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Abstract: The curing reaction of a commercial cold-curing structural epoxy resin, 

specifically formulated for civil engineering applications, was analyzed by thermal analysis 

as a function of the curing time and the sample thickness. Original and remarkable results 

regarding the effects of curing time on the glass transition temperature and on the residual 

heat of reaction of the cold-cured epoxy were obtained. The influence of the sample 

thickness on the curing reaction of the cold-cured resin was also deeply investigated.  

A highly exothermal reaction, based on a self-activated frontal polymerization reaction, was 

supposed and verified trough a suitable temperature signal acquisition system, specifically 

realized for this measurement. This is one of the first studies carried out on the curing 

behavior of these peculiar cold-cured epoxy resins as a function of curing time and thickness. 
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1. Introduction 

Epoxy resins are commonly used in civil engineering applications and in cultural heritage 

conservation due to their advanced chemical and mechanical properties, as repairing materials, 

adhesives, coatings, and matrices for composites. For such applications, practical and economical 

reasons force the use of “cold-curing” resins, that is, epoxy systems able to achieve a suitable degree of 

cure and acceptable mechanical properties in reasonable curing times when cured at ambient 

temperatures [1–7]. Aliphatic amines are usually used as curing agents for this purpose, since they are 
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able to react with epoxies also at low temperature. However, many weeks of cure, if compared to the 

few hours of curing time required by the epoxies, cured with a source of heat, are necessary to provide 

a material with a satisfactory degree of cross-linking. Nevertheless, the conversion of epoxy groups is 

never complete and a moderate glass transition temperature (Tg), which generally does not exceed  

60 °C [6,8–12], is obtained. As a result, the exposure to a temperature slightly higher than ambient 

temperature is likely to cause the restart of cross-linking reactions, with a consequent increase in Tg 

and, in turn, the stiffening of the system. On the other hand, the absorption of external water, both in 

liquid or vapor form, produces a decrease in the initial Tg of the resin, which affects the mechanical 

properties and may enable a post-curing process, even at these low environmental temperatures [13]. 

These thermodynamically unstable systems can also undergo to physical aging: it leads to a 

reduction in the polymer’s free volume over time (namely a “densification” process), with a 

consequent modification of all of the mechanical, temperature-dependent properties [14–16]. Physical 

aging in the glassy state is very slow, whereas it proceeds rapidly at temperatures close to the Tg.  

This latter is the case of cold-cured resins, in which Tg can be easily approached and even exceeded by 

the external temperature [17]. Physical aging is a thermo-reversible phenomenon, which can be erased 

when the polymer is heated above its Tg. When the service temperature exceeds the Tg of aged  

cold-cured epoxy, the “rejuvenation” of the resin takes place, i.e., the erasing of physical aging with 

the recovering of the initial properties. Cold-cured epoxy resins exposed to natural weather, therefore, 

are constantly subjected to aging and de-aging processes that take place in non-isothermal conditions, 

depending on the actual meteorological weather [18]. 

Starting from the peculiar behavior of cold-curing epoxies, previously described and discussed, it is 

clear that there is a pressing need to find reasonable tools to ascertain the curing reactions and the 

cross-linking degree of commercial cold-cured epoxy-based resins, representing the most frequently 

used polymeric materials for applications in civil engineering. The durability of these systems when 

exposed to environmental agents, in addition, is strongly connected to their curing reaction. The latter 

influences, not only the physical-mechanical properties of the resin, but also its performance when 

reinforced with proper nanofillers, potentially able to improve its properties.  

In a previous paper [19], the same authors analyzed the influence of graphene stacks nano-platelets 

on the glass transition temperature and flexural properties of a commercial cold-cured epoxy resin. 

They demonstrated that the presence of nanofillers was not able to improve the properties of the neat 

resin, as it would be expected. A possible explanation of this surprising behavior was hypothesized by 

supposing that the neat epoxy resin is able to polymerize by a frontal polymerization process and that 

this latter is slowed in presence of an inert material, such as the graphene stacks precursor, due to the 

high dissipated heat [20]. In the present study, this hypothesis would be confirmed investigating the 

curing reaction of the cold-curing epoxy as a function of the curing time and thickness. 

2. Experimental Section 

2.1. Materials  

The material object of this study is a commercial epoxy adhesive produced and supplied by MAPEI 

S.p.A. (Mettler Toledo, Milano, Italy). The system is representative of epoxy resins used as matrix for 
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fiber reinforced composites (FRP) in rehabilitation procedures and it has been already widely 

employed for restoration of both civil and monumental buildings [21]. 

The commercial epoxy resin is a diglycidylether of bisphenol-A (indicated as component A),  

while the curing agent is a mixture of aliphatic and aromatic amines, i.e., polyethylenimine-m-

xylenediamine-nonylphenol (indicated as component B), provided ready-to-use. Nonylphenol is 

usually added in order to increase the rate of curing of the mixture due to the presence of phenolic  

OH-group. The nonyl group, as an aliphatic chain, can also reduce the evaporation during the 

application procedure and it has plasticizing effects as well. 

Samples of the resin were prepared using the mixing ratio suggested by suppliers, that is 

resin:hardener = 4:1 by weight. The exact amount of each component was weighed with an analytical 

balance with an accuracy of ±0.1 mg. The hardener was poured into the base resin and they were 

gently stirred, avoiding the formation of air bubbles, until the mix was perfectly homogeneous. 

Specimens of standard rectangular form (dimensions: 90 × 10 × 5 mm3) were obtained by pouring the 

mix into Teflon molds of rectangular shape. The specimens’ shape and dimensions were chosen on the 

basis of American Society for Testing and Materials (ASTM) standard for flexural mechanical tests [22]. 

The samples were cured at a temperature of 23 ± 2 °C and a relative humidity (R.H.) of 50% ± 5%. 

They were removed from the molds after 26 h and maintained under the same controlled conditions of 

temperature and humidity (i.e., T = 23 ± 2 °C and R.H. = 50% ± 5%) for further 6 days, being 7 days 

the curing time reported by suppliers [23]. However, as previously reported, since it is well known that 

the curing time required to the commercial cold-curing epoxies to achieve the final properties is much 

higher than indicated by suppliers, the investigation of curing process was performed beyond  

7 curing days.  

2.2. Experimental Techniques 

The curing reaction of the cold-cured epoxy resin was analyzed at different curing times  

(ranging from 7 to 62 days) and thickness (ranging from 0.8 to 40 mm) employing a differential 

scanning calorimeter (DSC 622, Mettler Toledo, Italy). Each sample was heated from room 

temperature up to 250 °C at 10 °C/min under nitrogen atmosphere, performing at least three tests on 

each set of samples averaging the results. The glass transition temperature was determined as the 

transition midpoint; the relaxation enthalpy and the residual heat of cross-linking reactions were 

evaluated from the endothermic and exothermic, respectively, peak areas delimited by the tangent lines 

to DSC curve. The occurrence of physical aging in a polymer isothermally aged can be measured in a 

dynamic calorimetric experiment. An endothermic peak in the glass-transition region, whose position 

and intensity depends on temperature and time of aging, is, in fact, observed for aged polymers.  

The area of this peak is related to the relaxation enthalpy (ΔHrel) and it increases with the aging time, 

becoming constant when the equilibrium is achieved. 

3. Results and Discussion 

A DSC investigation was, first, performed on the epoxy-based liquid mixture obtained by mixing 

the components A (diglycidylether of bisphenol-A) and B (a mixture of aliphatic and aromatic amines, 
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i.e., polyethylenimine-m-xylenediamine-nonylphenol), as already described. In Figure 1, the 

thermograms obtained by two subsequent dynamic DSC scans performed on epoxy resin are reported. 

Figure 1. DSC thermograms (I and II scan) of the commercial cold-cured epoxy resin. 

 

From first DSC curve, it is evident that the cross-linking reaction is able to start at room 

temperature (around 30 °C) and it can be considered completed at about 200 °C. The reaction is highly 

exothermic, since it develops a heat of reaction of about 407 J/g. On the other hand, by analyzing in 

DSC the same samples in a second scan, no residual peak of reaction was found, evidencing that the 

reaction was completed after the first DSC scan. The fully cured epoxy system was able to achieve a 

maximum Tg of about 49 °C. 

The curing reaction at ambient temperature was, then, analyzed by curing at room temperature  

(23 ± 2 °C) epoxy samples, with a thickness of 5 mm, for long times, ranging from 7 to 62 days. From 

the first and the second DSC scans, performed at different curing times, the glass transition 

temperature Tg (measured by using midpoint method), the residual heat of reaction ΔHres,  

the relaxation enthalpy (ΔHrel) and the Tgmax value, i.e., the Tg of each sample fully cured in the first 

dynamic DSC scan, were measured. The results are reported in Table 1. 

Referring first to the Tg values of the epoxy resin, reported in Table 1 as function of the curing time 

at ambient temperature, the epoxy resin achieves a Tg of about 47 °C after 7 days of cure. After  

62 days of cure, the Tg increases of only 5 °C. This result is confirmed by the residual heat of reaction 

measured at the same curing time, which continuously decreases only 6 J/g from 7 to 62 days of cure. 

Furthermore, the relaxation enthalpy (ΔHrel), that represents a measure of the physical aging 

phenomenon, is almost constant with the curing time. We can conclude, therefore, that a curing time 

higher than 7 days has only a limited effect on the completion of the curing reaction, since there are 
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moderate differences in terms of Tg and residual heat of reaction, even after 62 days. The DSC results 

are also in perfect accordance with the technical data sheet of the commercial resin, in which about  

7 days is reported to be the advisable curing time [23]. 

Table 1. Tgmidpoint, ΔHRes, ΔHRel and Tgmax values measured on cold-cured epoxy samples 

(thickness = 5 mm), cured at room temperature for different time spans, by dynamic  

DSC scans. 

Curing time 

(days) 

I scan II scan 

Tgmidpoint (°C) ΔHRes (J/g) ΔHRel (J/g) Tgmax (°C) 

7 46.9 ± 0.1 38.3 ± 6.2 6.0 ± 0.3 62.3 ± 3.7 

14 48.0 ± 0.4 35.6 ± 2.6 5.5 ± 0.8 62.5 ± 0.6 

30 47.5 ± 0.8 33.1 ± 1.7 7.1 ± 1.6 63.9 ± 2.0 

62 52.0 ± 1.3 31.8 ± 0.5 6.4 ± 0.3 61.2 ± 1.3 

The Tg of the epoxy resin, even after 62 days, is rather low. An average Tgmax of about 62 °C 

could be, in fact, achieved only when the cure is completed (last row of Table 2). However, this 

condition was not yet attained after 62 days of curing at ambient temperature. As already mentioned, a 

low glass transition temperature (not much higher than 50 °C) could be responsible of a loss of 

mechanical properties of the resin and a lack of adhesion with the fibers and substrate [24]. 

The slight increase in Tg is a direct result of the slow proceeding of the cross-linking reactions 

occurring in the thermosetting (i.e., epoxy) system, and its determination can be used to measure the 

extent of these reactions. The Tg was proved to be an accurate and sensitive parameter for monitoring 

the cross-linking reactions mainly at high conversion levels [25] As the cure proceeds, the Tg of the 

system increases and, at some time, it will exceed the cure temperature (ambient temperature), i.e.,  

the vitrification process occurs. At this stage, the mobility of the reactive groups is significantly 

reduced and the curing reactions are diffusion controlled, i.e., they appreciably slow and finally stop; 

consequently, the value of the Tg tends to level off [26].  

On the other hand, by comparing the values of residual heat of reaction of Table 2 with the total 

heat of reaction of Table 1 it is evident that the residual heat of reaction can be considered quite small, 

even after 7 days and that the cure can be considered almost near to be complete. This is also 

confirmed by the Tg measured for the epoxy resin completely cured at high temperature that is 

comparable with that measured on the resin cold-cured for different time spans (in Table 1). 

In order to have an evidence of this consideration, the maximum extent of reaction (α) achieved by 

the cold-cured epoxy resin at each curing time was calculated as follows: 

0

0α
H

HH t
  (1) 

where: H0 is the heat of reaction measured from the first DSC scan performed on the liquid (un-cured) 

epoxy resin (about 407 J/g) and Ht is the residual heat of reaction measured from the DSC dynamic 

scan performed on the cold-cured epoxy at different curing times and reported in Table 1. 

The α values determined for the 5 mm thickness samples are reported as function of the curing time 

in Figure 2. 
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Figure 2. Extent of cross-linking reactions for the cold-cured epoxy resin as a function of the 

curing time. 
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The data reported in Figure 2 evidence that the samples of 5 mm achieve an extent of reaction of 

about 90% after only 7 days of curing at ambient temperature (about 23 °C), and that this value 

remains almost unchanged up to 60 days. 

Further experimental analyses, performed by DSC dynamic tests, were finally devoted to 

understanding if the sample thickness could influence the curing reaction of the resin. To this aim, 

several cold-cured epoxy specimens, with thickness ranging from 0.8 to 40 mm, were produced, kept 

in laboratory at room temperature and characterized by dynamic DSC scans. In view of the fact that 

curing times longer than one week seem to have only a slight influence on the proceeding of the  

cross-linking reactions (see Figure 2), a curing time of 7 days was selected and used for the 

experimental measurement. The thermograms obtained for the samples possessing thickness of 0.8,  

1 and 40 mm are reported in Figure 3. 

From the observation of the DSC curves reported in Figure 3, it is clear that curves, relative to  

thin specimens (0.8 and 1mm), are very close and displays the Tg, the subsequent relaxation peak  

(relative to the de-aging process) and a residual heat of reaction. On the other hand, in curve, relative 

to the thicker specimen (40 mm), only a Tg was measurable, much higher than that measured on 

thinner specimens.  

The average values of glass transition temperature Tg (measured by using the midpoint method), 

residual heat of reaction, ΔHres, relaxation enthalpy, ΔHrel, and Tgmax, i.e., the Tg of each fully cured 

sample (measured in a subsequent dynamic DSC scan), are reported in Table 2 as function of the 

sample thickness. For each specimen, the external part of the sample was taken and analyzed in DSC. 
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Figure 3. Thermograms obtained for the samples of 0.8, 1 and 40 mm thickness. 

 

Table 2. Tgmidpoint, ΔHres, ΔHrel and Tgmax values measured by dynamic DSC scans for  

7-day cold-cured samples, as function of the thickness of the specimen. 

Thickness (mm) Tg (°C) ΔHRel (J/g) ΔHRes (J/g) Tgmax (°C) 

0.8 33.3 ± 0.7 7.1 ± 0.1 72.6 ± 1.1 63.1 ± 1.5 

1 42.5 ± 0.3 7.0 ± 0.4 47.5 ± 1.9 65.5 ± 1.7 

5 46.9 ± 0.9 6.0 ± 0.6 38.3 ± 0.9 65.3 ± 1.3 

10 44.2 ± 1.1 3.3 ± 0.2 21.1 ± 1.3 66.6 ± 1.6 

40 56.4 ± 0.7 – 0.9 ± 0.6 63.2 ± 1.5 

The actual influence of the sample thickness on the curing reaction of the commercial cold-cured 

epoxy resin can be deduced by the experimental DSC data reported in Table 2. ΔHRes and ΔHRel both 

decrease and Tg increases by increasing the sample thickness; furthermore, all samples possess 

roughly the same Tgmax when completely cured. In particular, the sample with a thickness of 40 mm 

does not exhibit physical aging phenomenon, at least up to one week of curing, showing a null value of 

the relaxation enthalpy. This is due to a Tg (about 56 °C) higher than the curing (ambient) temperature. 

In such conditions (Tg > T), the relaxation process does not proceed. Furthermore, the same sample 

shows a quasi-null residual heat of reaction (about 1 J/g), evidencing that in this case the curing 

reaction is almost complete. These results seem, therefore, to suggest that the reaction is favored by a 

high thickness. 

A possible explanation of this experimental evidence can be attributed to the high exothermicity of 

the curing (cross-linking) reactions of the epoxy resin. By increasing the thickness of the sample, the 

developed heat of reaction increases, and this allows to obtain a greater degree of cross-linking and, 
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consequently, a higher Tg of the sample. This kind of polymerization reaction could be identified as 

“frontal polymerization” and allows to convert a monomer into a polymer exploiting the exothermicity of 

the self-same polymerization reaction. If the heat dissipated is not excessive, the quantity left over may 

be sufficient to induce the polymerization of the monomer layer close to the zone heated by the reaction. 

As a result, a hot propagating and self-sustaining front can be observed in a very thick sample [27–31].  

In order to have an experimental evidence of the possible occurrence of a frontal polymerization in 

the cold-cured epoxy resin, a temperature signal acquisition system, interfaced with a proper computer 

and two thermocouples (type K), was placed above the propagating front in a specimen possessing a 

very high thickness. To this aim, an amount of un-cured resin/hardener mix of about 154 cm3 of 

volume was poured into a cylindrical glass container, with a diameter of 7 cm. The two thermocouples 

were placed on the surface and in the bulk of the resin, respectively, and the curing reaction proceeded 

at ambient (laboratory) temperature.  

A schematic representation of the possible frontal polymerization reaction and the temporal 

temperature profiles obtained from the two thermocouples placed in the bulk and on the surface of the 

epoxy 40 mm thickness sample are reported in Figure 4a,b respectively. 

Figure 4. (a) Schematic representation of the frontal polymerization reaction;  

(b) temporal temperature profiles from the two thermocouples placed in the bulk and on 

the surface of the liquid resin. 

 

(a) 

 

(b) 

The temporal temperature profiles, reported in Figure 4b, confirm that the resin used in this study is 

able to polymerize with a reaction that is self-activated at room temperature and, then, it could be 

considered a frontal polymerization reaction. From the observation of the curves reported in Figure 4b, 

it can be deduced that there is a significant period (up to 6000 s) during which the temperatures 

registered by the two thermocouples are almost identical, indicating that the cross-linking reactions, 

during the initial heating process, proceed in the same way on the surface and in the bulk of the mix. 

At longer curing times, the two curves are substantially different, indicating a different behavior on 

surface an inside the 40 mm thickness specimen. The isothermal period of the sample includes the time 

of the front’s propagation, as well as a significant portion of the seed dissolution time (or induction 
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period). Thus, the front can be considered isothermal, which indicates that the surrounding air and the 

monomer above the front are sufficient for dissipating the heat produced from the exothermic reaction 

of the front and the slower bulk polymerization of the monomer.  

4. Conclusions 

A deep calorimetric analysis was performed in order to establish the influence of the curing time 

and the sample thickness on the cross-linking reaction of cold–curing epoxy resins, used as matrix for 

FRP composites and/or adhesive in civil engineering applications. The experimental data obtained on a 

commercial cold-cured epoxy, already employed as matrix for FRP strengthening systems, show that a 

time of about seven days is enough to almost complete the curing reaction at ambient temperature.  

A maximum extent of reaction of about 0.9 was, in fact, obtained in 5 mm thickness-samples after 

seven days of curing, remaining the extent of reaction almost unchanged up to 60 days. The influence 

of the sample thickness on the cure reaction of the resin was also investigated by DSC analysis, obtaining 

a clear evidence of the positive effect of the thickness on the curing degree of cross-linking reactions.  

A possible explanation of this experimental evidence was the high exothermicity of the curing reaction 

of the epoxy resin: it was supposed, in fact, that by increasing the thickness of the sample, the heat of 

reaction developed increases, obtaining greater degrees of cross-linking and, in turn, higher Tg’s.  
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