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A B S T R A C T   

Human papillomavirus type-16 (HPV16) is classified into lineages, A, B, C and D and 10 sub-lineages portraying 
variable infectivity, persistence, and cytological outcomes, however, with geographical variations. Our objective 
was to delineate the distinctive features of lineages among cervical squamous cell carcinoma (SCC) in the eastern 
region of India. A total of 145 SCC cases and 24 non-malignant specimens, harboring episomal HPV16, were 
included. The presence of higher proportion of lineage A over D was observed among SCC cases (86.89% A1, 
8.97% D1 and 4.14% D2), while only A1 sub-lineage viruses were found among control specimens. Among the 
A1 viruses, an association of variants in the E5 (Y44L, I65V), E6 (L83V) genes and LCR: C7577T with SCC, with 
combined Odd’s ratio (95% CI) of 20.5(4.61–91.25) was observed. Network analyses revealed the presence of 10 
clades of lineage A viruses comprising of 64 HPV16 genomes harboring the risk alleles. High episomal HPV16 
DNA copy numbers (adjusted p-value= 0.0271) and E7 mRNA expression (p-value=0.000017) predominated in 
SCC with lineage A, over D. Our study highlights the distinctive modalities of oncogenicity among different 
HPV16 lineages.   

Introduction 

In most countries including India, 80% of cervical cancer cases are of 
squamous cell origin [1] and human papillomaviruses (HPV) are the 
established drivers [2]. Of the repertoire of oncogenic HPV infections, 
HPV16 appears to be uniquely carcinogenic, accounting for over fifty 
percent of all CaCx cases worldwide [3–5]. It is observed to be correlated 
with virus persistence and often with increased virus burden within host 
cells [6]. This leads to enhanced risk of developing prevalent and inci-
dent pre-invasive lesions and ultimately CaCx [7]. In India, majority of 
the CaCx cases are associated with HPV16 infection [8–10]. The 

predominance of HPV16 among the general population is also evident 
based on data available from some regions of India [9,11] including an 
earlier study from our group [12]. A recent study from our group has 
also shown the preponderance of HPV16 infection among women 
seeking healthcare at a hospital outpatient department [13]. 

Worldwide, HPV16 related CaCx prevalence varies across different 
regions and countries, which is often attributable to several factors 
related to the virus, besides the host and the environment. These factors 
include physical status of HPV16 genomes, viral load, methylation in E2 
binding sites, HPV16 E7 expression etc as published previously from our 
laboratory [14,15]. Therefore, studies have often focused on the 
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potential role of HPV16 genomic variants in modulating the risk for 
progression to malignancy [16–20]. Based on epidemiological data, it 
has also been proposed that viral genome variants diverging by about 
2% within a given type and differing geographically [21], can contribute 
to viral pathogenicity through alteration of its carcinogenic potential 
and immunogenicity [22,23]. 

HPV16 genome variations have most extensively been studied [21, 
24]. Initially, HPV16 genomes were classified into five lineages based on 
L1 variants. Each lineage was found to be predominant within specific 
geographical regions and named accordingly as E (European), As 
(Asian), AA (Asian-American), NA (North American), Af1 (African-1) 
and Af2 (African-2) [25–27]. Burk et al, in 2013 [28], used whole 
genome viral variants to further classify HPV16 into ten sublineages (A1, 
A2, A3, A4, B1, C, D1, D2, D3, D4). Further, in 2016, a comprehensive 
study by Mirabello et al, identified HPV16 variant lineages and sub-
lineages with variable risk towards development of precancers and 
cancers [29]. 

However, most of the studies have not characterized the dis-
tinguishing attributes beyond nucleotide variants. Previous studies from 
our laboratory [14,15] have highlighted the biological plausibility of 
episomal HPV16 driven cervical carcinogenesis as opposed to integra-
tion, as well as the role of viral variants in CaCx [30,31]. The current 
study, an extension of our earlier work, is aimed at identifying the 
distinctive features of HPV16 lineages among SCC cases from the eastern 
region of India, with respect to genomic variations, viral DNA load and 
E7 expression as markers of oncogenicity. Among the two major onco-
proteins, E7 over E6 was chosen because of least variability in CaCx 
[32], role in initiation of the quasi-S phase essential for viral genome 
replication in differentiated epithelial cells [33], and presence of higher 
number of HPV16 E7 transcripts in cancers in contrast to HPV18 cancers 
[34]. 

Materials and methods 

Specimens and subjects 

The HPV16 positive specimens used for this study are nested to an 
ongoing natural cohort study [12,14,30,31,35] which has a total of 684 
cases at present. Due to lack of awareness, efficient healthcare systems 
and affordability, majority of the patients in India visit the hospital at an 
advanced stage of cancer and this cohort is no different. Among the 
cases, 99.56% (681/684) are squamous cell carcinomas and 69.15% 
(473/684) have been clinically confirmed to be tumor stage III and 
above as per FIGO classification (unpublished data). The subset of tumor 
specimens (n=145) selected for this study were histopathologically 
confirmed invasive SCC, tumor stage III and above, and most were 
pathologically classified as moderately differentiated SCC (73.1%; 
106/145). These were derived from married subjects (median age: 52 
years; range: 23–80 years) attending a cancer referral hospital (Saroj 
Gupta Cancer center and Research Institute, South 24 Parganas, West 
Bengal, India and were treatment naive. 

The non-malignant specimens (n=24) were normal cervical scrapes 
confirmed by Pap smear test and derived from married and non- 
pregnant (or, 6 months post-partum) women (median age: 33 years; 
range: 24–58 years) with no previous history of cervical dysplasia/ma-
lignancy. These were collected through organization of cervical 
screening camps as well as from the outpatient clinics (Department of 
Gynecology) of various collaborating hospitals. 

All specimens, tumor and non-malignant, were collected from the 
subjects with written informed consent approved by the institutional 
ethical committee for human experimentation. Details regarding sub-
jects, specimens, DNA isolation, HPV screening and determination of the 
physical status of HPV16 genomes (episomal or integrated) have been 
described earlier from our laboratory [12,14,30,31,35]. For this study, 
we excluded all specimen samples that harbored purely integrated forms 
of HPV16 and included only those that portrayed presence of episomal 

HPV16 genomes, with or without integration into the host genome. 

Re-sequencing of HPV16 genome by next-generation sequencing and 
Sanger method 

Whole genome sequence data was generated using next generation 
sequencing for 8 specimens [36] and for the rest, Sanger sequencing was 
performed. Fifteen sets of overlapping primers were used for 
re-sequencing of HPV16 genome, as per the method established earlier 
in our laboratory [30,31], employing ABI Prism™3100 automated 
sequencer using dye terminator chemistry. 

Variant SNPs and phylogenetic clustering analysis 

The HPV16R genome was used for reference guided assembly. 
Alignment was carried out using Bioedit [37]. The specimens included 
had amplification at all loci (N= 170; 145 cases and 24 controls). The 
median-joining (MJ) method [38] of Phylogenetic Network software 
(http://www.fluxusengineering.com/sharenet.htm) was used to iden-
tify distinct evolutionary clustering present within the study population 
and the case control distribution of each haplotype. 

Estimation of HPV16 DNA copy number (total and episomal) and E7 
expression among the specimens 

The HPV16 DNA copy number (total and episomal) and E7 mRNA 
expression were estimated in the selected specimens according to the 
method described earlier by our group [39]. 

Statistical analyses 

The associations of viral non-synonymous variants and LCR, NCR 
nucleotide changes across lineages with CaCx were determined using 
Chi square test. To test for normality across datasets the Kolmogorov- 
Smirnov test was carried out. Significant differences in viral DNA copy 
number and genome status were evaluated using the Mann Whitney U 
test and were interpreted based on p-values derived after multiple 
testing correction using the Benjamini-Hochberg method [40]. Differ-
ences in E7 mRNA expression were evaluated using the Welch’s t test. A 
p-value less than 0.05 was considered statistically significant. All sta-
tistical analyses were done using GraphPad prism version 8.0.0 [www. 
graphpad.com]. 

Results 

Presence of distinct HPV16 lineages and sublineages among Indian SCC 
cases from eastern region 

A total of 262 single nucleotide variants were identified, out of which 
251 were bi-allelic, 10 were tri-allelic and one was tetra-allelic. Among 
the bi-allelic variants, 101 were synonymous, 99 were non-synonymous 
of which, 20 were identified to be deleterious and 51 were in the non- 
coding regions (LCR and NCR-2). All such deleterious variants were 
rare (frequency < 0.05), except for the E2/E4 variant A3366C. The bi- 
allelic variant loci frequencies identified across the different regions of 
the HPV16 genome, is presented in Table S1. 

Based on earlier reports [17,24], E2 (T3694A), E6 (A532G) and LCR 
(T7743G, G7834T) variants were used to identify lineages and sub-
lineages. A total of two lineages and three sublineages namely, European 
(A1), North-American (D1) and Asian-American 1 (D2) were identified 
among the specimens included in this study. The A1 sublineage virus 
was found both in CaCx (n=126) and non-malignant specimens (n=24), 
whereas D1(n=6) and D2 (n=13) sublineage viruses were identified 
only among CaCx cases. Among the lineages and sublineages of HPV16 
thus identified, additionally a total of 35 bi-allelic variants were found 
capable of distinguishing lineages A and D, while 6 could distinguish 
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between D1 and D2 sublineages (T732C, T2343C, C3161T, A4599C, 
A6180C, A6316G) (Table S2). 

Association of non-synonymous and LCR variants among lineage A1 
viruses with SCC 

Comparative analyses between tumor and non-malignant specimens, 
of non-synonymous and non-coding region bi-allelic variants among A1 
sublineage viruses revealed the presence of 13 variants, with signifi-
cantly different distributions among cases and controls, after multiple 
testing correction. Those, proportionately higher among tumor speci-
mens were E5 (A3979C:Y44L, A4042G:I65V), E6 (T350G:L83V), and 
LCR (C7577T) with a combined odds ratio (95% CI) of 20.5 
(4.61–91.25) (Fig. 1A and B, Table S3). Five variants were found only 
among the non-malignant specimens namely, E7 (C790T:R77C), E2 
(C3236G:H161D), E2/E4 (A3605G:284D), LCR (A7550G) and NCR-2 
(T4222C), portraying significant p-values after multiple testing correc-
tion (Fig. 1C). Additionally, 4 variants had significantly higher fre-
quencies among non-malignant specimens [E1 (G1363A; G167S), L2 
(A5063C; N276T), L2 (A5492C; I418T), and L1 (A6434G; T266A)] 
(Fig. 1A–C, Table S3). 

Evolutionary analysis of whole genome HPV16 haplotypes indicate the 
presence of four major clusters of A1 sublineage viruses 

To further our understanding of the Indian viral genomes, network 
analyses was executed using the Hamming distances of 97 bi-allelic 
variants present at ≥ 5% frequency, among the genomes included in 
this study (N= 169; 145 tumor and 24 non-malignant specimens). A 
total of 68 distinct haplotypes or nodes were identified. The presence of 
two distinct clusters of haplotypes representing the two different line-
ages was reconfirmed. Among the A1 lineage viruses, four major nodes 
were identified, namely, E-12 (n=26), E-16 (n=13) comprising of both 
cases and controls and case specific nodes E-41 (n=27) and E-42 (n=17). 
The co-existence of LCR:C7577T, E5:A3979C, A4042G and E6:T350G 
variants were found in 10 A1 haplotypes or nodes (E-16, E-18, E-19, E- 
22, E-26, E-28, E-37, E-38, E-41 and E-42), majority of which were case 
specific or overrepresented among case samples and across all D hap-
lotypes that represented cases only, except for specimen number T173, 
which lacked the T350G variant. Several reticulations were observed, 
which were caused by recurrently occurring mutations (Fig. 2). 

High viral episomal DNA copy numbers and high E7 mRNA expression 
predominated the A lineage viruses among the SCC specimens 

Significant difference in viral DNA copy numbers was observed 

Fig. 1. Differences in distribution of HPV16 non-synonymous and non-coding region bi-allelic variations astericks identified by whole genome sequencing A. The 
frequencies of non-synonymous variants among different lineages across squamous cell carcinoma (SCC) cases and non-malignant specimens were compared. B. NCR- 
2 and LCR variations. C. Variants found only among viral DNA isolated from non-malignant specimens (p-values of < 0.05 are denoted by astericks between SCC 
cases and non-malignant specimens of Al lineage). 

P. Mandal et al.                                                                                                                                                                                                                                 



Translational Oncology 15 (2022) 101256

4

among the tumor specimens harboring A lineage viruses (mean viral 
copy number= 18.39/100 ng genomic DNA) compared to the non- 
malignant specimens (mean viral copy number= 16.50/100 ng 
genomic DNA) (adjusted p-value Mann Whitney test = 0.003) as 
depicted in Fig. 3A and Table S4. However, the episomal copy numbers 
of HPV16 was significantly higher among tumor specimens with A 
lineage viruses (adjusted p-value Mann Whitney test = 0.0271) and 
significantly lower among those with D lineage viruses (adjusted p-value 
Mann Whitney test = 0.0301), compared to A lineage non-malignant 
specimens. Hence, an enhancement and loss of episomal copy 
numbers among tumor specimens with A lineage viruses and those with 
D lineage viruses, respectively, in the process of oncogenic trans-
formation of the cervical epithelium was evident from this observation. 
Between the tumor specimens harboring the two lineages of viruses, 
episomal copy numbers of HPV16 was significantly higher among those 
with A lineage HPV16, in comparison with D lineage tumor specimens 
(adjusted p-value Mann Whitney test = 0.0000129) as depicted in 
Fig. 3B and Table S4. This was indicative of the relevance of E7 mRNA 
levels, which was estimated in a subset of CaCx tissues harboring lineage 
A (n= 14) and D (n=9) lineage viruses. The relative E7 expression, 
normalized with the housekeeping gene 18S rRNA, was significantly 
higher (p-value t-test= 0.000017) in lineage A as compared with lineage 
D (Fig. 3C and Table S5) tumor specimens. The findings potentially 
support the oncogenic role of high copy number episomal A lineage 
HPV16 viruses with high E7 relative expression in the eastern Indian 
population. By contrast, the D lineage viruses appear to have a pro-
pensity towards integration with low levels of E7 transcripts. 

Discussion 

In this study, our study design considering tumor and non-malignant 
samples, analytical protocol based on median-joining network analysis 
of viral haplotypes (generated employing common sequence variations) 
of episomal HPV16, provides further insights on the biological relevance 
of HPV16 lineages and sublineages and their association with CaCx 
pathogenesis. 

To begin with single nucleotide variants, most association studies 
[41–43,19] have demonstrated the presence of E6:350 G among the 
HPV16 A lineage viruses as a risk allele for persistence and progression 
to precancerous lesions among non-A sublineages [19]. By contrast, in 
this study we demonstrate the presence of non-synonymous variants 
(E5:3979C, A4042G) and non-coding variation (7577T) in LCR region in 
conjunction with E6:350G as risk alleles, highlighting the polygenic 
aspect of viral contribution to disease. Further, irrespective of the 
HPV16 lineages, our study also reflected the lack of genomic variations 
within the E7 gene among the CaCx cases, as opposed to a single vari-
ation (C790T) among the control samples. This finding is in line with a 
large-scale study [32] that revealed the absence of variations within E7 
gene in precancer and cancer cases as well as those subsequent studies 
which confirmed the critical need for E7 protein conservation for 
maintaining oncogenicity [44,45]. 

As regards lineages, in conformity with earlier reported classification 
schemes [28–30], we identified the presence of two lineages and three 
sublineages - European (A1), North-American (D1) and Asian-American 
1 (D2) of viruses. The A1 sublineage was prominent among both cases 
and controls, while the D lineage HPV16 genomes were found only 

Fig. 2. Phylogenetic network of 169 HPVI6 viral genomes belonging to two distinct lineages and three sub-lineages. Each circle represents a haplotype and the 
diameter is proportional to the number of genomes belonging to each haplotype. A total of 97 bi-allelic variations were used to construct the haplotypes. Each notch 
on the horizontal lines indicate a differentiating variant. The colors indicate the sub-lineage Al; SCC (blue) and non malignant 〈green〉. LCR:7577T variant and the 
non-synonymous variants E5:3979C,A4042G, E6:350G are labeled. All the lineage D haplotypes except for one viral isolate (encircled in red) harbored both the non- 
synonymous variants. The smaller red circles are the median vectors and the arrow indicates the reference viral haplotype NC_001526.4. 
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among the case samples. Besides re-confirming our earlier observations 
[30] through these results, we also render support to observations 
recorded by other groups that relied on sequence data of a few HPV16 
genes [16,46,47] portraying the predominance of A sublineage of 
HPV16 in the Indian population. Concurrently, the A sublineage also 
had high haplotype diversity. Since viruses are known to co-evolve with 
the host [48], the higher prevalence and haplotype diversity corre-
sponding to the A sublineages (A1) could be attributable to a longer 
history of evolution with the host [48]. Likewise, the lower prevalence 
in the population, of the D sublineages (D1 and D2) of HPV16 could thus 
be associated with a shorter history, that is, they appear to be fairly new 
in the Indian population, with respect to the A1 sublineage. However, 
the presence of haplotype diversity among the A1 viruses also implies 
that intra-lineage variability needs to be considered while defining 
causality. Additionally, this study also identifies the available pool of 
haplotypes in the Indian population corresponding to the three sub-
lineages of HPV16 prevailing in India, harnessing the strength of 
network analysis. 

Some epidemiological studies have identified that HPV16 sub-
lineages confer variable risks towards CaCx development, along with 
early or late onset of invasive tumors [49,50]. There are reports [51,52] 
that support D lineages as more oncogenic and associated with adeno-
carcinoma, as opposed to A lineages [50]. It has also been shown by 
some studies [53,54] that D lineages of HPV16 exists in the episomal 
form, with a higher propensity of replication. A study also revealed the 
aggressiveness of non-A HPV16 lineages, associated with tumor pro-
gression and radioresistance [55]. Another study identified D3 and A4 
sublineages of HPV16 lineage to be associated with invasive CaCx and 
showed that patients with lineage B viruses exhibited worse recurrence 
free survival [56]. In contrast, a study also demonstrated that women 
with European variants were at higher risk of developing lymph node 

metastasis than those with non-European variants in CaCx [57].  
Herein, we considered a homogeneous group of CaCx samples, all 

histopathologically confirmed as SCC and all harbored episomal HPV16 
(pure or concomitant with viral integration). Our analysis highlighted 
the molecular differences between the A and D lineage viruses, with 
respect to viral load in association with physical status and E7 expres-
sion, the key measures of oncogenicity. This study reflected significantly 
higher and lower episomal copy numbers among the A and D lineage 
harboring tumor specimens, respectively, over the A lineage virus 
associated non-malignant specimens. The viral load being at equivalent 
levels between the A and D lineages among the tumor specimens, the 
episomal copy numbers were significantly higher among the A lineage 
viruses. Taken together, this was suggestive of loss of episomal viral 
DNA concomittant with the higher integration rate of the D lineage of 
HPV16 and enhancement of episomal copy numbers among the A line-
age tumor specimens in eastern region of India. Moreover, higher E7 
expression among cases with A lineages of HPV16 does preclude this as 
less oncogenic, compared to the D lineages recorded in our data set. The 
differential role of epigenomic regulation of E7 expression among the 
two lineages of HPV16 cannot be ruled out at this point. In support of 
this, in an ongoing study, our preliminary findings have revealed an 
overrepresentation of methylation (5/11; 45.45%) in the CpG within the 
NF1 binding site (as defined in the TRANSFAC database) at position 
7553 within the upstream regulatory region LCR, in contrast to its 
absence in any of the tumor specimens harboring episomal A1 lineage 
(0/28; 0%) (data not shown). Overall, such observations further 
corroborate the oncogenic potential of HPV16 A lineages in the sampled 
population, while highlighting the distinctive modalities of cervical 
carcinogenesis among lineages and justifying the oncogenic role of 
episomal HPV16, as well. 

In recent times, therapeutic vaccines are being employed to generate 

Fig. 3. Distributions of viral copy numbers and percentages of episomal genomes across non-malignant specimens and SCC lineages A. Differences in natural log(ln) 
viral copy numbers depicted by box-plots. The boxes indicate the interquartile ranges and the median values are indicated by horizontal black lines. B. Differences in 
proportions of episomal genomes. C. Relative expression of E7 gene transcripts. (corrected p-values of <0.05 are denoted by astericks). 
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cell-mediated immunity rather than neutralizing antibodies against 
transformed cells and E6 and E7 oncoproteins are the major targets. 
Several strategies have been investigated for enhancing CD4+ and 
CD8+ T-cell responses, [58]. However, the immunological impact on 
different HPV16 variant lineages is essential for optimizing the adoptive 
cell therapy approaches and vaccine development strategies [59,60]. 

In conclusion, our study lends support to the body of literature 
correlating the oncogenicity of HPV16 lineages albeit with the limitation 
of a small number of HPV16 positive non-malignant specimens. How-
ever, these findings lend support to our hypothesis that the episomal 
HPV16 employs multiple modalities in a lineage specific manner for the 
manifestation of the oncogenic status. Besides, variable levels of E7 gene 
expression among the two prevalent lineages of HPV16, suggests that 
the molecular milieu of the CaCx cases harboring the two lineages are 
likely to differ not only with respect to their capacity of pRb inactiva-
tion, but also based on the interactions of the E7 protein with other host 
cell molecular factors. Therefore, the CaCx cases harboring the two 
lineages of HPV16 might also reflect variable outcomes with respect to 
disease prognosis and therapy response. However, more work needs to 
be done to understand the role of distinct A1 haplotypes as prognosis 
determinants. Our study highlighting the immense heterogeneity of 
HPV16 lineages and sublineages in CaCx cases from eastern India, with 
respect to disease risk and possible prognostic and therapeutic impli-
cations, calls for the implementation of a routine HPV vaccination based 
primary prevention program in India. 
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