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Abstract: Cytosolic pH homeostasis is a precondition for the normal growth and stress responses in
plants, and H+ flux across the plasma membrane is essential for cytoplasmic pH control. Hence, this re-
view focuses on seven types of proteins that possess direct H+ transport activity, namely, H+-ATPase,
NHX, CHX, AMT, NRT, PHT, and KT/HAK/KUP, to summarize their plasma-membrane-located
family members, the effect of corresponding gene knockout and/or overexpression on cytosolic
pH, the H+ transport pathway, and their functional regulation by the extracellular/cytosolic pH. In
general, H+-ATPases mediate H+ extrusion, whereas most members of other six proteins mediate
H+ influx, thus contributing to cytosolic pH homeostasis by directly modulating H+ flux across the
plasma membrane. The fact that some AMTs/NRTs mediate H+-coupled substrate influx, whereas
other intra-family members facilitate H+-uncoupled substrate transport, demonstrates that not all
plasma membrane transporters possess H+-coupled substrate transport mechanisms, and using
the transport mechanism of a protein to represent the case of the entire family is not suitable. The
transport activity of these proteins is regulated by extracellular and/or cytosolic pH, with differ-
ent structural bases for H+ transfer among these seven types of proteins. Notably, intra-family
members possess distinct pH regulatory characterization and underlying residues for H+ transfer.
This review is anticipated to facilitate the understanding of the molecular basis for cytosolic pH
homeostasis. Despite this progress, the strategy of their cooperation for cytosolic pH homeostasis
needs further investigation.

Keywords: H+ transport proteins; cytosolic pH homeostasis; H+ transfer pathway; pH regulation

1. Introduction

As a fundamental activity in all living cells [1], cytosolic pH homeostasis is essential
for the normal growth and stress responses of plants [2,3]. This is because basic cytosolic
processes such as biochemical reactions, protein stability, ion channel/transporter activity,
compartmental integrity, and membrane trafficking have strict pH requirements [1,4]. Simul-
taneously, most protein machineries (enzymes, motors, vesicle traffic, ribosomes, spliceo-
somes, assembly proteins, regulators, etc.) can only work within a narrow pH range [5].
Studies have shown that plant cytosolic pH is stable at a small range of 7.1–7.5 [5–8].

Cytosolic pH homeostasis is mainly controlled by the following three factors: first,
chemical buffering components which comprise bicarbonate, phosphate, protein buffers
(e.g., the imidazol group of histidine), etc. [9–12]; second, cytosolic H+ consumption and
H+ generation by metabolism [5,8,13]; and third, the direct H+ flux across the plasma
membrane and endomembrane [1,7,12,14–16].

In comparison with numerous reviews that concentrate on the organelle-located
proteins which are responsible for H+ flux across the endomembrane [1,6,7], summaries
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regarding proteins that are directly involved in H+ efflux/influx across the plasma mem-
brane are scarce, except regarding plasma membrane H+-ATPases [14,17]. However, the
topic with which we are concerned is not included in the two above-mentioned studies.
Thus, this review focuses on seven types of proteins that possess direct H+ transport activity,
namely, H+-ATPase (H+-pumping ATPase), NHX (Na+/H+ exchanger), CHX (cation/H+

exchanger), AMT (ammonium transporter), NRT (nitrate transporter), PHT (phosphate
transporter), and KT/HAK/KUP (K+ transporter/high-affinity K+ transporter/K+ uptake
permease), to summarize their plasma-membrane-located family members, the effect of
changes in their transcript levels on extracellular/cytosolic pH, the H+ transport mech-
anism, and their functional regulation by either extracellular or cytosolic pH. Finally,
prospects are presented in this field with emphasis on the necessity to determine the
cooperative strategy of these proteins for cytosolic pH homeostasis.

2. Roles of Plasma Membrane H+-ATPases and Multiple Transporters in Cytosolic
pH Homeostasis
2.1. H+-ATPase Family
2.1.1. Plasma-Membrane-Located Family Members, Function and the Effect of Their
Expression Level Changes on the Cytosolic pH

Plant plasma membrane H+-ATPases (H+-pumping ATPase) have many family mem-
bers. This notion is supported by the fact that 10 plasma membrane H+-ATPases have been
found in the model plant Arabidopsis genome [14,18,19]: 10 in rice [20], 12 in tomato [21],
4 in maize [22], 8 in Marchantia polymorpha [23], 10 in cucumber [24], 7 in potato [25], 9 in
tobacco [26], and 13 in sunflower [27] genomes.

Plant plasma membrane H+-ATPases actively pump H+ from the cytoplasm to the
extracellular space using the energy generated by ATP hydrolysis; thus, they are essen-
tial for cytosolic pH homeostasis. The process of H+ efflux is not accompanied by other
ions [17,28–30]. The effect of plasma membrane H+-ATPases’ activity and/or expression
level changes on the cytosolic pH is mainly reflected by the measurement of indirect extra-
cellular pH variation. Firstly, pharmacological test results show that the addition of a strong
H+-ATPases activator, Fungal Toxin Fusicoccin, results in the acidification of tomato culture
growth medium [31,32], whereas the inclusion of H+-ATPases activity inhibitors (such as
Erythrosin B or diethyl stilbestrol) leads to the alkalization of growth media [31]. Secondly,
the expression of either single NpPMA2 (Nicotiana plumbaginifolia plasma membrane H+-
ATPase 2) or NpPMA4 (Nicotiana plumbaginifolia plasma membrane H+-ATPase 4) in the
heterologous yeast system leads to acidification of the growth medium [33]. Thirdly, in
planta measurements through knockout and/or overexpression materials. Overexpression
of an active isoform of AHA3 (T948D-AHA3, a mutant with T to D alternation at position
948 of Arabidopsis H+-ATPase 3) enhances the tolerance of Arabidopsis to acid stress, a
phenomenon which is consistent with its roles in the extrusion of toxic H+ from the cyto-
plasm [34]. Overexpression of rice OSA1 (Oryza sativa plasma membrane H+-ATPase 1)
leads to a ~1 unit decrease in the growth medium pH [35]. As two main H+-ATPases
in Arabidopsis roots [36,37], the single knockout of AHA2 (Arabidopsis H+-ATPase 2)
quantitatively results in a ~1 unit increase in the growth medium pH [37], and the single
knockout of AHA1 (Arabidopsis H+-ATPase 1) causes a 60% reduction in the H+ efflux
capacity in planta [38]. The single knockout of AHA7 (Arabidopsis H+-ATPase 7) also
significantly reduces the H+ efflux capacity in the root hair zone under low-phosphorus
stress [39]. All these results indicate the contribution of plasma membrane H+-ATPases
to cytosolic pH control, but the direct measurement of cytosolic pH changes upon their
mutation/overexpression is still lacking. Until recently, the observation that the triple
knockout of AHA6/8/9 (Arabidopsis H+-ATPase 6/8/9) results in a ~0.5 unit decrease in
the cytosolic pH has preliminarily quantified its role in cytosolic pH homeostasis [40].
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2.1.2. Mechanism of H+ Transport

Results from AHA2 facilitate the understanding of the H+ extrusion pathway. It is
proposed that a single, centrally located proton acceptor/donor (D684), an asparagine
residue (N106), a positively charged arginine residue (R655), and a large central cavity
form the H+ transporting unit [41]. The H+ transfer process can be divided into two steps:
the H+ loading and release. Briefly, the side chain of a conserved D684 residue receives
the proton, causing protonation of this residue. Then, the protonated form of D684 forms
an occluded and hydrogen-bonded pair with the equally conserved N106 residue [29,42].
Subsequently, conformational movements trigger the opening of the proton exit cavity and
the interruption of hydrogen bonding between N106 and D684, finally leading to proton
release from D684 [41,42]. The conserved R655 is proposed to favor the release of the bound
H+, possibly through polarizing the D684 side chain and modulating its pKa [41–43].

2.1.3. Regulation by Extracellular/Cytosolic pH

Activation of AHA7 occurs only when the extracellular pH is ≥6.0. Sensing of the
extracellular pH is controlled by the extracellular loop between transmembrane segments
7 and 8 [44].

The relationship between the plasma membrane H+-ATPase and the cytosolic pH shows
a “bell” shape, with the maximal transport activity occurring at around pH 6.5 [33,40,45,46].
For instance, the optimum pH for the H+-ATPase activity of a plasma membrane fraction
from Arabidopsis is 6.6 [47], whereas the optimum pH for that from rice is 6.0 [48]. The
observation that low pH treatment enhances the transport activity of plasma membrane H+-
ATPase in rice and soybean under hydroponic conditions is interpreted as the result of cytosolic
acidification [49,50]. In a wide pH range, a one-unit decrease in the extracellular pH would lead
to a 0.1 reduction in the cytosolic pH [51,52]. As mentioned above, the cytosolic pH is generally
7.4, and the optimum pH for H+-ATPase activity is around 6.5. Thus, the cytosolic acidification
caused by the low-pH treatment may enhance the activity of H+-ATPase by shifting cytosolic
pH towards its optimum pH [53].

2.2. NHX Family
2.2.1. Plasma-Membrane-Located Family Members, Function and the Effect of Their
Expression Level Changes on the Cytosolic pH

Amongst eight NHXs (Na+/H+ exchanger) in Arabidopsis [54,55], only two genes
(AtNHX7 and AtNHX8) are located in the plasma membrane [56–59]. Homologues of the
AtNHX7 widely exist in plants such as wheat, maize, and tomato [60–62]; however, no
protein homologous to AtNHX8 has been found in the sequenced genomes of cereals [63].

The Arabidopsis AtNHX7/SOS1 (Arabidopsis thaliana Na+/H+ exchanger 7/Salt Overly
Sensitive 1) functions as a plasma membrane Na+/H+ antiporter [56,64]. This protein me-
diates the efflux of Na+ out of the cytoplasm to the extracellular space, and exchanges
equivalent H+ influx into the cytoplasm [7,65–67]. Thus, NHX genes are involved in cy-
tosolic pH homeostasis [68,69]. Studies have demonstrated that the knockout of SOS1 in
Arabidopsis and rice results in ~80% or ~40% reductions in the Na+/H+ exchange activity
in plasma membrane vesicles, respectively, relative to activity in wild-type plants [70,71].
Upon NaCl treatment, the knockout of SOS1 reduces the capacity of H+ influx into the
cytoplasm and results in cytosolic alkalization [72,73].

AtNHX8 is proposed to function as a Li+/H+ exchanger [54]. Observations indicate
that the knockout of AtNHX8 renders the plants more sensitive to Li+, whereas overexpres-
sion of this gene enables the plant to be more tolerant to Li+, confirming the contribution of
this gene to Li+ extrusion [54]. However, direct experimental evidence involving H+ influx
by AtNHX8 is still lacking.

2.2.2. Mechanism of H+ Transport

Interpretation of a lower resolution (25 Å) crystal structure of SOS1 demonstrates
that it is a homodimer, which contains a membrane domain and an elongated, large, and
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structured cytosolic domain [74]. To illustrate detailed mechanisms for H+ transport,
higher-resolution structural techniques are necessary [74,75].

2.2.3. Regulation by Extracellular/Cytosolic pH

Knockout of the SOS1 transporter of Physcomitrella patens (PpSOS1) results in the
enhanced influx capacity of Na+ at pH 4.5, but not for that at pH 9.0, suggesting that the
transport activity of PpSOS1 is stimulated by low extracellular pH [76]. This acid-facilitated
transport activity is in consistent with its Na+/H+ antiport function.

2.3. CHX Family

Amongst 28 members of CHXs (cation/H+ exchanger) in the Arabidopsis genome [77,78],
AtCHX13 [79], AtCHX14 [80], AtCHX16 [81], AtCHX17 [81], AtCHX18 [81],
AtCHX19 [81,82], and AtCHX21 [83] have been found to be localized in the plasma mem-
brane. Three-dimensional homology modeling and point mutation results indicate that
AtCHX17 has a core structure similar to Na+/H+ antiporter [84]. It is thus proposed
that AtCHX17 contributes to cytosolic pH homeostasis by mediating H+ influx across the
plasma membrane. Expressions of AtCHX16–AtCHX19 in a yeast mutant defective in Na+

extrusion and K+(Na+)/H+ antiport rescue the alkaline pH-sensitive growth phenotype,
also supporting their potential roles in cytosolic pH homeostasis [85]. However, to date,
the H+-coupled transport mechanisms of these plasma membrane CHXs have not been
evidenced by direct experiments [7]. Notably, AtCHX13 is proposed to be a K+-uptake
transporter [79], but AtCHX14 is expected to be a K+-efflux transporter [80]. This phe-
nomenon suggests that the CHX intra-family may possess a distinct H+-related transport
mechanism, which should be assessed with caution.

2.4. AMT Family and NRT Family
2.4.1. Plasma-Membrane-Located Family Members, Function and the Effect of Their
Expression Level Changes on the Cytosolic pH

Most AMTs (ammonium transporters) reported thus far are localized in the plasma
membrane [86]. Amongst four distinct transport mechanisms in the AMTs family, NH3/H+

co-transport and NH4
+/H+ symport are two mechanisms directly involving H+ trans-

port [86]. Both TaAMT1;1 and AtAMT1;2 are NH3/H+ co-transporters [87,88], whereas
PvAMT1;1 is a NH4

+/H+ symporter [89]. All three proteins are proposed to be localized
to the plasma membrane [89–91]. Consistent with its role in H+ influx across the plasma
membrane, the expression of PvAMT1;1 in oocytes leads to a ~0.12 unit decrease in cytoso-
lic pH [89]. Correspondingly, the expression of an NH4

+ uniporter (LeAMT1;1) in oocytes
has no effect on cytosolic pH [92].

Although possessing different substrates, the substrate transport mediated by most
NRTs (nitrate transporters) shares a common feature, i.e., H+-coupling [93–96]. Electro-
physiological results demonstrate that plasma membrane nitrate transporters such as
BnNRT1.2 [97], AtNRT1.1 [98,99], AtNRT1.4 [100], AtNRT1.5 [101], AtNRT1.6 [102], Os-
NRT1 [103], and OsNRT2.3b [104] mediate H+/NO3

− symport, and the ratio of H+ is >1.
Expression of OsNRT2.3b in oocytes leads to the ~0.16-unit acidification of cytoplasm [104].
In planta knockout of AtNRT1.1, the major molecular unit for nitrate uptake in Arabidopsis
roots [105], causes a loss of alkalization of the growth medium and significantly reduces the
adaptability of Arabidopsis to low-pH stress [106], supporting its contribution to cytosolic
pH homeostasis by mediating H+ influx across the plasma membrane. AtNRT1.5 functions
not only as a H+/NO3

− symporter, but also as a K+/H+ antiporter, mediating the efflux of
K+ and an equivalent influx of H+ [107]. Both cases support its role in H+ influx, although
the ratio of H+ is different (>1 for H+/NO3

− symporter; =1 for H+/K+ antiporter). Notably,
substrate transport by some NRTs is not coupled to H+ [108], suggesting that not all plasma
membrane NRTs confer H+ flux, a case similar to that of AMTs.
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2.4.2. Mechanism of H+ Transport

PvAMT1;1 functions as a NH4
+/H+ symporter. H211E mutation results in the re-

taining of NH4
+ transport, but the loss of H+ transport in this protein. All these results

demonstrate that H211 is necessary for H+ transport in PvAMT1;1 [89]. Mutations of
Q67H and W145S lead to the uncoupling of H+ transport from NH3/H+ transport in
AtAMT1;2, indicating that the two residues (Q67 and W145) are essential for H+ transport
in AtAMT1;2 [88].

The H+ transport in NRTs undergoes two steps. Firstly, proton receptor residues
accept the proton in the outward-open conformation. Then, the transporters change into
inward-open conformation and release H+ into the cytoplasm [109]. The crystal structure,
in combination with mutation results, suggest that both the ExxER motif and a histidine
residue confer H+ binding in plant NRTs [109–113]. AtNRT1.1 is the best structurally
known plant NRT. Mutations of charged residues in its ExxER motif result in abolished H+

binding and NO3
− transport [110,111]. The crystal structure of AtNRT1.1 demonstrates

that, in the outward-open conformation, one H+ is bound by the ExxER motif, and the
other H+ is bound by the H356 [114].

2.4.3. Regulation by Extracellular/Cytosolic pH

In agreement with their H+-coupled transport mechanism, extracellular acidification
stimulates the transport activity of TaAMT1;1 [87] and PvAMT1;1 [89].

The observations from oocytes [115] and Arabidopsis mutants [105,106] indicate that the
transport activity of AtNRT1.1 is enhanced by extracellular acidification. This extracellular-
acid-stimulated transport seems a common feature of most plant plasma membrane NRTs,
as detailed in Section 2.4.1 [97–104]. In contrast, a 0.16 pH unit (from 7.41 to 7.25) of
cytosolic acidification arrests the nitrate transport activity of OsNRT2.3b. The amino acid
residue H167 is necessary for this cytosolic pH regulation [104].

2.5. PHT Family
2.5.1. Plasma-Membrane-Located Family Members, Function, and the Effect of Their
Expression Level Changes on the Cytosolic pH

Amongst five clades of PHT (phosphate transporters) family, PHT1 is conceived to be
the only subfamily that is localized to the plasma membrane. PHT1 contains many family
members. It is reported that 9, 13, 13, and 11 PHT1 proteins are found in Arabidopsis,
rice, maize, and barley genomes, respectively [116–121]. Direct subcellular localization
experiments confirm that at least AtPHT1;1 [122], AtPHT1;2 [123], AtPHT1;4 [123], At-
PHT1;9 [124], OsPHT1;3 [125], OsPHT1;4 [35,126], OsPHT1;8 [127], HvPHT1;1 [128], and
HvPHT1;6 [129] are localized to the plasma membrane.

PHT1 subfamily mediates Pi uptake from the soil, and its transport mechanism is
conceived to be H+-coupled H2PO4

− symport; the ratio between H+ and H2PO4
− is 2:1 to

4:1 [117,120,130,131]. Although the H+-coupled HPO4
2− (rather than H2PO4

−) symport
mechanism found in HvPHT1;6 challenges this consensus [129], the conclusion that sub-
strate transport by PHT1 is coupled to H+ is unchanged. Consistent with its role in H+

influx across the plasma membrane, Pi uptake results in a ~0.2–0.3 unit decrease in cytosolic
pH and corresponding alkalization of the growth medium in planta [132–134]. Expression
of AtPHT1;9 in yeast leads to significant alkalization of the growth medium [124]. All these
results indicate that PHT1 mediates H+ influx across the plasma membrane, and is finally
involved in cytosolic pH homeostasis.

2.5.2. Mechanism of H+ Transport

The crystal structure of PiPT from Piriformospora indica reveals that the proton is first
received by D324, then transferred from the proton transport pathway that is constituted
by D45, D48, E108, R139, and D149 residues, and finally released to the cytoplasm [135,136].
Homology modeling and point mutant results demonstrate that D35, D38, R134, and D144
(corresponding to D45, D48, R139, and D149) are essential for H+ transfer in AtPHT1;1 [137].
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2.5.3. Regulation by Extracellular/Cytosolic pH

When expressed in yeast, the transport activity of AtPHT1;1 is enhanced by extracellu-
lar acidification (pH gradually drops from 7.0 to 4.5) [137], whereas the activity of five rice
PHT1 proteins exhibits a “bell-shaped” dependence on the extracellular pH. The optimum
pH for the maximal transport activity is 6.5 in OsPHT1;1 [138] and OsPHT1;8 [127], 6.0 in
OsPHT1;6 [139], and around 5.5–6.5 in OsPHT1;9 and OsPHT1;10 [140]. The difference in
pH dependence amongst the above-mentioned PHT1 may be a result of the following. First,
this distinct pH regulation strategy is an intrinsic property of PHT1. This is not surprising
because even an H+-independent transport mechanism has been reported in another type
of Pi transporter, PHO1 (PHOSPHATE 1) [141]. Second, the fact that the transport activity
of five rice PHT1 proteins under different pH conditions is measured by the yeast growth
rate (OD600), rather than direct Pi transport activity as shown in AtPHT1;1, may possibly
cause an over-interpretation of the data. Thus, solid data from the direct Pi transport
activity of PHT1 seem necessary for the clarification of their pH dependence.

2.6. KT/KUP/HAK Family
2.6.1. Plasma-Membrane-Located Family Members, Function and the Effect of Their
Expression Level Changes on the Cytosolic pH

Plant KT/HAK/KUPPHT (K+ transporter/high-affinity K+ transporter/K+ uptake
permease) genes possess many family members. It is reported that 13, 27, and 27 KT/HAK/
KUP genes are found in the genome of Arabidopsis, rice, and maize, respectively [142–145].
At the protein level, most KT/HAK/KUP proteins are conceived to be localized to the
plasma membrane [143,146,147]. AtKUP1-12 and AtHAK5 are the names of 13 Arabidopsis
KT/HAK/KUP [144]. Experimental evidence shows that AtHAK5 [148], AtKUP2 [149],
AtKUP4 [150], AtKUP6 [151], and AtKUP7 [152] from Arabidopsis, and OsHAK1 [153,154],
OsHAK5 [155,156], OsHAK19 [154], and OsHAK21 [157] from rice, are localized to the
plasma membrane.

The fact that the high-affinity uptake of K+ in Arabidopsis root protoplasts [158] and
in barley roots [159] is H+-coupled, and that AtHAK5 dominates the K+ uptake at less
than 10 µM [148,160,161], indicate that AtHAK5 is most likely a K+/H+ symporter in
planta [160,162,163]. This deduction is partially supported by the results from homologous
proteins NcHAK1 of Neurospora crassa [164,165] and DmHAK5 of Dionaea muscipula [166],
which are conceived as K+/H+ symporters, although further direct evidence is required
(such as K+- and H+-dependent reversal potential shifts measured through electrophysio-
logical experiments). Recently, crystal structure analysis of KimA (a plant KUP homologue)
from Bacillus subtilis demonstrated that this protein functions as a K+/H+ symporter [167].
Thus, HAK5, and even the HAK family, is conceived to mediate H+ influx across the
plasma membrane, finally contributing to the cytosolic pH homeostasis. Overexpression of
OsHAK5 in rice results in the pH elevation of the growth medium [168].

2.6.2. Mechanism of H+ Transport

The crystal structure, in combination with point mutation results, demonstrates that
E233 confers H+ binding and release by its protonation and deprotonation in KimA (a plant
KUP homologue from Bacillus subtilis) [167]. The conservation of this residue is expected
to facilitate the understanding of H+ transport mechanisms in plant KT/KUP/HAK. Point
mutation results show that the corresponding residue (E321) is essential for the transport
activity of AtHAK5 [169].

2.6.3. Regulation by Extracellular/Cytosolic pH

Extracellular acidification significantly stimulates the transport activity of plant KT/
HAK/KUP [166,170,171], which is consistent with its putative role in K+/H+ symport.
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3. Notable Issues in This Field
3.1. Not All Plasma Membrane Transporters Possess H+-Coupled Substrate Transport
Mechanisms, and Using Transport Mechanisms of a Protein to Represent the Case of the Entire
Family Is Not Suitable

The observation that nutrient uptake by plants is co-transported with H+ supports a
long-standing hypothesis: transporters responsible for nutrient uptake are coupled with
H+ [158,159,172–174]. However, as a result of in-depth study of the molecular elements
of nutrient ion transport, increasing evidence shows that not all ion transporters are H+-
coupled symporters and/or antiporters; examples are listed hereafter. First, four types
of substrate transport mechanisms have been elucidated amongst AMTs [86]. Although
H+/NH4

+ symport (represented by PvAMT1;1) and H+/NH3 cotransport (represented by
AtAMT1;2) are two types of mechanisms that are coupled to H+ [88,89], NH3 transport (rep-
resented by AtAMT2) and NH4

+ uniport (represented by LeAMT1;1) serve as another two
types of mechanisms that are H+-independent [175,176]. Second, regarding NRTs, although
the majority of NRTs share a common feature, H+-coupled transport, an exception was
found for AtNRT2.4, which mediates H+-uncoupled substrate transport [108]. Therefore,
whether the transport is coupled with H+ is not a common feature of one transporter family,
but a special characterization of one protein. Attempts to clarify the transport mechanisms
of all family members only through the functional analysis of a protein are unsuitable.
Additionally, intra-family members possess distinct structural bases for H+ transfer. For ex-
ample, H356 is a key residue for H+ binding in AtNRT1.1, but this residue is not conserved
between AtNRT1.5 and AtNRT1.8 [110]. As a conserved residue amongst AMTs, H211 is
necessary for H+ transfer in PvAMT1;1. However, other intra-family members possessing
this residue do not display similar H+-coupled transport, as shown in PvAMT1;1 [89]. The
variation in structural basis for H+ transfer also indicates that H+ transport is an individual
issue of transporter proteins.

3.2. Special Caution Is Needed When Drawing Conclusion to the H+ Transfer Mechanism
of Transporters

The fact that transporter studies mainly focus on the transported ions, with less atten-
tion paid to the accompanied H+, objectively leads to the inappropriate interpretation of H+

transport. For example, first, several H+/substrate symport conclusions have been drawn
just based on the observation that the transport activity of a protein is stimulated by extra-
cellular acidification. Actually, functional enhancement by extracellular acidification may
be the result of pH regulation. Second, H+ transport conclusions have been obtained just
based on the linkage of a protein functional property with the results of early physiological
measurements (root or protoplast) also seem unreasonable. That is because physiological
measurement reflects the whole situation, whereas transporters responsible for this physi-
ological response possibly possess a distinct transport mechanism regarding H+. Third,
an H+ symport mechanism is proposed by the original literature based on insufficient
experimental results; however, subsequent reference citations strengthen this hypothesis
and give it the appearance of a truth. All these are disadvantageous to the study of the
transmembrane transport of H+, which is an issue of physiological significance. Regarding
the H+ transport of a transporter, we believe it should be supported by the following
evidence: (1) hydrogen isotope labeling tests for yeast, Xenopus oocytes, and plant genetic
materials (knockout and/or overexpression) harboring the target gene, or direct H+ flux
measurements with technology such as non-invasive micro-tests, or extracellular/cytosolic
pH measurements; (2) electrophysiological measurements. The pH regulation properties,
as well as the reversal potential changes upon both the substrate and accompanying H+

concentration variations, should be contained, with the latter parameter facilitating the
identification of H+ transport and calculation of the transport ratio between two ions;
(3) third, perception of the crystal structure of transporters facilitates the understanding
of the H+ transfer pathway; and (4) mutants with uncoupled H+ and substrate transport
should be observed.
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4. Roles of H+ Transport in Genetic Plant Improvements and Stress Resistance
4.1. Increasing Yield

H+ transport mediated by the above-mentioned proteins involves yield regulation.
Examples are listed as follows.

Overexpression of OSA1 in rice significantly increases yield. One reason is that
overexpression of this gene significantly enhances the ability of rice to excrete protons,
which can not only ensure the homeostasis of cytosolic pH, but also form a stronger proton
driving force and enhance the absorption of nutrients by the roots [35].

Overexpression of OsNRT2.3b in rice greatly promotes yield. One reason is that
overexpression of this gene leads to phloem sap acidification, which facilitates the transport
of P/Fe to the leaves [104].

Overexpression of OsHAK5 in rice notably increases yield. One reason is that overex-
pression of this gene leads to the alkalization of the extracellular medium, which facilitates
the transport of IAA into the cytosol [168].

4.2. Acid Stress Resistance

H+ transport mediated by the above-mentioned proteins participates in acid stress
resistance. Several lines of evidence are listed below.

Overexpression of an active form of H+-ATPase, AHA3-T498D in Arabidopsis, facili-
tates resistance to acid stress. This phenomenon is attributed to the enhanced excretion of
H+ from the cytosol, favoring cytosolic pH homeostasis [34].

Overexpression of AtNRT1.1 in Arabidopsis significantly increases the resistance to
acid stress. This observation is the result of the enhanced consumption of extracellular H+,
creating a more favorable rhizosphere pH [177].

5. Conclusions and Prospects

H+-ATPases and multiple transporters mediate H+ flux across the plasma membrane
and are proposed to be essential for cytosolic pH homeostasis in plants. This review focused
on seven types of proteins (H+-ATPase, NHX, CHX, AMT, NRT, and the KT/HAK/KUP
family) that possess direct H+ transport activity, concentrating on the following four items:
plasma-membrane-located family members, the effect of changes in their expression level
on the cytosolic pH, the H+ transport pathway, and their functional regulation by the
extracellular/cytosolic pH (summarized in Figure 1 and Table 1). Conclusions are drawn as
follows. First, each of these seven types of protein is capable of mediating H+ flux across the
plasma membrane, thus contributing to cytosolic pH homeostasis. However, intra-family
members possess distinct H+ transport properties, with some members possessing the
ability to transport H+, whereas other members are unable to transport H+. Second, the H+

transport activities of each of these seven types of protein are regulated by extracellular and
cytosolic pH. However, intra-family members possess distinct pH regulation properties.
Third, each of these seven types of protein has different H+ transport structural bases, and
intra-family members possess different H+ transport structural bases.

Table 1. Functional regulation by extracellular and/or cytosolic pH and key residues for H+ transport.

Protein Name Regulation by pH Key Residues of H+ Transfer Pathway

H+-ATPase family

AHA2
Bell-shaped dependence on cytosolic pH,

with maximal transport activity approaching
at pH 6.6 [47]

D684, N106 and R655 [29,41–43]

AHA1&AHA3,
NpPMA2 &NpPMA4, and rice

H+-ATPases

Bell-shaped dependence on cytosolic pH,
with maximal transport activity approaching

at pH 6.0–6.6 [33,40,45–48]

AHA7 Active only when extracellular pH is ≥ 6.0
[44]
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Table 1. Cont.

Protein Name Regulation by pH Key Residues of H+ Transfer Pathway

NHX family

AtNHX7/SOS1 Unclear [74,75]

PpSOS1 Stimulated by extracellular acidification [76]

CHX family

AtCHX13 Stimulated by extracellular acidification [79]

AtCHX17 Unclear [84]

AMT family

PvAMT1;1 Stimulated by extracellular acidification [89] H211 [89]

AtAMT1;2 Q67, W145 [88]

NRT family

AtNRT1.1 Stimulated by extracellular acidification
[98,99,115] (41)EXXER(45), H356 [110,111,114]

BnNRT1.2, AtNRT1.4, AtNRT1.5,
AtNRT1.6, OsNRT1, OsNRT2.3b

Stimulated by extracellular acidification
[97,100–104]

OsNRT2.3b Inhibited by cytosolic acidification [104]

PT family

AtPHT1;1 Stimulated by extracellular acidification [137] D35, D38, R134 and D144 [137]

OsPHT1;1, OsPHT1;6, OsPHT1;8,
OsPHT1;9, OsPHT1;10

Bell-shaped dependence on cytosolic pH,
with maximal transport activity approaching

at pH 5.5–6.5 [127,138–140]

KT/HAK/KUP family

AtHAK5 E312 [169]

DmHAK5, CnHAK1&CnHAK2,
HvHAK1 & HvHAK2

Stimulated by extracellular acidification
[166,170,171]

We believe that the following points necessitate further attention. First, in view of the
fact that intra-family members possess distinct H+ transport properties and underlying
structural bases, using the transport mechanism of a protein to represent the case of
the entire family is not suitable. Second, as an accompanying ion that is co-transported
by most nutrient uptake transporters, H+ receives less attention, leading to the fact the
conclusions drawn regarding their H+ transport are somewhat imprecise. Subsequent
studies regarding H+ transport of related proteins should rely on much more solid evidence,
which is proposed in Section 3. Third, the matter of how these proteins cooperate to achieve
cytosolic pH homeostasis awaits further study [178]. Additionally, except for the seven
types of protein, transporters such as H+-coupled sucrose transporters (abbreviated as
SUT), H+-coupled amino acid permease (abbreviated as AAP), and sulfate transporters
(abbreviated as SULTR) are also conceived to contribute to the cytosolic pH through direct
mediating H+ flux across the plasma membrane [8,179–182]. Studies on these proteins,
and the coordination of these plasma membrane H+ transport proteins, in addition to
organelle-located ones, are crucial for the elucidation of the molecular mechanism for
cytosolic pH homeostasis. Finally, in addition to maintaining cytoplasmic pH homeostasis,
the physiological significance of H+ transport mediated by these proteins needs to be
further explored, and several examples are provided in Section 4.
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Figure 1. Plasma-membrane-located H+ transport proteins. H+-ATPase family functions in mediating H+ efflux from
the cytosol to the extracellular space, whereas most members of the NHX, CHX, AMT, NRT, PHT, KT/HAK/KUP, AAP,
SULTR, SUT family are responsible for mediating H+ influx from the extracellular space to the cytosol. Notably, several
intra-family members of AMT and NRT do not transport H+, indicating that not all plasma membrane transporters possess
H+-coupled substrate transport mechanisms. Seven types of H+ transport proteins focused on in this review (H+-ATPase,
NHX, CHX, AMT, NRT, PHT, and KT/HAK/KUP) are indicated by black font, whereas other proteins (AAP, SULTR, SUT,
etc.) are indicated by the gray font. Specific proteins with experimental evidences (references are indicated by [number]) are
presented in the corresponding family. Arrows (↑) indicate the direction of H+ flux. Inability to transport H+ is indicated
by special lines (symbols as shown for LeAMT1;1 and AtNRT2.4). Abbreviations: H+-ATPase (H+-pumping ATPase),
NHX (Na+/H+ exchanger), CHX (cation/H+ exchanger), AMT (ammonium transporter), NRT (nitrate transporter), PHT
(phosphate transporter), KT/HAK/KUP (K+ transporter/high-affinity K+ transporter/K+ uptake permease), SUT (Sucrose
transporter), AAP (amino acid permease) and SULTR (sulfate transporter).
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