damage in THP-1 macrophages and human-
transformed type-I alveolar epithelial cells was also driven by oxidative stress [43]. The
specific induced mechanisms of indirect DNA damage are identified by baseline levels of
micronuclei induction. Moreover, the indirect genotoxicity induced by FLG also correlates
with an increase of inflammatory mediator (IL-8), decreased antioxidant (rGSH), and
a depletion in mitochondrial ATP production [83]. Zhao et al. reported that GO can
induce oxidative stress and genotoxicity in earthworms and the excessive accumulation of
ROS, leading to lipid peroxidation, lysosomal membrane damage, and DNA damage [84].
Organisms possess a well-developed inhibition of antioxidant defense, including ROS-
scavenging enzymes (e.g., superoxide dismutase (SOD), peroxidase, and catalase) and
regulatory mechanisms to protect organisms from the negative effects of ROS [46,84]. The
ROS generation benefitted from inhibition of fatty acid, carbohydrate, and amino acid
metabolism [85]. ROS induced by GO seemed to be the main mechanism leading to human
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lung fibroblast (HLF) cells of genotoxicity [86]. Natural nanocolloids (Ncs) can mediate
the phytotoxicity of GO such that GO–Ncs induced stronger ROS production and DNA
damage compared with GO alone [87]. The mitochondrial oxidative stress induced by
GQDs in microglia can cause ferroptosis.

3.2. Epigenetic Toxicity

Epigenetic regulatory mechanisms can be observed after exposure to NPs, including
DNA methylation, histone modification, non-coding RNA (ncRNA) gene expression regu-
lation, and dynamic chromatin organization [88,89]. As a response to internal and external
stimuli, these above epigenetic regulations and complex, time-specific, and tissue-specific
control of gene expression were allowed during development and differentiation [90].
DNA methylation, a covalent modification of cytosine residues in DNA, plays a supreme
role in the stabilization and regulation of gene expression during development or differen-
tiation [91,92]. Ting et al. [91] firstly proved that GQDs can inhibit the DNA methylation of
transcription factor Sox2 and regulated DNA methyltransferase and demethyltransferase
expressions. Global DNA hypomethylation of caprine fetal fibroblast cells, which are
exposed to GO-AgNPs, might result from oxidative stress [93]. Histone modifications
containing phosphorylation, methylation, and acetylation also are major components of
epigenetic regulatory mechanisms [92]. The role of epigenetic regulation about toxicity of
GFNs has been described in human embryonic kidney 293T cells [89]. The results showed
that the GO triggered the formation of new intra-chromosomal looping (A1–A3) and en-
hanced and promoted cyclo-oxygenase-2 (Cox2) expression and activation. The epigenetic
mechanisms of GO on transgenerational reproductive toxicity were determined using a
house crickets generational experiment [94].

GO can activate microRNA (miRNA) protection regulation and inhibit the repro-
ductive toxicity of Caenorhabditis elegans, which was also an epigenetic signal encoded
protection mechanism [95]. Moreover, miRNAs can activate death receptor pathways by
altering the expression of caspase-3 and tumor necrosis factor α receptor in GO-exposed
pulmonary adenocarcinoma (GLC-82) cells [96]. Therefore, the epigenetic process induced
by GFNs are complex and multi-layered. Currently, the existing studies are mainly limited
to the reactions of epigenetic toxicity induced indirect genotoxicity of GFNs. How to
explain the causal epigenetic mechanisms induced by GFNs remains challenging. Future
experimental studies should be carefully designed for better understanding the geno-
toxic effects of GFNs induced epigenetic modifications that directly or indirectly cause
DNA damage.

3.3. The DNA Replication, Repair, and Transcription Affected by GFNs

GFNs have the ability to alter gene expression by interacting with signal transduction
cascades or replication/repair/transcription mechanisms [97,98]. GO exposure activates a
variety of signaling pathways, triggering the expression of many kinds of genes related
to autophagy, apoptosis, and necrosis [89,99]. Cell apoptosis and the upregulation of the
tumor protein p53 gene in the cell cycle induced by both nano- and microsized GO was
detected [99]. In the work, both nano- and microsized GO block the cell cycle in the S
phase, a critical period in the cell cycle. The GQDs (100 mg/L) can induce genotoxicity
through ROS generation and inhibition of gene regulation in the cell cycle of rat alveolar
macrophage cells [100]. The key genes (such as RAD51, BRCA2, ATM, and PARP1) regulate
some key biological processes (e.g., nucleosome assembly, stress response, protein folding,
and DNA damage) in FLG-exposed human primary endothelial cells [97]. Moreover,
related study have shown that GFNs may cause genotoxicity by affecting the nucleotide
excision repair and the repair system of non-homologous end connections [101].

3.4. Inflammation

Inflammation, including acute and chronic inflammation, is a complex biological
response to harmful stimuli such as pathogens, poisons, or dead cells [102]. GO induced
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high expression of Cox2, a hallmark of inflammation and which is involved in acute
and chronic diseases [103]. Inflammation is also one of the reactions of ROS induced
indirect genotoxicity [104]. Chronic inflammation can induce secondary genotoxicity,
which is manifested in the accumulation of reactive oxygen species, after GFNs exposed to
cells [43,105]. Interestingly, there was no oxidative damage and a weak anti-inflammatory
response for assessing the potential genotoxicity of GO and graphene nanoplatelets in the
human intestinal barrier in vitro model simulation [106]. However, both GO and GNPs can
induce DNA breaks, and GO can activate the nuclear factor kappa-B signaling pathway,
which may lead to macrophage inflammation [107]. Excess inflammatory cytokines can
cause DNA damage [108]. There are complex causal interactions between inflammation and
ROS, and they may have independent induction mechanisms. In summary, the genotoxicity
of GFNs mediated by inflammation can be attributed to the direct stimulation, secondary
effect of cytokine release or ROS accumulation.

3.5. Autophagy

Autophagy, a cell survival mechanism, is described as a highly regulated intracellular
catabolic pathway involving degradation of unnecessary or dysfunctional components to
maintain cell homeostasis [109,110]. Autophagy controls transformation of nuclear com-
ponents (e.g., nuclear lamina, chromatin, and DNA), which is important for maintaining
genomic stability [111]. Inhibition of autophagy obstructs normal DNA damage repair
and induces cell death in response to genotoxic stress. GFNs can induced ROS genera-
tion in mitochondria, which begin to exert autophagy to avoid oxidative damage and to
reduce mutation of mitochondrial DNA [112]. GO was able to result in accumulation of
autophagosomes, reduction in autophagic degradation, and lysosomal impairment [113].
Autophagy and epigenetic changes jointly regulate cell survival, and autophagy may
be a downstream mechanism of epigenetic changes, one of the manifestations of sec-
ondary genotoxicity [114]. Graphene oxide quantum dot exposure induced autophagy in
a ROS-dependent manner [115]. The relationship between autophagy and DNA damage
is complex, while autophagy can regulate the levels of various proteins participating in
the repair and detection of damaged DNA [116]. The relationship between autophagy and
other toxicity mechanisms (e.g., oxidative stress, epigenetic changes, apoptosis, and inflam-
mation) of other GFNs is still unclear [114]. Understanding GFNs-mediated autophagy is
of great significance to explain the genotoxicity of GFNs.

4. Factors Influencing Genotoxicity of GFNs

As is known to all, there is a strong correlation between cytotoxicity and the physico-
chemical properties of NPs, such as particle size and shape, surface characteristics, and
surface functionalization. Similarly, the genotoxicity of GFNs can be affected by these
factors [117]. The genotoxicity of GFNs is greatly varied in the literature, which can be
attributed to numerous factors including physicochemical properties (morphology, sur-
face chemistry, size, shape, and purity), dose, test species, exposure time, and exposure
assay [80,118].

4.1. Surface Properties

The oxygen-containing functional groups play a key role in the genotoxicity of
GFNs [58,81–83,119]. For example, the rGO with lower oxygen content can induce stronger
genotoxicity on ARPE-19 cells than these GO with higher oxygen content, suggesting that
GO has a better biocompatibility owing to more saturated C–O bonds [81]. The remove of
epoxy groups from the GO surface mitigates GO in vivo genotoxicity toward Xenopus laevis
tadpoles [58]. Compared with GO, graphene, rGO, and graphite all induce higher levels of
genotoxicity in glioblastoma multiforme cells, and the difference was attributed to the hy-
drophilic and hydrophobic surface and edge structure of GFNs [119]. GO has hydrophilic
properties and smooth and regular edges, while rGO and graphene have hydrophobic prop-
erties and sharp and irregular edges, which can damage the integrity of cell membranes
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greatly. The carboxyl groups in the surface of carboxyl-FLG may scavenge oxidative radical
on bronchial epithelial cells to alleviate the genotoxicity of FLG [83]. Moreover, different
immunological mechanisms triggered by GFNs can be attributed to the proportion of
hydroxyl groups [82]. Cells produce a stronger inflammatory response after being exposed
to GO than rGO by detecting transcriptomic changes, and the reason is attributed to the
large number of hydroxyl groups on the surface of GO [82]. The surface functionalization
also can significantly modulate the toxicity of GFNs [53,85,86,120]. For example, amino
functionalized GQDs induced lower ferroptosis effects than nitrogen-doped GQDs [85].
Similarly, the DNA methylation of various tissues induced by GQDs was depend on their
different surface chemical modifications [53]. Increased cytotoxicity and genotoxicity of the
aminated GO were detected by following 24 h exposure on Colon 26 cells [120]. A study on
the genotoxicity reduced by GO and rGO showed that the GTPs-rGO reduced by green tea
polyphenols (GTPs) yielded more biocompatible and reduced sheets with lower genotoxic
effects, as compared to the N2H4–rGO, which were reduced by hydrazine (N2H4) [121].
The acid-polyethylene glycol (LA-PEG) and PEG modified GO induced gentle DNA dam-
age and decreased the genotoxicity of GO to HLF cells [86]. Surface charge also influences
significantly the genotoxicity of GFNs [86,122]. The genotoxic effect of GO on cells is pro-
portional to the amount of positive charge on the surface [86]. The surface charge density
of graphene in aqueous solution can transform to chemically-converted graphene, leading
to the capture of large amounts of DNA [122]. The different hydrophilic and hydrophobic
properties of GO/rGO regulated by differential surface chemistry (especially the O/C
ratio) determine the potential of graphene to interact with organisms [123–125]. Despite
hydrophilic and hydrophobic rGO exhibiting similar toxic responses (e.g., cytotoxicity,
DNA damage, and oxidative stress) to cells, their biological and molecular mechanisms
are different [123]. The hydrophilic GO and hydrophobic rGO induce both kinds of DNA
damage, namely single stranded and double stranded breaks, but the dose dependency
was very significant and evident in GO exposure in DNA damage but not in rGO expo-
sure [123]. Hydrophilicity, also an important factor in determining the biocompatibility and
colloidal stability of GFNs, leads to different interactions with cells and bio-distribution
of GFNs [124,125]. For example, simple accumulation of hydrophobic pristine graphene
on the surface of monkey kidney cells without any cellular internalization led to severe
metabolic toxicity, whereas hydrophilic GO was internalized by the cells and concentrated
near the perinuclear region without causing any toxicity under lower concentrations [124].
Therefore, the surface properties play an important role in understanding the genotoxicity
manifestations and biological and molecular mechanisms of GFNs.

4.2. Size and Structure

The genotoxicity of GFNs within organisms is size-dependent. Compared with large
GFNs, small GFNs have bigger surface areas and provide more sites to interact with cells,
leading to greater cellular uptake of GFNs [126]. The size effect plays a key role in the
genotoxicity of GFNs. For example, small rGO (average lateral dimensions 114 nm) induce
higher genotoxicity in the hMSCs than large rGO (3.8 ± 0.4 µm) at 0.1 and 1.0 µg/mL
after 1 h exposure. The lateral size and extremely sharp edged structure of GFNs can
result in higher permeability to the cell and nucleus, resulting in greater genotoxicity.
Similarly, the size of GFNs is an important determinant of subcellular penetration [126].
Li et al. [127] suggested that the larger the lateral size of GO, the more severe is the
pyroptosis induced by GO in Kupffer cells. Moreover, there is a strong correlation between
the size of GO and the structural change in small-interfering RNAs [128]. The large GO
merely reduces the A-helical pitch, while small GO inserted into the double strands can
wreak havoc on the RNA conformation [129]. In addition, Kong et al. [74] proved that the
DNA damage mechanism of GQDs was limited by the size of GQDs through molecular
dynamics simulations. Briefly, the relatively large GQDs (61 benzene rings) tend to stick to
the ends of the DNA molecule, causing the DNA to unfold, while the small GQDs (seven
benzene rings) are easily embedded in DNA molecules, leading to DNA base mismatches.
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The planar structure of GFNs may also have an effect on DNA damage. The dsDNA bases
have a stronger binding affinity with wrinkled GFNs and even cause more DNA damage
than with planar GFNs [75]. Given these discordant results, it is necessary to clarify the
size- and structure-related genotoxicity of GFNs.

4.3. Exposure Dose and Time

The dose–response relationship is an important principle in nanotoxicology [42].
The modified GQDs may induce DNA hypermethylation in a time and dose dependent
manner [53]. The high-dose (50 mg/L) GO induces more serious DNA methylation (hy-
permethylation) than low-dose (10 mg/L) treatment [101]. The effective accumulation of
GFNs in the nucleus is regulated by two nuclear pore complex genes (Kapβ2 and Nup98),
and their cellular internalization and absorption are related to exposure time [69]. Notably,
the rGO sheets with the same size or larger size, higher concentration (100 µg/mL), and
longer exposure time (24 h) showed no obvious genotoxicity in the hMSCs [71]. Overall,
there are few studies on the genotoxicity of GFNs doses, and especially the combination of
GFNs type and dose exposure is rare.

4.4. The Resistance of Cell Structures and Biological Barriers

From an organism’s perspective, the responses of various types of cells, organs, and
tissues with different structures and functions to GFNs exposure were highly diverse.
Internalization and direct contact membrane stress with extremely sharp edges of GFNs
are considered as important mechanisms of toxicity [130,131]. For different bacterial
models to graphene toxicity, the outer membranes can better “protect” bacteria from
graphene [132]. The biological barrier is crucial for mammals against the damage from
GFNs [3,117]. Both GO and graphene were able to induce DNA breaks in an in vitro
model simulating the human intestinal barrier [106]. Moreover, GO nanosheets could
break through the first line of host defense by disrupting the ultrastructure and biophysical
properties of lung surfactant membranes [133]. Combined with the routes and doses of
human exposure, relevant biological barriers toxicity can be considered as an aspect of
assessing GFNs genotoxicity.

5. Genotoxicity Testing of GFNs
5.1. Detection of GFNs in Cells and Organism Tissues

The detection of GFNs internalization (distribution and behavior) in model organisms
and cells is a key step for a better understanding of their genotoxicity and underlying
mechanisms. The most commonly used detection technique includes direct observation of
localization of GFNs in organisms and cells by transmission electron microscopy (TEM) [88].
The hyperspectral imaging is also used to visualize cellular interactions with NPs [134],
such as cellular uptake and binding of GFNs [87]. The label-based approaches to image
GFNs exist in cells by confocal and fluorescence microscopy, reflection-based imaging,
and flow cytometry. Additionally, scanning electron microscopy (SEM) can be used to
detect the attachment of GFNs in the surface zone of cells [52,87]. Raman spectroscopy
and atomic force microscopy (AFM) were used to evaluate nuclear area changes and the
disruption of DNA chains impacted by GQDs, respectively [69]. However, these traditional
techniques are limited by low observation efficiency and large errors of quantitative results,
with are disadvantages in the detection of GFNs [88]. Few studies focus on GFNs nuclear
detecting techniques. In the biological imaging field, most research pays attention to
safe application of fluorescent GFNs nuclear images rather than assessing genotoxicity
of GFNs from an environmental toxicology point of view [135–137]. It is necessary to
further optimize and develop detection techniques of GFNs in cells and organism tissues
for a better understanding of genotoxicity. For example, Chen et al. [138] used laser
desorption/ionization mass spectrometry imaging to map and quantify precisely the
sub-organ distribution of the carbon nanotubes, GO, and carbon nanodots in mice. The
SEM–Raman spectroscopy co-located system provide both SEM and Raman data from the
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same area on the cell sample, which avoids sample registration issues and makes observed
results more accurate [139].

5.2. Genotoxicity Assay of GFNs

There are several assays available to access the genotoxicity of GFNs, measuring
various endpoints [98]. The Ames test (bacterial reverse mutation), the comet assay (sin-
gle cell gel electrophoresis), the chromosomal aberration (CHA), and micronuclei (MN)
are the most common tests for genotoxicity. The Ames test (bacterial reverse mutation)
can provide initial testing for genotoxicity. The comet assay can detect DNA damage,
while the CHA and MN can test large chromosomal abnormalities. The hypoxanthine
phosphoribosyl transferase (HPRT) gene is suitable for assessing mutations induced by
suspect genotoxic agents, such as NPs [98]. Oxidative DNA damage should be considered
one of the causes of genotoxicity. Superoxide radicals can lead to the activation of oxida-
tion of the guanine bases present in the DNA strands, causing rupture to these strands.
The most commonly used detection techniques include 8-hydroxydeoxyguanosine and 7,
8-dihydro-oxodeoxyguanine by HPLC with electrochemical detection [140].

6. Conclusions, Challenges, and Perspectives

On the basis of the existing literatures, we propose several genotoxic effects for GFNs in
Figure 3. To date, there are few studies on genotoxicity mediated by direct interactions with
DNA for GFNs (only GO and GQDs). That oxidative stress induced by GFNs causes DNA
damage has been well established and studied. Regarding other indirect genotoxicity (e.g.,
epigenetic toxicity, inflammation, and autophagy), the studies largely focus on genotoxic
effects induced by GFNs, and there is a lack of studies on the mechanisms underlying the
observed effects. The genotoxicity of GFNs will depend on both inherent physicochemical
properties (e.g., surface functionalization and coatings), exposure dose and times, and their
fate in organisms or the environment. Although this review paper provides preliminary
information on the genotoxicity of GFNs, the data is still very limited, especially with
regard to the type of GFNs and exposure dose. The traditional techniques are limited by
low observation efficiency and large errors of quantitative results, which are disadvantages
in the detection of GFNs.

Nanomaterials 2021, 11, 2889 11 of 16 
 

 

 

Figure 3. Direct and indirect effects of GFNs on DNA. 

Author Contributions: Conceptualization, K.W. and S.O.; methodology, K.W.; software, K.W.; val-

idation, K.W., Q.Z. and S.O.; formal analysis, K.W.; investigation, S.O.; resources, Q.Z.; data cura-

tion, K.W.; writing—original draft preparation, K.W.; writing—review and editing, S.O.; visualiza-

tion, K.W.; supervision, Q.Z.; project administration, S.O.; funding acquisition, S.O. All authors have 

read and agreed to the published version of the manuscript. 

Funding: This work was financially supported by the National Natural Science Foundation of China 

for grant number No. U1906222, the National Key Research and Development Project for grant 

number No. 2019YFC1804104, the Fellowship of China Postdoctoral Science Foundation for grant 

number No. 2020M680867, and the Ministry of Education, People’s Republic of China as a 111 pro-

gram for grant number No. T2017002. 

Data Availability Statement: Not applicable. 

Acknowledgments: The authors thank Jing Sun and Zhicheng Bi for their assistance in paper dis-

cussion. We thank all the reviewers for their constructive comments. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field 

effect in atomically thin carbon films. Science 2004, 306, 666–669. 

2. Castro Neto, A.H.; Guinea, F.; Peres, N.M.R. Drawing conclusions from graphene. Phys. World 2006, 19, 33–37. 

3. Ou, L.; Song, B.; Liang, H.; Liu, J.; Feng, X.; Deng, B.; Sun, T.; Shao, L. Toxicity of graphene-family nanoparticles: A general 

review of the origins and mechanisms. Part. Fibre Toxicol. 2016, 13, 57. 

4. Liang, L.; Kong, Z.; Kang, Z.; Wang, H.; Zhang, L.; Shen, J.-W. Theoretical evaluation on potential cytotoxicity of graphene 

quantum dots. ACS Biomater. Sci. Eng. 2016, 2, 1983–1991. 

5. Huang, X.; Qi, X.Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686. 

6. Lerf, A.; He, H.Y.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 1998, 102, 4477–4482. 

Figure 3. Direct and indirect effects of GFNs on DNA.



Nanomaterials 2021, 11, 2889 11 of 16

A number of issues remain in this area: (1) a lack of nuclear detecting and tracking
techniques for GFNs to investigate the direct interactions of GFNs with DNA; (2) a chal-
lenge to reveal mechanisms underlying the indirect genotoxicity of GFNs, such as causal
epigenetic mechanisms; and (3) an incomplete evaluation database regarding the type
of GFNs, applied dosages, and exposure times, etc. These limitations are expected since
genotoxicity research of NPs, especially GFNs, is still in their infancy when compared to
other areas of toxicity (e.g., cytotoxicity, immunotoxicity, neurotoxicity, reproductive and
developmental toxicity). Overall, further studies should address the questions mentioned
above to clarify the genotoxic mechanisms of GFNs.
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