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Abstract

Mercury exists naturally and mainly as a man-made pollutant in the environment, where it

exerts adverse effects on local ecosystems and living organisms. It is important to develop

an appropriate synthetic biological device that recognizes, detects and removes the bio-

available fraction of environmental mercury. Both single-signal and double-signal output

mercury biosensors were assembled using a natural mer operon as a template. Selectivity

and sensitivity of whole-cell biosensors based on artificial mer operons were determined.

Three whole-cell biosensors were highly stable at very high concentrations of mercuric chlo-

ride, and could detect bioavailable Hg(II) in the concentration range of 6.25–200 μM HgCl2.

A novel Hg(II) bioadsorption coupled with biosensing artificial mer operon was assembled.

This would allow Hg(II)-induced Hg(II) binding protein cell surface display and green fluores-

cence emission to be achieved simultaneously while retaining the linear relationship

between fluorescent signal and Hg(II) exposure concentration. The present study provides

an innovative way to simultaneously detect, quantify, and remove bioavailable heavy metal

ions using an artificially reconstructed heavy metal resistance operon.

Introduction

Mercury is a bioaccumulative and highly toxic heavy metal that is widely dispersed in the envi-

ronment. Environmental mercury exists in three different forms: elemental mercury, inor-

ganic mercury, and organic mercury. Among these forms, organic methyl mercury poses a

significant hazard to public health and safety [1]. Although there are a substantial number of

instrumental methods available for the determination and quantification of mercury in differ-

ent environmental samples, there is a lack of information in speciation studies of mercury in

recent years [2]. Measurement of bioavailable Hg(II) has predictive value for the methylation

rate of mercury, thereby predicting its biological accumulation in ecosystems [3]. Thus, it is

imperative to develop appropriate biological devices which detect and remove the bioavailable

Hg(II) in the environment.

Due to environmentally widespread toxicity of mercury, it has been evolutionarily neces-

sary for bacteria to evolve resistance to mercury. Bacteria surviving in heavy-metal polluted
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environments rely on the function of specific heavy-metal resistance systems. One of the best

understood microbial mercury resistance operons is the mer operon that confers microbial

resistance to inorganic mercury [4, 5]. Bacterial metalloregulatory MerR is a Hg(II) dependent

transcriptional repressor and activator that responds to Hg(II) with high selectivity and sensi-

tivity. Apo MerR dimer binds to the promoter region of the mer operon as a repressor to block

transcription initiation of a downstream mercury detoxification gene cluster. However, this

dimeric MerR is converted into an activator upon Hg(II) binding [6]. Several whole-cell bio-

sensors to detect bioavailable Hg(II) were successfully developed using the Hg(II) response ele-

ments originating from the natural mer operon. These single-signal output biosensor

constructs responded to bioavailable Hg(II) by producing light, β-galactosidase, fluorescent

protein, or pigment [7–10]. Due to its high affinity and selectivity toward Hg(II), MerR has

been genetically engineered onto the surface of bacteria to develop microbial biosorbents spe-

cific for Hg(II) removal [11, 12]. These findings show that biological engineering of the mer-

cury resistance operons of natural origin could provide an alternative way for the control of

mercury pollution.

So far, a few approaches have been used to assemble a single-signal biosensor to detect and

quantify bioavailable Hg(II). However, multiple-signal output biosensors have been demon-

strated to provide more information and more flexible detection methods than traditional sin-

gle-signal output biosensors [13–16]. Furthermore, integration of biosensing and biosorption

can be realized using a multiple-signal output genetic device as a template [16–18]. In this

study, based on a natural mer operon originating from the E. coli transposon Tn21 [19], both

artificial dicistronic mer operon and artificial double-promoter mer operon were designed,

constructed, and validated for double-signal biosensing of mercury. The responses of all the

biosensors to Hg(II) were quantitative. Simultaneous biodetection and bioremediation of Hg

(II) were finally achieved using a double-promoter regulated artificial mer operon. Overall,

this study provides an example of how to assemble artificial heavy metal response systems

using natural metal resistance operons as templates for biological detection and recovery of

bioavailable heavy metals.

Materials and methods

Bacterial strains, plasmids, and agents

The bacterial strain and vectors involved in this study are listed in Table 1. E. coli TOP10 was

used as a host strain for both cloning and expression of recombinant proteins. Cultures were

grown in Luria Broth (OXOID, Basingstoke, UK) supplemented as necessary with ampicillin

at a final concentration of 50 μg/mL. Purification of PCR products and plasmids were per-

formed with kits from Sangon Biotech (Shanghai, China). All chemicals were purchased from

Sigma-Aldrich (St Louis, MO, USA). Stock solutions of CdCl2, CaCl2, MgCl2, FeSO4, MnSO4,

NiSO4, CuSO4, ZnSO4, Pb(NO3)2, and HgCl2 were freshly prepared with analytical grade

chemicals and distilled water. DNA synthesis and sequence verification of all constructed vec-

tors were performed by Sangon Biotech.

Cloning and construct assembly

The strategy used for the assembly of the constructs for mercury biosensing and adsorption is

summarized in Fig 1. The DNA sequence of the expression and regulation regions of recombi-

nant plasmids involved in the study are shown in S1 Fig. The DNA fragment coding for Hg

(II)-responsive metalloregulatory protein MerR and the divergent operator-promoter region

(NCBI Accession No. AF071413.3) was synthesized, and introduced into the BglII/XbaI clon-

ing sites of the plasmid pET-21a to generate pPmer. In order to construct a single-signal
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output mercury biosensor, a promoterless mcherry gene was PCR amplified from the vector

pT-RFP, and inserted into the NdeI and HindIII sites of pPmer to generate pPmer-R. Two

strategies were then used for the assembly of double-signal output biosensors. Firstly, a DNA

module containing the ribosome binding site (RBS) and the eGFP-encoding sequence was

PCR amplified from pT-GFP, and fused with the mCherry-encoding sequence in pPmer-R by

an overlapping extension PCR as described previously [16] to generate pPmer-R-G, which was

designed as an artificial dicistronic mer operon. Secondly, a DNA module containing an extra

mer operator-promoter region and the eGFP-encoding sequence was PCR amplified from

Table 1. Bacterial strain, plasmids, and primers used in this study.

Strain and vectors Genotypes or description Reference

Strain

E. coli TOP10 F-, F80lacZΔM15, ΔlacX74, recA1 Invitrogen

Plasmid

pET-21a AmpR, T7 promoter, lac operator Novagen

pT-RFP T vector carrying mcherry [20]

pT-GFP T vector carrying egfp [20]

pPmer pET-21a derivative containing merR and Pmer divergent promoter region cloned

into BglII and XbaI sites

This study

pPmer-R pPmer derivative carrying promoterless mcherry cloned into NdeI and HindIII

sites

This study

pPmer-R-G pPmer derivative, an artificial two-cistron mer operon with a translationally

coupled mcherry and egfp cassette

This study

pPmer-R-Pmer-G pPmer derivative, an artificial hybrid mer operon with transcriptions of mcherry
and egfp under the control of independent Pmer divergent promoter region

This study

pPmer-LOA-Pmer-G pPmer derivative, an artificial hybrid mer operon with transcriptions of lpp-ompA
and egfp under the control of independent Pmer divergent promoter region

This study

pPmer-HgBD-Pmer-G pPmer derivative, an artificial hybrid mer operon with transcriptions of lpp-
ompA-HgBD and egfp under the control of independent Pmer divergent promoter

region

This study

https://doi.org/10.1371/journal.pone.0252190.t001

Fig 1. Assembly of artificial mer operons for biosensing and adsorption of Hg(II). The fluorescent reporter

modules and bioadsorption module were placed under the control of the mer promoter separately or in combination.

The DNA sequence containing the stop codon of the upstream gene, an extra RBS, and the start codon of the

downstream gene is shown.

https://doi.org/10.1371/journal.pone.0252190.g001
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pT-GFP, and fused with the mCherry-encoding sequence in pPmer-R by an overlapping

extension PCR to generate pPmer-R-Pmer-G, which was designed as an artificial double-pro-

moter mer operon.

Hg(II) binding domain (HgBD) derived from MerR was fused with a surface anchor system

Lpp-OmpA to generate the chimera protein Lpp-OmpA-HgBD. The synthetic DNA fragments

encoding Lpp-OmpA and Lpp-OmpA-HgBD were cloned into pPmer-R-Pmer-G for substi-

tuting the mCherry-encoding sequence with an overlapping extension PCR, to generate

pPmer-LOA-Pmer-G and pPmer-HgBD-Pmer-G, respectively. The vector pPmer-

HgBD-Pmer-G was designed as a Hg(II) inducible mercury adsorptive and biosensing

construct.

Specificity test

Single-signal output biosensor E. coli TOP10/pPmer-R, double-signal output biosensors

TOP10/pPmer-R-G and TOP10/pPmer-R-pPmer-G were activated overnight in LB medium.

A total of 30 μL of each culture was inoculated into 3 mL of fresh LB medium, and the cells

were grown at 37˚C until OD600 = 0.4. Then a final concentration of 10 μM Cd(II), Ca(II), Mg

(II), Fe(II), Mn(II), Ni(II), Cu(II), Zn(II), Pb(II), or Hg(II) was added to the medium, followed

by culturing at 37˚C for 12 h before assessment of reporter signals.

Sensitivity test

Three recombinant biosensor strains were grown at 37˚C overnight and inoculated into 3 mL

of fresh LB medium at 1% inoculum. The cells were grown at 37˚C until OD600 = 0.4. They

were then induced by 0, 3.125, 6.25, 12.5, 25, 50, 100, 200, and 400 μM HgCl2 with shaking at

37˚C for 12 h before assessment of reporter signals.

Measurements of fluorescent signals

The fluorescent proteins generated from the engineered bacterial strains were quantitated with

a Lumina fluorescence spectrometer (Thermo, USA) as previously described [20]. The excita-

tion wavelength was set at 587 nm, and the emission wavelength was set at 610 nm for the

reporter mCherry. The excitation wavelength was set at 488 nm, and the emission wavelength

was set at 507 nm for the reporter eGFP. Then, the fluorescence intensity value was divided by

the absorbance at 600 nm in order to normalize to bacterial cell concentration. The induced

engineered bacterial cells were also visualized using a Nikon Eclipse Ni fluorescence micro-

scope (Tokyo, Japan) as described previously [20]. The imaging reporter mCherry was visual-

ized with a Texas Red filter, and the imaging reporter eGFP was visualized with a FITC filter.

Evaluation of simultaneous Hg(II) bioadsorption and biosensing by the

engineered bacteria

For the simultaneous detection and adsorption of Hg(II), two kinds of recombinant E. coli
TOP10 harboring artificial mer operons pPmer-HgBD-Pmer-G and pPmer-LOA-Pmer-G (as

the control) were grown at 37˚C overnight, and inoculated into fresh LB medium at 1% inocu-

lum. The cells were grown at 37˚C until OD600 = 0.4, and then a final concentration of 0, 6.25,

12.5, 25, 50, 100, 200, and 400 μM HgCl2 were added to the medium, followed by culturing at

37˚C for 12 h before measurement of the fluorescent signal and mercury binding capacities.

For mercury analysis, the induced cells were washed extensively with saline, dried, and

digested with the nitric acid. The cell-associated Hg(II) was finally determined using atomic

absorption spectrometry as described previously [11, 21].
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Results and discussion

Design of artificial mer operons

The mer operon derived from the E. coli transposon Tn21 is the-best characterized mercury

resistance system [19]. Natural mer operon is composed of a metalloregulator gene and a mer-

cury detoxificated gene cluster, which are divergently transcribed under the control of mer
promoter (S2 Fig). The sensing element is the MerR dimer, which represses transcription of

merTPCAD in the absence of Hg(II) but activates transcription of merTPCAD in the presence

of Hg(II). The merTPCAD genetic cassette was substituted with a mCherry gene cassette, a

dicistronic mCherry-eGFP genetic cassette, and a double-promoter mCherry-Pmer-eGFP

genetic cassette, to assemble a single-signal output biosensor construct pPmer-R, double-signal

output biosensor constructs pPmer-R-G, and pPmer-R-Pmer-G, respectively. More impor-

tantly, a double functional element integrating bioadsorption and biosensing modules can sub-

stitute the merTPCAD gene cassette (Fig 2). It allows different functional elements to be

transcribed under the control of its own promoter, followed by the surface display of HgBD

for Hg(II) bioadsorption and the expression of eGFP for Hg(II) biosensing at the mean time.

Mercury selectivity detection with single- and double-fluorescent signal

biosensors

It has been previously proven that the metalloprotein MerR is the Hg(II)-specific transcrip-

tional regulator [4]. The traditional single-signal sensors employing MerR-like metalloproteins

as sensing elements all showed extraordinary selectivity toward Hg(II) [7, 8, 10]. To study the

effect of double-signal output genetic combination on the specificity of whole-cell biosensors,

three engineered bacterial biosensors in logarithm growth period were exposed to different

kinds of metal ions at 10 μM. As shown in Fig 3, all three whole-cell biosensors responded

Fig 2. Models for natural and artificial mer operons. Model for artificial mer operon-encoded biosorption and

bioindication of Hg(II). The model involves the following proteins: Lpp-OmpA-HgBD, an outer membrane anchoring

chimera protein for surface display of metal binding domain derived from MerR; eGFP, a fluorescent reporter.

Dimeric MerR bound to the mer divergent promoter activates transcription of the surface-display module and the

reporter module in the presence of Hg(II) (top), and represses transcription in the absence of Hg(II) (middle). The

archetype of natural mer operon is located on transposon Tn21 from E. coli (bottom). Binding of Hg(II) to dimeric

MerR is demonstrated to result in DNA distortion and transcriptional activation of the downstream Hg(II) transport

and detoxification genes.

https://doi.org/10.1371/journal.pone.0252190.g002
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silently to all metal ions other than Hg(II). It was similar with the performance of single-signal

biosensor (Fig 3A) that both artificial dicistronic mer operon (Fig 3B) and artificial double-

promoter mer operon (Fig 3C) showed a selective response to Hg(II). The response strength of

mCherry in single-signal biosensor was slightly higher than that in double-signal biosensors.

Compared with the single-signal output construct, expression of an extra reporter eGFP

increases energy and nutrient consumption. Thus decreased signal strength is expected in the

double-signal output constructs [13, 16, 20]. Furthermore, the response strength of eGFP in

the mode of double-promoter pattern (20090 cnt) was significantly higher than that of eGFP

in the mode of dicistronic pattern (12078 cnt). It is well known that the processes of transcrip-

tion and translation are coupled in bacteria. The expression of reporter is affected by many fac-

tors, including secondary structure of the mRNA, strength of the promoter, the efficiency of

RBS, and more [22, 23]. Higher expression of the second reporter eGFP will be expected when

transcription and translation are regulated under its own promoter.

Mercury sensitivity detection with single- and double-fluorescent signal

biosensors

Three recombinant biosensor strains were then examined to determine their dynamic ranges

of fluorescent responses to different concentrations of Hg(II). As shown in Fig 4, for all three

engineered biosensors, the fluorescent signals increased with the concentration of Hg(II) in

medium in the concentration range of 3.125–400 μM. It has been reported that a pigment-

based engineered Pseudomonas aeruginosa PAO1 showed a good linearity for Hg(II) in the

range of 25–1000 nM [10]. The GFP fluorescence emission showed a linear increase from 100

to 1700 nM Hg(II) in an E. coli biosensor [8]. A linear positive correlation was observed

between 50 nM to 10 μM Hg(II) in an engineered E. coli with constitutively expressed MerR as

a sensor protein and inducible mCherry as the reporter [9]. However, no whole-cell biosensors

have been developed to be used in the upper ranges of Hg(II) concentrations where linearity

was demonstrated currently. Based on a series of artificial mer operons, linear relationships

between fluorescent signals and the concentration of Hg(II) were observed in both single-sig-

nal and double-signal output biosensors within the concentration range of 6.25–200 μM.

Although the linear response range of these three biosensors is significantly higher than previ-

ously reported whole-cell biosensors, they tolerate the toxicity of high concentrations of Hg

(II), and can be expected to be used in the quantification of the high concentration range of

Hg(II) existing in heavily polluted environmental water samples.

Fig 3. The response of three mercury biosensors exposed to different metal ions at 10 μM. After induction with 10 μM various metal ions at 37˚C for 12 h, two kinds

of fluorescent signals were all determined. The data were obtained by subtracting the value of recombinant E. coli with no metal ion exposure from that of each group.

(A) TOP10/pPmer-R. (B) TOP10/pPmer-R-G. (C) TOP10/pPmer-R-Pmer-G. Fluorescence intensity values were divided by the absorbance at 600 nm in order to

normalize to bacterial cell concentration. Data are representative of at least three independent experiments, and the values are expressed as mean ± SD.

https://doi.org/10.1371/journal.pone.0252190.g003
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The order of fluorescent response strength of mCherry in these three biosensors is TOP10/

pPmer-R > TOP10/pPmer-R-Pmer-G > TOP10/pPmer-R-G. Compared with the single-sig-

nal output biosensor TOP10/pPmer-R (Fig 4A), the mCherry fluorescence decreased about

10% in artificial double-promoter biosensor TOP10/pPmer-R-Pmer-G (Fig 4E), and about

30% in artificial dicistronic biosensor TOP10/pPmer-R-G (Fig 4C), respectively. As expected,

the response strength of eGFP derived from artificial double-promoter biosensor TOP10/

pPmer-R-Pmer-G (Fig 4E) was significantly higher than that derived from artificial dicistronic

biosensor TOP10/pPmer-R-G (Fig 4C). As a result, the following integration of Hg(II) bioad-

sorption genetic element and biosensing genetic element was done using an artificial double-

promoter regulated mer operon as a template.

Resistance to inorganic mercury compounds is widely found among various eubacteria.

The mercury resistance locus can occur on plasmids or on the genome, and confers resistance

by reduction of Hg(II) to the volatile, less toxic elemental mercury [5, 19]. The exponential

phase of the host TOP10 and three whole-cell biosensors could tolerate high concentration of

Hg(II), while the growth of bacterial cells declined with Hg(II) exposure (S3 Fig). Although the

bacterial density was not increased above 200 μM Hg(II) exposure, the enhanced fluorescent

signals were still recorded (Fig 4). Compared with the single-signal output biosensor, double-

signal output just exerted a slightly adverse effect on the growth of biosensor cells (S3 Fig).

Time-response curves of three whole-cell biosensors toward 200 μM Hg(II) were shown in S4

Fig 4. Comparison of reporter signals generated by three mercury biosensors after exposure to gradient concentrations of Hg(II). After induction with 0–400 μM

Hg(II) at 37˚C for 12 h, two kinds of fluorescent signals (mCherry and eGFP) were all determined. Whole-cell biosensor TOP10/pPmer-R dose-response (A) and linear

response (B) to Hg(II), whole-cell biosensor TOP10/pPmer-R-G dose-response (C) and linear response (D) to Hg(II), and whole-cell biosensor TOP10/pPmer-R-Pmer-

G dose-response (E) and linear response (F) to Hg(II). Fluorescence intensity values were normalized using the absorbance at 600 nm. The data were obtained by

subtracting the value of recombinant E. coli with 0 μM Hg(II) exposure from that of each group. Values represent the mean ± SD of at least three independent

experiments.

https://doi.org/10.1371/journal.pone.0252190.g004
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Fig. Both of the fluorescent signals were increased with the extension of induction time. After

an 8-h induction, the fluorescent signals were not enhanced any more. An overnight induction

was chosen to facilitate the experimental arrangement in this study. Interestingly, an 8-h

induction time was enough to obtain the maximum signal output.

A few highly sensitive Hg(II)-specific biosensors based on oligonucleotides or DNA-protein

interactions have been reported [24–27]. As whole-cell biosensors are sensitive to only intra-

cellular Hg(II), they are usually used to study the effects of mercury speciation on the bioavail-

ability to the organisms and the maintenance of homeostasis [7, 28]. Based on the

reconstruction of diverse microbial mechanisms that are responsible for maintenance homeo-

stasis and resistance to mercury, some whole-cell biosensors that responded to mercury by

producing fluorescent protein, β-galactosidase, pigment, and luminescence have been success-

fully developed [7, 10, 29, 30]. The luminescence biosensor with the highest sensitivity could

detect concentrations as low as 0.02 μM Hg(II) after a 1.5-h induction [7, 29, 31]. To enhance

the stability of whole-cell biosensors, the biosensing genetic element was integrated stably into

the chromosome of the host, and the resultant biosensor could detect Hg(II) less than 0.2 μM

after a 12-h induction [8, 32]. Novel visual reporters such as pigments have been used to

develop whole-cell biosensors for enhanced sensitivity and stability [33–35]. The detection

limit of whole-cell biosensor with pyocyanin as a signal output could reach as low as 0.01 μM

Hg(II) after an overnight incubation [10]. In addition to the effects of reporters, optimization

of detection conditions including the type of culture mediums, induction time and induction

duration, was another important factor for enhanced sensitivity [13, 16, 36]. Although whole-

cell biosensors responded to low concentration of heavy metal when lag-phase culture of bio-

sensor cells was directly exposed to toxic metal [7, 10], exponential phase biosensor cells could

produce significantly stronger reporter signals including fluorescent protein, β-galactosidase,

and pigment [13, 35, 37, 38]. Furthermore, logarithmic phase bacterial cultures were usually

induced to improve the expression amount of surface-displayed metal binding proteins [16,

18, 21, 37, 39]. Based on the above-mentioned factors, logarithmic phase biosensor cultures

were chosen for high tolerance to toxic Hg(II) and high expression of surface-displayed HgBD

in this study.

Double-color fluorescent detection of whole-cell biosensors

The performance of single biosensor cells could be conveniently assessed by fluorescent image

using fluorescent reporter systems. The single-signal output biosensor TOP10/pPmer-R emit-

ted red fluorescence after Hg(II) induction, which was visualized under a fluorescence micro-

scope. The double-signal output biosensors TOP10/pPmer-R-G and TOP10/pPmer-R-Pmer-

G emitted both red and green fluorescence (Fig 5). Multiple-signals output can provide more

insights on detection and quantification of heavy metal than traditional single-signal biosen-

sors can, especially when significant overlapping background fluorescence exists [40]. Double-

color fluorescent signals also facilitate the analysis of biosensing signals based on flow cytome-

try [8, 38].

Integrated mercury bioadsorption and biosensing based on an artificial

double-promoter mer operon

Metal binding domains derived from MerR-like regulators were demonstrated to retain target

metal ion binding capacities, and have been efficiently displayed on the microbial cell surface

for heavy metal remediation [11, 16, 36, 41, 42]. Bioadsorption and biosensing of toxic mer-

cury were previously achieved using surface display of mercury binding proteins [11, 12, 41]

and whole-cell biosensing techniques [7, 9], respectively. Integration of mercury bioadsorption
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and biosensing in a single engineered bacterial cell was realized using an artificial double-pro-

moter regulated mer operon in the study. As shown in Fig 6, two engineered bacterial cells

were exposed to different concentrations of Hg(II) during the logarithmic growth period. Both

the mercury binding capacities and the eGFP fluorescence of tow recombinant bacteria

increased significantly with an increase of Hg(II) exposure. Bifunctional cell TOP10/pPmer-

HgBD-Pmer-G was able to accumulate Hg(II) with a capacity of about 9.65 μmol/g cell at

400 μM Hg(II) exposure level, which was 5.92-fold higher than that of the control group

(TOP10/pPmer-LOA-Pmer-G).

MerR and its analogues expressed in the cytosol have been demonstrated to have improved

survival from Hg(II) exposed to bacterial cells [43], and to accumulate significantly more Hg

(II) than cells harboring the vector alone, with no deleterious effects on cell growth [11]. In

natural mer operon, the background expression of MerR is very low [5]. In addition, MerR

represses its own expression regardless of the presence of Hg(II) [19]. As expected, TOP10

cells transformed with pPmer-LOA-Pmer-G yielded a low level of Hg(II) accumulation.

Cell surface display of MerR and its analogues were realized previously using inducible

expression vectors, and exogenous inducers were added for over-expression of recombinant

proteins [11, 12, 41]. Surface display of Hg(II)-binding protein was firstly induced by Hg(II)

based on an artificial mer operon in the study. The amount of surface displayed Hg(II)-binding

protein was expected to be positively correlated to the concentration of target Hg(II). The

maximum binding capacity of recombinant cells with surface-exposed MerR under the control

of a strong lac promoter was around 120 μmol/g cell [11]. Although the strength of the natural

mer promoter is significantly weaker than the strength of the commercial inducible promoter,

rational genetic designs have been proven to improve the sensitivity of the mer promoter [29,

44]. In order to improve the Hg(II) binding capacity, the optimized genetic elements will be

Fig 5. Fluorescence images of three mercury biosensors exposed to 400 μM Hg(II) at 37˚C for 12 h. E. coli cells

were visualized using a fluorescence microscope (×600 magnification). The mCherry expression was visualized with a

Texas Red filter, and the eGFP expression was visualized with a FITC filter. Three independent preparations were

analyzed, and representative images are shown here.

https://doi.org/10.1371/journal.pone.0252190.g005
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used to assemble an artificial mer operon to improve the amount of surface displayed Hg(II)-

binding protein with low concentrations of Hg(II) exposure in our future studies.

Specially, the linear relationships between Hg(II) exposure concentration and eGFP fluores-

cence intensity were also observed in two engineered bacteria (Fig 6B and 6D). Quantitative

biodetection and bioadsorption of Hg(II) could be done simultaneously using bifunctional

bacterial cells.

Conclusions

Double-signal output mercury biosensors were developed based on both artificial dicistronic

mer operon and artificial double-promoter mer operon. The whole-cell biosensors constructed

in the current study tolerated high concentrations of inorganic mercury, and could detect and

Fig 6. Mercury adsorption and biosensing by recombinant E. coli harboring artificial mer operons. After exposure to 0–400 μM Hg(II) at 37˚C for 12 h, accumulated

mercury and eGFP fluorescent signal of both TOP10/pPmer-LOA-Pmer-G (A) and TOP10/pPmer-HgBD-Pmer-G (C) were determined separately. The Hg(II) vs

fluorescence intensity linear relationships of TOP10/pPmer-LOA-Pmer-G (B) and TOP10/pPmer-HgBD-Pmer-G (D) were in the concentration range of 6.25–200μM

Hg(II). Fluorescence intensity values were normalized using the absorbance at 600 nm. The data were obtained by subtracting the value of recombinant E. coli with

0 μM Hg(II) exposure from that of each group. Data are mean ± SD from three independent assays, each from three independent cultivations.

https://doi.org/10.1371/journal.pone.0252190.g006
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quantify bioavailable Hg(II) within a high concentration range. The mercury adsorptive

genetic module and mercury biosensing genetic module were then integrated into an artificial

double-promoter regulated mer operon. The bifunctional engineered cells were demonstrated

to be instrumental in simultaneous detection, quantification, and capture of bioavailable Hg

(II). Our findings show that it is worthwhile to develop bifunctional engineered cells based on

artificial heavy metal resistance operons for simultaneous biodetection and bioadsorption

toward the target metal.

Supporting information

S1 Fig. The cloning/expression region of recombinant plasmids used in this study. DNA

sequence and annotation data are all marked.

(TIF)

S2 Fig. The 3.7-kb mer operon derived from E. coli Tn21. The natural mer operon involves

the following proteins: MerR, activator/repressor; MerT, MerP, and MerC, proteins involved

in uptake of Hg(II); MerA, mercuric reductase; MerD, proposed transcriptional down-regula-

tor.

(TIF)

S3 Fig. Toxic effects of Hg(II) on the growth of three whole-cell biosensors. Exponential

cultures of TOP10, TOP10/pPmer-R, TOP10/pPmer-R-G, and TOP10/pPmer-R-Pmer-G

were exposed to 0, 6.25, 12.5, 25, 50, 100, 200, 400 μM Hg(II), followed by culturing at 37˚C

for 12 h. The absorbance of each culture was determined at 600 nm.

(TIF)

S4 Fig. Time course of fluorescent signals generated by three whole-cell biosensors with

200 μM Hg(II) exposure. Exponential cultures of Top10/pPmer-R (A), Top10/pPmer-R-G

(B), and Top10/pPmer-R-Pmer-G (C) were exposed to 200 μM Hg(II) at 37˚C. The fluorescent

signals were determined at regular time intervals. Both fluorescent signals were normalized to

bacterial cell density at 600 nm. The results are shown as the mean of three independent

assays ± the standard deviation.

(TIF)
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