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ABSTRACT

Objective: As a long-standing Clinical and Translational Science Awards (CTSA) Program hub, the University

of Pittsburgh and the University of Pittsburgh Medical Center (UPMC) developed and implemented a modern

research data warehouse (RDW) to efficiently provision electronic patient data for clinical and translational re-

search.

Materials and Methods: We designed and implemented an RDW named Neptune to serve the specific needs of

our CTSA. Neptune uses an atomic design where data are stored at a high level of granularity as represented in

source systems. Neptune contains robust patient identity management tailored for research; integrates patient

data from multiple sources, including electronic health records (EHRs), health plans, and research studies; and

includes knowledge for mapping to standard terminologies.

Results: Neptune contains data for more than 5 million patients longitudinally organized as Health Insurance

Portability and Accountability Act (HIPAA) Limited Data with dates and includes structured EHR data, clinical

documents, health insurance claims, and research data. Neptune is used as a source for patient data for hun-

dreds of institutional review board-approved research projects by local investigators and for national projects.

Discussion: The design of Neptune was heavily influenced by the large size of UPMC, the varied data sources,

and the rich partnership between the University and the healthcare system. It includes several unique aspects,

including the physical warehouse straddling the University and UPMC networks and management under an

HIPAA Business Associates Agreement.

Conclusion: We describe the design and implementation of an RDW at a large academic healthcare system that

uses a distinctive atomic design where data are stored at a high level of granularity.

Key words: research patient data repository, research data warehouse, secondary use, electronic health records

INTRODUCTION

The passage of the Health Information Technology for Economic

and Clinical Health (HITECH) Act by the US federal government

led to the widespread adoption of electronic health record (EHR)

systems that capture patient data at an ever-increasing pace.1 The

availability of large amounts of EHR data provides new opportuni-
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ties for their secondary use to support clinical and translational sci-

ence. Furthermore, EHR data in combination with other patient

data from research studies, patient-reported outcomes, mobile

health, and social media are progressively becoming important in

biomedical research.

Data warehouses containing EHR data exist in large healthcare

systems for a variety of operational, reporting, quality improvement,

and financial purposes.2 However, such warehouses often do not

support research effectively due to the heterogeneity of EHR data,

regulatory complexity such as the requirement for deidentification,3

and the need for research-project-specific data management. A com-

mon approach to efficient and large-scale reuse of EHR data for re-

search is a dedicated research patient data repository or research

data warehouse (RDW) that integrates and harmonizes EHR data

and is architected, implemented, and operated by personnel with in-

formatics expertise. Funded by the National Center for Advancing

Translational Sciences (NCATS), the Clinical and Translational Sci-

ence Awards (CTSA) Program hubs have developed RDWs for the

efficient and widespread use of EHR and other data for research,

with 94% of all hubs providing such services.4

Dedicated RDWs have enabled a wide range of research efforts

such as clinical trial recruitment, large-scale characterization of

treatment pathways,5 generation of real-world evidence for clinical

decision-making,6 pharmacovigilance,7 rapid cohort identification,8

and phenome-wide association studies.9 Furthermore, harmonized

data in RDWs unlock future opportunities for large-scale applica-

tion of machine learning for biomedical discovery10 and clinical de-

cision support that can support order entry,11 smart prioritization of

data in EHR systems,12 anomaly detection,13 and precision medi-

cine.14

RDWs have evolved along 2 broad pathways.15 Several large ac-

ademic health centers have developed a single institutional RDW

that is architected specifically based on local EHR systems and

needs. Examples of single-institution RDWs are those at Northwest-

ern University,16,17 Duke University Health System,18 Stanford Uni-

versity,19,20 and Vanderbilt University.21 Other institutions have

implemented RDWs based upon analytics-oriented data models

designed for multi-institutional consortia and data networks. Exam-

ples of such data models include the Informatics for Integrating Biol-

ogy and the Bedside (i2b2),22 the Observational Medical Outcomes

Partnership (OMOP) Common Data Model,23 and the National

Patient-Centered Clinical Research Network (PCORnet) Common

Data Model.24

In this article, we describe the design and implementation of a

single institutional RDW, called Neptune, at the University of Pitts-

burgh (Pitt). Neptune is architected to ingest patient data from a mul-

titude of sources, to store data at the level of granularity that exists

in the sources, and from which data are subsequently transformed

into analytics-oriented data models and research data sets. Beyond

patient data, knowledge for mapping to standard terminologies and

definitions for standardizing clinical concepts are also stored in Nep-

tune. Because of the multiple sources of data, including multiple

EHR systems, Neptune uses an atomic design. An atomic data ware-

house25 contains data at a high level of granularity and preserves

data from the source systems with minimal filtering or summariza-

tion. This is in contrast to a warehouse that implements a common

data model; such a warehouse stores significantly transformed and

harmonized data after extraction from the source systems. We pro-

vide a brief description of the large health system associated with

Pitt, details of the architecture of Neptune, and some of the distinc-

tive aspects of Neptune related to the technical infrastructure.

MATERIALS AND METHODS

Setting and history
The University of Pittsburgh Medical Center (UPMC) is one of the

largest healthcare systems in the United States. UPMC serves west-

ern, central, and western Pennsylvania and parts of Ohio, West Vir-

ginia, and New York, and comprises 40 hospitals with 8400

licensed beds, more than 700 doctors’ offices and outpatient facili-

ties, and 23 nursing homes. Annually, UPMC has 388K inpatient

admissions, 1.1M emergency room visits, 5.5M outpatient visits,

and 260K surgical procedures. The University of Pittsburgh School

of Medicine (UPSOM), located in the city of Pittsburgh, is the medi-

cal college and the clinical research facility that, together with

UPMC, comprises a top 5 NIH-supported leading academic medical

center. UPSOM supports an academic staff of nearly 2500 physi-

cians and educators and trains approximately 600 medical students

and 1900 medical residents and clinical fellows yearly.

UPMC has evolved as a merger of previously independent hospi-

tals and practices, and its clinical information systems reflect this

heritage, including a range of legacy and modern systems. UPMC

has deployed several EHR systems from different vendors. In most

outpatient facilities, UPMC uses the EpicCare system (Epic, Verona,

Wis.), while in the inpatient and emergency settings, UPMC has

deployed the Cerner system. The UPMC Children’s Hospital of

Pittsburgh has an independent installation of the Cerner Millennium

system. Additional EHR and ancillary systems are used in various

specialty settings such as inpatient psychiatry, the cancer center, the

perioperative setting, and radiological imaging. UPMC has created

multiple interfaces among the clinical information systems to enable

clinical workflows that require data from multiple systems; how-

ever, this has led to the replication of patient data across these sys-

tems.

As early as 1982, Pitt and UPMC developed a clinical data ware-

house called the Medical ARchival Retrieval System (MARS) that

integrated data from EHR systems and administrative claims sys-

tems.26 MARS was developed as a file-based database system that

archived both structured and clinical document data in text files. As

UPMC grew with the acquisition of hospitals and their clinical infor-

mation systems, data integration was achieved by sending data in

Health Level Seven (HL7) format through a message router to

MARS.

Since MARS was implemented more than 3 decades ago, UPMC

has grown substantially and has deployed several modern EHR sys-

tems. The need for a modern dedicated RDW emerged over the past

several years. As a long-standing CTSA hub, Pitt needed a modern

RDW and robust informatics services for efficient and effective sup-

port of investigators at Pitt and UPMC.

Organization
The Biomedical Informatics Core (BIC) of the University of Pitts-

burgh Clinical and Translational Science Institute, the Center for

Clinical Research Informatics (CCRI),27 and the Research Informat-

ics Office (RIO)28 lead the development of Neptune and provision-

ing of patient data for research. BIC, CCRI, and RIO are each

housed in the Department of Biomedical Informatics and are each

led by informatics faculty. On behalf of UPMC, 3 informatics fac-

ulty members oversee long-term planning, implementation of new

features, and maintenance of Neptune and its downstream

analytics-oriented data marts for national data-sharing efforts.

The team that supports Neptune and the data marts perform a

range of functions. The technical group identifies use cases, reviews
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and selects technologies, implements extract-transform-load pro-

cesses based on data standards and terminologies established by a

data harmonization group, and develops processes for aligning and

integrating research data with the EHR data. The data harmoniza-

tion group establishes data standards for different types of EHR and

research data, determines which standard terminologies to use, and

maintains and updates mappings of local terms to terminologies.

The data quality group establishes statistics, uncovers data anoma-

lies by periodically measuring these statistics in the data, and returns

discoveries to the technical group for changes in the data pipelines.

The user support group communicates with local users, provides

training and support, and solicits feedback from the user commu-

nity.

Architecture of Neptune
The Neptune RDW consists of 3 main layers: (1) an identity man-

agement layer for managing personally identifiable information, (2)

a data layer that contains EHR and other patient data, both identi-

fied and as limited data with preserved timestamps and zip codes,

and (3) a semantic layer that consists of business logic such as map-

pings between local terms and standard terminologies (see Figure 1).

As mentioned earlier, Neptune uses an atomic design where source

system data are stored with little to no filtering, summarization, or

transformation. This design preserves data with no loss of informa-

tion and permits data to be transformed and harmonized in unfore-

seen ways in the future without re-extracting from the source

systems.

The RDW is implemented using the Oracle database manage-

ment system. The warehouse physically straddles the UPMC and the

Pitt networks. For example, the identity management layer of Nep-

tune resides within the UPMC network, and the semantic layer and

most of the data layer reside in the Pitt network (see Figure 1).

Though the warehouse is split across 2 distinct networks, members

of the technical group can seamlessly view tables from both compo-

nents of Neptune and run processes across all layers of Neptune.

Identity management layer

The identity management layer resides in the UPMC network and

contains personally identifiable information of all patients. A key

function in Neptune is to assign and maintain a unique research en-

terprise identifier to each patient. This research enterprise identifier

is distinct from patient identifiers that are used in the healthcare sys-

tem, including clinical enterprise identifiers, medical record num-

bers, and other healthcare identifiers. The research enterprise

identifier is linked to healthcare system patient identifiers and is also

linked to participant identifiers of research data sets that are inte-

grated into Neptune. This 3-layer identity management exceeds best

practices for Health Insurance Portability and Accountability Act

(HIPAA) honest brokerage and helps ensure participant identifiers

cannot be shared across projects.

Identity management and linking of patient identifiers are per-

formed in a staging area. During monthly ingestion of data from

clinical systems, new patients in the health system are identified and

assigned new research enterprise identifiers. For existing patients

who may have been assigned new clinical identifiers, the new identi-

fiers are linked to the existing research enterprise identifier. Any

merges of clinical enterprise identifiers and medical record numbers

are also processed. Identity management enables patient data from

any data domain and linked to any patient identifier to be accurately

linked to the enterprise research identifier. Neptune’s identity man-

agement achieves a key goal of Neptune: to create a comprehensive

longitudinal record for each patient by integrating clinical and non-

clinical data from multiple sources.

Data layer

The data layer resides mostly at Pitt and contains both structured and

text EHR data as well as other types of data, such as imaging data

(see Figure 2). The data layer stores atomic patient data; that is, the

data are at the level of granularity in the source system with minimal

transformation. The structured data include core data domains such

as demographics, visits, diagnoses, procedures, laboratory test results,

Figure 1. The architecture of Neptune with sources and destinations. The identity management layer resides at UPMC, the semantic layer resides at Pitt, and the

data layer resides mostly at Pitt. ACT: Accrual to Clinical Trials; AoU: All of Us Research Program; GIC: Genomic Information Commons; PCORnet: National Pa-

tient-Centered Clinical Research Network.
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medication orders, other orders (for laboratory tests, clinical imaging,

procedures, etc.), and medication dispenses. Additional data domains

include allergies, vaccine administrations, and metadata of clinical

documents. The text data consist of deidentified content for all docu-

ment types such as history and physical, progress, consultation, pro-

cedure, and discharge notes; radiology and pathology reports;

electrocardiogram and electroencephalogram reports; and many

more. In every domain, for each data item, the source system from

which it was extracted is recorded to maintain data provenance.

At the time of extraction of data from source systems, the

extracts are staged in the data layer at UPMC, where deidentification

is performed before data are moved to the data layer at Pitt. A copy

of the latest extract of data for all domains is maintained in the stag-

ing data layer. For most domains, data are extracted and processed

monthly. Deidentification consists of removing all HIPAA-specified

personally identifiable information with the exception of dates and

zip codes to create a Limited Data Set, and the data are linked to the

patient only through the research enterprise identifier. Deidentifica-

tion is straightforward for structured data domains where database

columns containing personally identifiable information are removed.

Deidentification of clinical documents is done using NLM Scrub-

ber29 that has been adapted for our use. We chose NLM Scrubber

since it is an efficient tool that runs at scale on Linux (our preferred

platform) on the health system side to perform best-effort deidentifi-

cation on all clinical documents on extraction. NLM Scrubber, as

well as other text deidentification tools, cannot guarantee perfect

deidentification as HIPAA Safe Harbor method and Limited Data

Sets require. For clinical documents, we generally use Data Use

Agreements under HIPAA Waiver of Authorization, unless the clini-

cal documents can also be hand-audited for the project.

Semantic layer

The semantic layer resides at Pitt and contains the knowledge and

logic to harmonize data that may be represented in a heterogeneous

fashion across different hospitals and source systems. For example,

for the laboratory test of hematocrit, each hospital at UPMC uses a

different local code, and the semantic layer contains a list of all local

hematocrit codes that are mapped to the relevant LOINC code for

standardization. Mappings are obtained from several sources. One

source is reference data obtained from source systems like EpicCare

that contains mappings between local terms and standard terminolo-

gies that are created and maintained by the clinical enterprise. How-

ever, the clinical enterprise does not necessarily create mappings to

legacy data or mappings to standard terminologies that are not man-

dated by federal regulations. The data harmonization group creates

and updates mappings for legacy data and mappings that are useful

in research. In addition, we import a comprehensive set of medical

terminologies that are contained in the Unified Medical Language

System (UMLS)30 and maintain all versions of the terminologies go-

ing back to 2004 UMLS releases. We harmonize diagnoses to ICD-9

and ICD-10, procedures to ICD-9, ICD-10, CPT-4, and HCPCS,

medications to RxNorm and NDC, and laboratory tests to LOINC.

We also use the UMLS to validate the source system data that are in-

creasingly coded with standard terminologies. In addition to map-

pings, the semantic layer contains value sets that have been collected

from several sources, such as the NIH’s Value Set Authority Cen-

ter31 and value sets that have been defined by national patient data

research networks. We typically update the terminologies and value

sets twice a year, in June and in December, following the biannual

UMLS releases. However, some terminologies and value sets are

updated more frequently; for example, at the onset of the coronavi-

rus disease 2019 (COVID-19) pandemic, we updated the LOINC

codes for COVID-19 laboratory tests as frequently as weekly.

The mappings and value sets of the semantic layer are leveraged

at the time data are delivered from Neptune to downstream data

marts and to individual projects. Standard terminology codes and

values are applied at that time to produce standardized data; this

late binding approach provides efficient and timely standardization

of data to constantly changing terminologies.

Extract, transform, and load processes
Most data domains in Neptune are updated at the beginning of each

month. A series of extract, transform, load (ETL) database opera-

tions are implemented using the Pentaho Data Integrator (PDI) and

run overnight to extract a month of data from the source systems.

More than 70 workflows process the monthly incremental data

updates. The PDI programs perform extraction and loading of ware-

house tables, including data validation checks, error handling, audit-

ing, and control processing. Linux scripts are used to call PDI

programs. The data in the source systems are transactional, and

some transactions may take several weeks to be finalized. At the be-

ginning of each month, data are extracted from the source systems

with a lag period of 1 month, at which time, almost all clinical trans-

actions have been finalized in our health system. The use of the lag

period accrues large savings in both human effort and system perfor-

mance since the ETL processes are relatively simple, resulting in

only the addition of rows to the warehouse tables rather than per-

forming reconciliation and edits of changing values. However, a

small amount of data are held back because they are incomplete; for

example, data that are related to inpatient stays extending through

the last day of the month and laboratory test orders that are not yet

resulted by the last day of the month. The decision of monthly

updates arose partly from the fact that at the onset, we had a small

group of warehouse personnel who performed a wide range of tasks,

including data provisioning to a large clientele, and partly from the

fact that in the beginning, substantial time and effort was incurred

in the design and implementation of ETL processes with the step-

wise addition of key data domains over more than a year.

Extension of Neptune for COVID-19
The emergence of coronavirus disease 2019 (COVID-19) necessi-

tated a more frequent update of COVID-19-related data in Neptune

to support surveillance and research needs. Since UPMC is a large

health system with millions of active patients and billions of transac-

tions, rather than changing the monthly ETL processes, we devel-

Figure 2. Total volume of data in Neptune, monthly data inflow, and data vol-

umes in destinations served by Neptune.
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oped a new parallel ETL process that updates data on COVID-19

twice a week. For efficiency, the new process extracts data only be-

tween the latest monthly Neptune update and the current day; thus,

the data lag the source systems at most by 4 days. This COVID-19

component of Neptune serves national projects that added more fre-

quent data requirements for COVID-19 serving the COVID-19

needs of local investigators.

Regulation of Neptune
Neptune was initially developed under an institutional review board

(IRB) protocol, but the regulatory framework was later changed to

an HIPAA Business Associates Agreement (BAA). Regulation under

an IRB protocol was limiting since the addition of new data sources

and technical changes need repeated changes to the protocol. The

BAA is overseen by the Chief Research Information Officer (CRIO)

at Pitt and the Chief Medical Information Officer (CMIO) at

UPMC. This arrangement, allowing Neptune to function as an oper-

ational research system of UPMC under the BAA, enabled rapid ex-

pansion and development of new functionality in Neptune.

The warehouse is used in several configurations, including some

free services, mostly grant-supported activities, and a substantial re-

charge center. Investigators have access to limited data in down-

stream self-service systems such as the i2b2, patient-level data as

extracts performed by honest brokers, and regularly updated patient

data as study-specific marts. Monthly meetings between the CRIO

on the Pitt side with the CMIO on the UPMC side ensure robust and

extensive use of Neptune for both Pitt and UPMC research that is

highly valued by both organizations.

UPMC and Pitt have a shared regulatory compliance structure,

including a shared IRB. The BAA rather than an IRB protocol for

the warehouse ensures that full-time Pitt informatics personnel in

the CRIO’s office can operate on behalf of UPMC while directly

supporting investigators, and also provides a structure for ensuring

that Pitt investigators’ responsibilities to UPMC are fulfilled. The

BAA requires all uses of the warehouse have IRB protocols with the

exception of preparatory-to-research queries.

RESULTS

Designed as an RDW that integrates patient data from varied sources,

Neptune contains EHR data (structured, document, and imaging), in-

surance data, and research data. EHR data in Neptune goes back to

2004 when UPMC completed the implementation of electronic clini-

cal information systems. Every month, a large volume of EHR data

are added to Neptune that includes data from existing patients and

approximately 21 000 new patients (see Figure 2). Neptune also

receives health insurance claims data from the UPMC Health Plan

and from large institutional research projects like the Magee Obstetric

Maternal & Infant (MOMI) Database and Biobank (>300 perinatal

variables from mother and infant, �200K deliveries since 1995),32,33

and genomic data from the PittþMe Discovery Biobank.

Neptune provides data to data marts for several national projects

that include the Accrual to Clinical Trials (ACT) network,8,34 which

is based on i2b222 and Shared Health Research Information Net-

work (SHRINE)35; the All of Us Research Program which is based

on the OMOP data model36,37; the PCORnet, which is based on

PCORnet’s Common Data Model (CDM) and PopMedNet;38,39

and the Genomic Information Commons (GIC) which is based on

tranSMART.40,41 Neptune also provides data to data marts for local

projects such as an Alzheimer’s disease project and an antibiotic us-

age project. Typically, data are automatically updated in both the

national and local data marts following the monthly data updates in

Neptune (see Figure 2).

In addition, Neptune serves as a source of EHR and other patient

data for local research in the institution. The RIO provisions data to

hundreds of individual research projects per year. Finally, RIO

responds to approximately 1000 requests per year, including prepa-

ratory to research requests and letters of support for research grants.

DISCUSSION

We described the design and implementation of Neptune, a new

RDW, at Pitt and UPMC. Neptune is designed to integrate data

from several EHR systems with replicated patient records as well as

non-EHR data, support both identified and deidentified data needs,

and service efficiently commonly used analytics-oriented data mod-

els and data needs of individual investigators. The rich partnership

between Pitt and UPMC supported the rapid technical development

and implementation of Neptune. This warehouse is an increasingly

rich repository of EHR and other patient data and is progressively

benefitting the dynamic research environment at Pitt and UPMC.

Distinctive features of Neptune
This section describes distinctive aspects of Neptune’s technical in-

frastructure. Desiderata for the successful implementation and oper-

ation of an RDW has been described by Huser and Cimino.42 These

include a single patient identifier, protected health information

(PHI) management, an extensible information storage model, se-

mantic integration with standard terminologies, metadata and docu-

mentation, and documentation of historical evolution of data

sources. Several of the features of Neptune described below align

with these desiderata.

Atomic data warehouse

Neptune is architected as a canonical model for ingestion and storage

of patient data derived from multiple sources and from which data

are subsequently transformed into analytics-oriented data models.

The canonical model in Neptune uses a normalized atomic design.

Normalization is a key database principle that enables the efficient

correction of data errors and optimization of storage space. The

atomic design enables rapid ingestion of data in bulk, tracking of data

provenance, isolation, separate processing of changing data, and pro-

vides a single place for data cleaning and transformation rather than

duplicating these processes for each data source. The advantage of an

atomic warehouse is it can both provide answers to queries at a very

detailed level and summarize data rapidly that may be needed for

analytics-oriented data models. Neptune enables us to avoid convert-

ing data from one data model to another, for example, from OMOP

to PCORnet’s Common Data Model or vice-versa, which is typically

more complex to implement than an ETL process from Neptune to an

individual data model. Furthermore, due to information loss, it is not

possible to inter-convert between data models with complete fidelity.

The atomic design also enables the stepwise addition of new data

domains without the need to redesign or implement a comprehensive

set of all possible data domains that will eventually be needed.

Single patient identifier and management of PHI

A key feature in Neptune is the management of patient identifiers

such that all data related to a patient originating from different

EHR systems, health insurance, and research studies are linked to a
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single enterprise research identifier. While UPMC maintains a single

enterprise clinical patient identifier that links all clinical identifiers

of a patient, the enterprise clinical patient identifier was not usable

in the RDW for several reasons. We needed an identifier—the enter-

prise research identifier—that is not PHI and can be linked to both

clinical patient identifiers and patient identifiers used in research

studies. The identity management layer is used to integrate clinical

and nonclinical identifiers and assign a unique enterprise research

identifier to each patient. This layer resides on the health system side

since it contains PHI; thus, the architecture of Neptune helps ensure

that PHI does not leave the confines of the health system network.

The enterprise research identifier accomplishes several goals. It is

used to resolve historical patient identifiers and link historical data

to the patient. It also provides a framework for data extractors (hon-

est brokers) to work with different tools for the different types of

data, such as structured data, clinical document data, and clinical

imaging data, on the Pitt side of Neptune without using PHI. The

majority of our honest brokers accomplish their work entirely on

the Pitt side of Neptune, thus reducing the number of personnel with

access to PHI to the minimum. Furthermore, the enterprise research

identifier is not provided to investigators; it is transformed to a

study-specific identifier to avoid the risk of investigators linking a

patient’s data in a study with that patient’s data in another study,

which is not generally allowed under HIPAA.

Privacy and study patient identifiers

The enterprise research patient identifier is restricted for use within

Neptune and is not used to identify patients when data are delivered

to data marts and for research projects. Unique study patient identi-

fiers are created and assigned for patients in each data mart and re-

search data set that are derived from Neptune. A function is used to

systematically transform the enterprise research patient identifier to

a study patient identifier for each data set, and function details asso-

ciated with each data set are archived in Neptune. The function

allows warehouse personnel to link study identifiers to enterprise re-

search patient identifiers for future updates to study data, but inves-

tigators cannot link data by patient across different data sets that

were provisioned under different IRB protocols that may have com-

mon patients.

Extensible information storage model

An important consideration for Neptune was rapid implementation,

starting with key data domains so that the warehouse would be

functional within months rather than years of development. The key

data domains were identified based on the clinical domains required

to populate the data marts for national projects such as the All of Us

Research Program. Neptune initially contained only structured EHR

data in the domains of demographics, diagnoses, procedures, labora-

tory test results, and medications. This enabled implementation in

under 6 months. The addition of a new domain includes a selection

of sources, identification of deduplication strategies if necessary,

aligning patient identifiers, a bulk backload of the data going back

to 2004, and implementation of a monthly ETL process. The exten-

sible information storage model implemented in Neptune has en-

abled the stepwise addition of new data domains without the need

to rearchitect existing data domains.

Dereplication of data from multiple sources

Multiple EHR systems and an archival system are in use in UPMC.

Assembling a longitudinal health record from these multiple sources

is another key requirement for Neptune. In addition to the multitude

of patient identifiers, another challenge associated with the use of

multiple EHR systems is the replication of patient data across sys-

tems. We achieved dereplication in several ways. One approach is

the selective extraction of data from a single source if a particular

domain is systematically replicated across the EHR systems. For ex-

ample, since 2015, in UPMC, laboratory test results from all care

settings are available in EpicCare; thus, laboratory test results after

2015 are extracted only from EpicCare. Another approach com-

pares timestamps and metadata of suspected replicated data to iden-

tify replication. For example, laboratory test results before 2015

were obtained from several sources, and replications were identified

and systematically eliminated.

Binding at query

Binding is the process of mapping data to standard terminologies

(eg, translation of a local code for a laboratory test to the appropri-

ate LOINC code) and application of definitions (eg, application of a

standard definition of an outpatient visit and calculation of the

length of stay). Binding standardizes the data and makes it usable

for research. In some warehouse designs and analytics-oriented

models, mappings and definitions are applied early during data in-

gestion; such early binding has the disadvantage that changes to the

mappings and definitions will need data to be corrected and updated

continually. Since Neptune uses binding at query time, changes in

mappings and definitions affect data only at the time data are deliv-

ered from Neptune, and new data sources are rapidly integrated into

Neptune without making decisions about mappings upfront.

Limitations
Neptune has several limitations. One limitation is that the data in

the warehouse lag the source systems by a month. While this delay is

acceptable for most research that uses retrospective data, it limits re-

search in clinical decision support and biosurveillance applications

that typically require current or near current EHR data. But, as men-

tioned previously for COVID-19 data, extending the capabilities to

support requirements of more frequent data updates is possible with

additional development. A second limitation is that there is no effi-

cient mechanism to query clinical document data, while structured

data can be queried by the warehouse personnel by directly querying

Neptune or via the i2b2. We have separately implemented Elastic-

search technology for efficient query and analysis of clinical docu-

ments. A third limitation arises from the duplication of patient data

in the source systems, especially across the inpatient and outpatient

EHR systems. This results in complex and time-consuming analyses

to design ETL processes to ensure that data in Neptune is dedupli-

cated, which is further complicated by the dynamic nature of dupli-

cation. A fourth limitation arises from the need for data quality

checks at every level of warehouse function in order to provide

meaningful data for research. The multiple EHR source systems and

the duplication of data in them have required more than the usual

volume of data checks which are still likely incomplete.

CONCLUSION

The Neptune RDW implemented at Pitt is increasingly enabling ex-

tensive reuse of patient data for a wide range and high volume of

clinical and translational research. Neptune is designed as a normal-

ized atomic warehouse. The atomic design enabled the warehouse to

be built “better, faster, cheaper” because there is no need to exten-
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sively model or standardize the data. Neptune integrates patient

data from multiple EHR systems as well as from other sources,

maintains a robust patient identity management system for research,

and enables efficient delivery of data to both large data marts based

on analytics-oriented data models and to individual investigators.

Creating a dedicated RDW at Pitt has enabled us to better serve the

investigators at Pitt, participate national data networks, and ad-

vance informatics research.
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