Hindawi

Journal of Immunology Research

Volume 2020, Article ID 5494858, 14 pages
https://doi.org/10.1155/2020/5494858

Research Article

Identification and Validation of Immune-Related Gene Prognostic
Signature for Hepatocellular Carcinoma

Wenbiao Chen (»,"? Minglin Ou,’ Donge Tang,” Yong Dai(»,> and Weibo Du®'

IState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease,
Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
School of Medicine, Zhejiang University, Hangzhou 310003, China
2Clinical Medical Research Center of The Second Clinical Medical College, Jinan University, Shenzhen People’s Hospital, No. 1017,
Dongmen North Road, Luohu District, Shenzhen 518020, China
3Scientific Research Center, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China

Correspondence should be addressed to Yong Dai; daiyong22@aliyun.com and Weibo Du; duweibo@zju.edu.cn

Received 4 September 2019; Revised 22 January 2020; Accepted 5 February 2020; Published 7 March 2020

Academic Editor: Eirini Rigopoulou

Copyright © 2020 Wenbiao Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Immune-related genes (IRGs) have been identified as critical drivers of the initiation and progression of hepatocellular carcinoma
(HCC). This study is aimed at constructing an IRG signature for HCC and validating its prognostic value in clinical application.
The prognostic signature was developed by integrating multiple IRG expression data sets from TCGA and GEO databases. The
IRGs were then combined with clinical features to validate the robustness of the prognostic signature through bioinformatics
tools. A total of 1039 IRGs were identified in the 657 HCC samples. Subsequently, the IRGs were subjected to univariate Cox
regression and LASSO Cox regression analyses in the training set to construct an IRG signature comprising nine immune-
related gene pairs (IRGPs). Functional analyses revealed that the nine IRGPs were associated with tumor immune mechanisms,
including cell proliferation, cell-mediated immunity, and tumorigenesis signal pathway. Concerning the overall survival rate, the
IRGPs distinctly grouped the HCC samples into the high- and low-risk groups. Also, we found that the risk score based on nine
IRGPs was related to clinical and pathologic factors and remained a valid independent prognostic signature after adjusting for
tumor TNM, grade, and grade in multivariate Cox regression analyses. The prognostic value of the nine IRGPs was further
validated by forest and nomogram plots, which revealed that it was superior to the tumor TNM, grade, and stage. Our findings

suggest that the nine-IRGP signature can be effective in determining the disease outcomes of HCC patients.

1. Introduction

Hepatocellular carcinoma (HCC) is a common cancer of the
liver and one of the leading causes of cancer-associated mor-
tality worldwide [1]. Currently, surgical resection is the pri-
mary treatment option for the condition. However, because
of late diagnosis, the postoperative survival rate of patients
is still low and the recurrence rate is remains high. Given
the lack of specific symptoms in the early stage of the disease,
patients are often diagnosed when the disease has advanced
to middle and late stages. This leads to a low 5-year survival
rate of 40%~50% if patients do not receive radical treatment.
On the contrary, HCC patients who are diagnosed early have
a relatively good prognosis with a 5-year survival rate of

about 90% after surgery [2, 3]. However, the traditional diag-
nostic biomarkers of HCC are limited in sensitivity and spec-
ificity. And this has prevented early diagnosis and treatment
of this disease [4]. Therefore, it is urgent to find a novel clin-
ical signature that is closely associated with the occurrence
and development of HCC for better prediction of the recur-
rence, metastasis, and prognosis of patients. This will ensure
early diagnosis timely and treatment of the condition.
Previously, the clinical survival stratification of HCC
patients was based on features comprising molecular markers,
such as gene, miRNA, and IncRNA. Cai et al. reported a neg-
ative correlation between the expression levels of RAD21,
CDK1, and HDAC2 and the survival time of HCC patients
[5]. Also, six IncRNAs that can predict the survival rate of
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HCC patients by grouping them into high- or low-risk groups
have been suggested [6]. These molecular markers are not
only useful in tracking the prognosis of HCC patients but also
crucial complements for the clinical and pathological staging
of tumors [7, 8]. However, given that this concept was based
on a relatively small data set and was short of sufficient valida-
tion, it has not been adopted in clinical practice [9]. The emer-
gence of publicly available resource-sharing gene expression
databases has provided a platform to investigating more reli-
able biomarkers of HCC biomarkers. However, data mined
from these databases may not be accurate because of the high
biological heterogeneity, gene expression differences, and
technical biases between the databases and measurement plat-
forms [10]. To transcend this challenge, bioinformatics tools
based on big data together with multigroup analysis have
enabled effective data preprocessing and mining for the
identification of prognostic tumor markers [11].

Recent studies have shown that the immune system,
including immune cells, immune factors, and immune micro-
environment, are essential factors in tumorigenesis [12].
Besides, tumor-related immunity exists in all stages of tumor-
igenesis. And its effects include destroying genome stability,
apparent genetic modification, promoting the proliferation
of tumor cells, resisting tumor anti-apoptosis, stimulating
angiogenesis, and shaping tumor micro-growth environment
[13]. Hepatocellular carcinoma can be initiated by infectious
diseases, especially chronic inflammation caused by the hepa-
titis virus can induce fibrosis or cirrhosis and subsequent
tumorigenesis [14]. The liver is a vital immune organ and is
therefore rich in various natural immune cells, which play
an essential role in the maintenance of normal immune
function of human body. Under normal conditions, the liver’s
immune system can recognize pathogens and remove tumor
cells from the tumor microenvironment. However, under
pathological conditions, HCC cells can suppress the immune
system leading to the proliferation of tumor cells and immune
deficiency [14, 15]. Studies on genomics regarding the
immune mechanism of HCC have led to the identification of
molecular markers that can predict immune checkpoint
blockade reactivity. Further studies on these biomarkers are
ongoing and may improve the accuracy of immunotherapy
[15]. At present, immunotherapies such as programmed-
death 1 (PD-1) and programmed death-ligand 1 (PDL-1) are
showing great success in the clinical treatment of HCC [16].

Given the role of immune mechanisms in the pathogen-
esis of HCC, studies based on immune genes, immune
microenvironment, immune infiltrating cell composition,
immune checkpoint, and immunotherapeutic targets have
been applied and conducted in clinical trials. A study by Sia
et al. on the immune-specific class of HCC divided HCC into
two distinct groups based on immune-related genomic sig-
nals. The HCC patients who were in the immune class
showed a high degree of immunohistochemical expression
of PD-1/PD-L1. However, the two distinct immune groups
showed different components of the tumor microenviron-
ment and exhibited active and exhausted immune response,
which might represent the ideal candidates to receive immu-
notherapy [17]. Furthermore, by combining molecular and
histological analysis of HCC, Calderaro and his colleagues
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made a more detailed classification of HCC based on molec-
ular subgroups, histological features, genetic alterations, and
oncogenic pathways. They noted that the immune classifica-
tion by Sia et al. corresponded to different pathological
stages, immune cell infiltration, gene mutation, and tumor
pathway related to the different prognosis of HCC patients
[18]. Although the HCC classifications based on molecular
data are now well established, the knowledge of molecular
features has not yet been applied in the identification of
HCC biomarkers and requires further research. In this study,
by combining the multigene expression data sets, we
established a nine-IRGP signature to predict the individual
prognostic characteristics of HCC. For validation of the sig-
nature, we investigated its accuracy and efficiency in deter-
mining the prognosis of HCC patients in combination with
clinical features. The findings of this study showed and
proved that the nine-IRGP signature can be applied in the
clinical prognosis of HCC patients.

2. Materials and Methods

2.1. Data Mining and Processing. Three public data sets of
HCC, one from The Cancer Genome Atlas (TCGA)
RNA-seq and two Gene Expression Omnibus (GEO) data
sets (GSE14520, GSE76427), containing genes expression
profile and clinical follow-up information were used in this
retrospective study. Factors that could have influenced the
results of the study, such as radiation therapy, targeted drug
therapy, chemical drug interventional therapy, and immu-
notherapy, were excluded. The preprocessing of TCGA
RNA-seq was as follows: (1) HCC samples without clinical
information or in which the overall survival (OS) was zero
were removed; (2) data on normal HCC tissue samples were
removed; (3) the genes in which the Fragments per Kilobase
Million (FPKM) were zero in more than half of the HCC
samples were excluded. The GEO data were preprocessed
as follows: (1) data on normal HCC tissue samples were
removed, whereas data on primary tumor were retained; (2)
the OS period was converted from year/month to day; (3)
mapping microarray probe to human gene SYMBOL by bio-
conductor package; (4) and only the expression profile of
immune-related genes was included. The GSE14520 and
GSE76427 data sets were merged into an independent verifi-
cation data set. The TCGA data set was randomly divided
into the training and testing sets based on the following con-
ditions: (1) All TCGA samples were randomly divided 100
times in advance. The training set samples were analyzed as
follows: testingtestset=0.5 : 0.5 ratio. (2) The distribution
of age, clinical stage, follow-up time, and death rate was sim-
ilar between the two data sets. (3) After clustering of gene
expression profiles of two random data sets, the number of
HCC samples in the dichotomies was similar. This study
was approved by the Clinical Research Ethics Committee of
Shenzhen People’s Hospital.

2.2. Construction of the IRGP Prognostic Signature. A collec-
tion of immune-related genes were downloaded from the
InnateDB database (http://www.innatedb.com/) then sub-
jected to manual correction. These genes encoded proteins
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related to the endogenous immunity of several species
reported in the literature. The endogenous immune-related
genes of human beings which are involved in many immune
processes, including cellular response to cytokine, cell medi-
ation of immunity, immune signaling pathway, and immune
response to tumor cells, were identified. The gene expression
levels were compared pairwise in a particular sample or
sequence to produce a score for each immune-related gene
pair (IRGP). An IRGP was calculated as follows: (1) if IRG
1 <IRG2, IRGP = 1; (2) otherwise, IRGP = 0. The advantage
of analyzing genes in a pairwise approach is that it eliminates
the need for standardization steps for individualized analysis.
Some IRGPs were removed because they had a unique value
of 0 or 1 among all samples in the data set to avoid biases and
unrepeatability of the study.

The univariate Cox regression analysis model was used
for each IRGPS, and survival data were analyzed using the
R package survival coxph function. Next, univariate Cox
regression analysis model was performed for clinical charac-
ters in the training set to identify IRGPs related to risk signa-
ture with log-rank < 0.05. After univariate Cox regression
analysis, we obtained many of IRGPs that were not suitable
for clinical application. Therefore, the range of IRGPs was
further reduced while maintaining high accuracy. Least abso-
lute shrinkage and selection operator (LASSO) is a biased
estimation tool for data with complex collinearity. It can
select variables and estimate parameter simultaneously and
better solve the multicollinearity problem in regression anal-
ysis [19]. Thus, we used the LASSO Cox regression analysis
to decrease the number of IRGPs by R package glmnet.

2.3. Validation of the IRGP Prognostic Signature. The risk
score for each HCC sample was calculated based on the
IRGP prognostic signature using the following formula:

risk score = expressionge,e 1 X Pye; + €Xpressiongee; X Boees

+---+expressiongn. . X e o in which x was the number of
IRGPs and f was coeflicient value for each IRGPs. Taking
the median value of risk score as the threshold, we divided
all the HCC samples into high-risk or low-risk groups. The
accuracy and sensitivity of survival prediction based on the
risk score were verified by receiver operating characteristic
(ROC) curve analysis and determined by the value of area
under the curve (AUC) in 1, 3, and 5 years. Kaplan-Meier
(KM) survival curves analysis (p < 0.01) was used to analyze
the over survival (OS) of the high-risk and low-risk groups.
We then integrated IRGPs with existing clinical and
pathologic features for multivariate Cox regression analysis.
Tumor TNM, stage, grade, age, and body mass index (BMI)
were regarded as continuous variables. The association
between IRGPs risk score, clinical, and pathologic features
was determined by KM analysis. Prognostic risk models of
tumor TNM, grade, age, and stage were constructed. Subse-
quently, a Cox proportional hazards regression model was
constructed by combined the Tumor TNM, grade, age, stage,
and risk scored. The R package rms was used to compare
these models with the IRGP prognostic signature. Concor-
dance index (C-index) was used to assess the accuracy of
the prognostic biomarkers. Also, the comparison between

IRGPs and clinical/pathologic features was performed by
forest and nomogram plots to determine the effectiveness
of the prognostic value. The statistical difference of IRGPs
in the clinical/pathologic features was compared using the
Kruskal-Wallis test. The functional roles of IRGPs were
determined by Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis using R package
clusterprofiler.

3. Results

3.1. Construction of the IRGP Prognostic Signature. After raw
data preprocessing, a total of 342, 220, and 95 HCC samples
were retrieved from TCGA RNA-seq, GSE14520, and
GSE76427 data set, respectively (Supplementary Table 1).
The TCGA RNA-seq was separated into the training set
with 170 HCC samples and the testing set with 172 HCC
samples (Supplementary Table 2). A total of 38422 IRGPs
were obtained from 1039 IRGs retrieved from the InnateDB
database by gene pairwise calculation in the training set.
For evaluating the difference in gene expression between
TCGA RNA-seq and GEO database, the IRG and IRGP
data were used to conduct cluster analysis of HCC samples
from TCGA and GEO, respectively. According to the
results, both IRGs and IRGPs significantly separated the
data from the two platforms (Supplementary Figure 1A, B).
Notably, the difference between TCGA RNA-seq and the
GEO database was narrowed after conversion from IRG to
the IRGP platform (Supplementary Figure 1C, D). IRGPs
were able to distinguish gene expression differences.
Moreover, the IRGPs which were calculated based on IRGs
gene pairwise could effectively reduce the differences
between databases.

Univariate Cox regression analysis was performed for the
38422 IRGPs, of which 2716 IRGPs showed significant prog-
nostic potential (p < 0.05). We further analyzed the relation-
ship between p value and hazard ratio (HR) and observed
that HR corresponded to IRGPs with significant p value devi-
ated from 1, indicating the prognostic value of the 2716
IRGPs (Figure 1). After that, we performed the LASSO Cox
regression analysis to reduce the number of IRGPs in the risk
model and finally obtained nine IRGPs for further study
(Table 1).

3.2. Validation of the IRGP Prognostic Signature. We estab-
lished ROC risk models based on the nine-IRGP signature
for 1, 3, and 5 years. The mean value AUC of the training,
testing, TCGA, and verification sets was 0.812, 0.743, 0.791,
and 0.695, respectively (Figure 2(a)). The nine IRGPs
grouped HCC patients into high- and low-risk groups based
on OS. The distribution of HCC samples in the high- and
low-risk groups was calculated under overall survival. No sig-
nificant difference was observed in the sample size between
the high- and low-risk groups at 0, 1, and 3 years. On the con-
trary, the HCC samples in the high-risk group were fewer
than those in the low-risk group after the 5™ year
(Figure 2(b)). Besides, with the prolongation of OS, the pro-
portion of HCC samples in the high-risk group decreased
gradually in relation to the total samples (Figure 2(c)). These
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F1GURE 1: The association between p value and hazard ratio (HR) of
2716 IRGPS. Red nodes indicate IRGPs with log-rank p < 0.05.

TaBLE 1: Information about the nine-IRGP signature.

Gene name Coeflicient

CISH_vs_PIAS3 -0.293734419
CISH_vs_HSPA14 -0.012715098
SOCS2_vs_TYRO3 -0.174114652
ACAPI1_vs_CD180 -0.294342403
MAP3K3_vs_BTN3A3 0.111743851
TRIB3_vs_RORC 0.023271926
AGER_vs_TYRO3 -0.037584122
SDC4_vs_HSPD1 -0.039802843
PLAUR_vs_CDSA 0.006054132

findings were consistent with the clinical findings that HCC
patients did not relapse within 5 years after therapy, the OS
was greatly improved and the recurrence rate gradually
reduced [20]. Also, we analyzed the OS of HCC samples
based on the nine-IRGP signature using the KM curve.
The p value of the training, testing, TCGA, and verification
sets was <0.0001, 1e-04, <0.0001, and <0.0001, respectively,
which indicated that there were significant differences in
OS between the high and low groups in all data sets. The
nine-IRGP signature was verified as useful prognostic tool
as it could stratify HCC into the high- and low-risk groups.
The OS of the high-risk group was shorter than the low-
risk groups in all the data sets (Figure 3).

3.3. Association Analysis between the Nine IRGPs and Clinical
Features. The relationship between clinical features such as
T, N, M, age, grade, BMI, stage and risk score was analyzed
to confirm the accuracy of the nine-IRGP signature further.
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The distribution of risk score of T, grade, and stage in the
TCGA database and stage in the GSE14520 showed that
high-risk groups had a significantly higher risk score than
low-risk groups (p <0.05) (Figure 4). Moreover, with the
progress of clinical classifications, the risk score of the
high-risk groups also increased, which indicated that the
nine-IRGP prognostic signature was closely related to clini-
cal features (T, stage, and grade). However, no significant
association was found between risk scores and other clinical
features such as N, M, BMI, and age (Supplementary
Figure 2).

Because T, stage, and grade were significantly associated
with the prognosis of HCC patients based on the nine-
IRGP signature, we investigated the OS for the T, stage, and
grade. Consistent with clinical diagnosis, higher classification
of T, stage, and grade correlated with worse prognosis of
HCC samples (Figure 5). This further confirmed the accuracy
of the prognostic assessment of the nine-IRGP signature.
Furthermore, we constructed prognostic risk models of T,
grade, and stage and compared these models with the
nine-IRPG risk model. The nine-IRPG risk model achieved
a higher C-index compared with T, grade, and stage risk
modules. In addition, we established the multivariate prog-
nostic modules, including T+grade+age+risk score and
stage+grade+age+risk score. The C-index of the multivariate
prognostic modules was not only higher than that of the
nine-IRPG risk model but also was much higher than that
of a single grade, T, or stage risk module (Figure 6). The
result revealed that the nine-IRGP prognostic signature
was more effective than the clinical feature in the prognosis
of HCC patients. Hence, the nine-IRGP prognostic signature
was verified as a robust complement to clinical features for
the prognosis assessment of HCC patients.

We further investigated the association between nine
IRGPs and other important HCC clinical features, such as
the characteristic indexes (vascular invasion, bilirubin, and
Child-Pugh stage) of the Barcelona Clinic Liver Cancer
(BCLC) staging. The differences among groups were com-
pared using the Kruskal-Wallis test. According to the results,
the nine-IRPG risk score was associated with vascular inva-
sion (p=0.045), prothrombin time INR (p = 0.034), Child-
Pugh (p =0.050), and alpha-fetoprotein (AFP) (p =0.008)
(Supplementary Figure 3A-D). Notably, a higher nine-IRPG
risk score was positively correlated to the vascular invasion,
extension of prothrombin time INR, Child-Pugh B stage,
and AFP > 400, which indicated that the nine-IRGP signature
was a potential biomarker for predicting HCC progression.
No significant association was observed between nine-IRPG
risk score and total bilirubin (p=0.37). However, the
expression trend of the nine-IRPG risk score in AFP > 400
was higher than that of AFP < 20 (Supplementary Figure 3E).

3.4. Functional Analysis of the Nine-IRGP Signature. Given
that the nine-IRGP signature was associated with the
immune pathogenesis of HCC and it could separate HCC
samples into the high and low-risk groups for prognostic pre-
diction, we further analyzed the biological function of the
nine-IRGP signature. Enrichment analysis of the GO terms
revealed 302 items of biological processes, and most of the
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FIGURE 2: Prognostic analysis of the nine-IRGP signature. (a) Time-dependent ROC curve analysis of the nine-IRGP signature based on
training, testing, TCGA, and verification sets. (b) Statistics of high- and low-risk groups under different over survival based on the
training, testing, TCGA, and verification sets. (c) The proportion of the high-risk group in the total samples changed with over survival
time in the training, testing, TCGA, and verification sets.

items were involved in the tumor immune mechanism such
as cell-mediated immunity, immune response, and immune
cell proliferation (Figure 7(a)). Furthermore, KEGG analysis

identified 24 items of functional processes, including tumor-
igenesis signal pathway, cell cycle, apoptosis, and immune
factors interaction. Our results revealed that the biological
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FiGure 3: Kaplan-Meier survival analysis of the HCC samples based on the nine-IRGP signature. Kaplan-Meier curves show the survival
time of the (a) training, (b) testing, (c) TCGA, and (d) verification sets.

function of the nine-IRGP signature mainly related to the
immune system’s role in promoting or suppressing HCC
development.

3.5. Forest and Nomogram Plots Analysis. For systematic
verification of the prognostic value of the nine IPGR signa-
ture in HCC patients, we constructed nomogram plots by
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combining risk score and independent clinical risk factors
(T, grade, stage, and age). In the nomogram plot, the length
of the line indicated the degree of influence of different fac-
tors on the outcome, as well as the effect of different values
of factors on the outcome. The nomogram plots showed
that the risk score based on nine IRGPs had the longest
line indicating it had the greatest influence on the predic-
tion of survival rate. The nomogram plots also revealed
that the nine IRGPs contributed the highest number of risk
points (from 0 to 100) compared to other clinical features,
which was consistent with the results of multivariate prog-
nostic modules analyses (Figure 8). Moreover, forest plots
were constructed to display the statistical summary results
of risk score and different clinical factors (T, grade, stage,

and age). In the forest map, several line segments parallel
to the x-axis represented the effect of factors and its 95%
confidence interval. The hazard ratio (HR) value of risk
score based on the nine IRGPs was the highest among
the factors (Figure 9). In T+grade+age+risk score module
and stage+grade+age+risk score module, the HR value of
risk score was about 1.9 and the p < 0.001. This result was
also consistent with the analysis of multivariate prognostic
modules which showed that the nine-IRGP signature was
the most effective signature for prognostic assessment of
HCC patients when compared with other clinical features.
These outcomes further confirmed that the nine-IRGP signa-
ture could be an effective biomarker for estimating the prog-
nosis of HCC patients.
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FiGUurg 6: Comparison of C-index among multivariate prognostic
modules, risk score, and clinical feature (T, stage, and grade).

4. Discussion

Patients usually lack obvious clinical symptoms during the
early stages of HCC, and even after detection and treatment,
the patients remain at risk of tumor recurrence or progression
[21]. Although clinical markers such as alpha-fetoprotein
(AFP), glutamyl transpeptidase (y-GT), and lactic dehydroge-
nase (LDH) have been used in the early diagnosis and
therapeutic monitoring of HCC patient, these factors are non-
specific. Also, these clinical markers are not elevated in most
of the patients at initial stages of HCC and do not reflect the
severity of the disease [22]. Thus, there is a need to find new
early diagnostic markers of HCC. Herein, we constructed a
nine-IRGP signature for HCC patients and validated its accu-
racy and effectiveness in an independent data set through
multidimensional bioinformatics methods. The nine-IRGP
signature was able to group HCC patients into the high and
low-risk groups based on OS and was also superior to other
clinical risk factors (T, grade, stage, and age) in the prognostic
assessment. It is noteworthy that multidimensional bioinfor-
matics methods are used in the study of large tumor samples
for biomarker mining. Nault et al. conducted multiomics to
comprehensively analyze the genomic profiling of HCC com-
bined with tumor stages, clinical features, and survival. They
reported molecular prognostic 5-gene score, which could
show different distributions according to the stage of the dis-
ease, type of treatment, prognostic score, and pathologic

types. Also, they highlighted the multiomics for genomic anal-
ysis on HCC to reveal the mechanisms of HCC and helped to
identify biomarkers for response to targeted therapies [23].
Therefore, it was feasible for us to apply multidimensional
bioinformatics methods in the mining of the biomarkers of
HCC based on several data sets. We combined gene expres-
sion profiles from multiple data sets for gene pairwise analysis
to identify reliable biomarkers for prognosis of HCC. In doing
so, the bias caused by gene normalization was eliminated [24].
There was a significant reduction in the difference between the
GEO and TCGA platforms after gene pairwise conversion of
IRGs to IRGPs. The validation of the nine-IRGP signature
was comprehensive, including univariate analysis, multivari-
ate analysis, forest plot, and nomogram plots. The multidi-
mensional bioinformatics methods are more rigorous in
verifying the reliability of biomarkers [25]. Moreover, we
combined the nine IRGPs with the clinical/pathologic fea-
tures and used them to establish risk modules for comparative
analysis. According to the results, the nine-IRGP signature
was a robust complement to several features (T, stage, and
grade) for HCC prognostic prediction, and significant prog-
nostic performance was achieved by the combination of the
nine IRGPs and clinical/pathologic features. These results
confirmed that the nine-IRGP signature was accurate, consid-
ering that the data set resource was adequate, the analytical
methods were comprehensive, and the validation was com-
bined with clinical features. Furthermore, we found that the
nine-IRGP signature could stratify HCC into the high- and
low-risk groups and revealed that the low-risk group had a
better prognosis than the high-risk group. This observation
was consistent with a previous study by Sia et al. However,
Sia et al. focused on the genotyping of HCC, as well as
the immune microenvironment and oncogenic signaling
pathways of HCC, and therefore, their study provided a
more reliable HCC classification than the present study [17].
According to Calderaro et al,, high immune response with
more infiltrated immune cells results in frequent gene muta-
tion. On the contrary, exhausted immune response with less
infiltration of immune cells represents a nonproliferative tumor
characterized by chromosomal stability and maintenance of
hepatocytic marker expression [18]. Kurebayashi et al. con-
ducted comprehensive analyses of immune cells through mul-
tiplex immunohistochemistry and classified the immune
microenvironment of HCC into three distinct immune sub-
types (immune-high, immune-mid, and immune-low). Con-
trary to our results, they found that the immune-high subtype
was characterized by increased B/plasma cell and T cell infiltra-
tion was associated with good prognosis [26]. We hypothesized
that the composition of immune cells plays a vital role in the
pathogenesis of tumors. Immune activation by B cell, T cell,
natural cell, and dendritic cell contributes to the tumor sup-
pression [27]. Therefore, further study of this immune classi-
fier, including immune microenvironment, immune-related
gene mutation, and immune infiltrated cell component, should
be conducted to verify the nine-IRGP signature as validated
biomarker for HCC prognosis.

Studies have showed that biomarkers based on tumor
immunity can be used for diagnosis, treatment, and prognosis
of cancer patients [28]. The immune genes identified in this
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study were associated with several immune functions, such as
cellular response to cytokine, cell mediation of immunity,
immune signaling pathway, and immune response to tumor
cell. Similarly, the immune-related genes of the nine-IRGP
signature played a significant role in tumor immunological
mechanism. Palmer et al. showed that CISH could prevent
the recognition of tumor cells by weakening the biological
function of the T cell receptor (TCR) signal in CD8 T cells
[29]. TYRO3 was found to be involved in the biological pro-

cess of immune regulation and promoted tumor cell prolifer-
ation, metastasis, and chemotherapy resistance. Moreover,
higher expression levels of TYRO3 were negatively correlated
with low survival rate in HCC patients [30]. SOCS2 proteins
are important negative regulators of cytokine signal trans-
duction, and their inhibition may be an effective therapeutic
strategy for cancer treatment [31]. Other immune-related
genes of the nine-IRGP signature, including BTN3A3 [32],
RORC [33], and AGER [34], participate in promoting
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FIGURE 8: Prognostic value of nine IPGRs in HCC patients based on nomogram plots. (a) Clinical features (T, grade, and age) and risk score
were analyzed to assess the survival time at 1, 3, 5, and 7 years for HCC patients. (b) Clinical features (stage, grade, and age) and risk score
were analyzed to assess the survival time at 1, 3, 5, and 7 years for HCC patients.

tumorigenesis, decreasing efficacy of immunotherapy, and
preventing tumor immune killing through a variety of immu-
nological mechanisms. In the present study, we observed that
the HCC patients in the high-risk group with high expression
of nine IRGPs had poor prognosis, indicating that nine
IRGPs promoted tumorigenesis. And this was consistent
with the finding of previous studies. Functional analysis of

nine IRGPs revealed that they participated in many tumor
immune mechanisms, including cell-mediated immunity,
immune response, and immune cell proliferation, as well
as tumorigenesis signal pathway, cell cycle, apoptosis, and
immune factors interaction. T cell-mediated immunity plays
a crucial role in inhibiting tumor proliferation. Cytotoxicity
T lymphocytes (CTL) provide effective antitumor immunity
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FIGURE 9: Prognostic value of the nine IPGRs in HCC patients based on forest plots. (a) Clinical features (T, grade, and age) and risk score
were analyzed to assess the hazard ratio for HCC patients. (b) Clinical features (stage, grade, and age) and risk score were analyzed to assess
the hazard ratio for HCC patients.

in vivo, especially in immunosuppressive patients with more  can recruit neutrophils to drive tumorigenesis and metastasis
viral infection-related tumors, such as HCC [35]. Contrary to [36]. Also, immune-related tumorigenesis signal pathways,
the findings, immune cell proliferation contributes to the kill- such as TGF-f [37], Hippo [38], and ¢cGAS-STING [39],
ing of tumor cells; recent studies have found that tumor cells ~ can promote inflammatory reactions, thereby enhancing
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tumorigenesis. The nine IRGPs identified in this study were
involved in a wide range of immune processes, which may
explain why the nine-IRGP signature could be a robust bio-
marker for predicting the prognosis of HCC.

5. Conclusion

There are several limitations to this study. First, our study was
based on the typing of immune genes, but we ignored the role
of immune cell infiltration in the tumor immune microenvi-
ronment. Many studies have found that the classification of
HCC based on immune cell infiltration was closely related to
clinical characteristics. Second, the HCC cohort in our study
did not contain the comparison between the cases with
immune-checkpoint inhibitor therapy and normal therapy.
Therefore, we could not analyze the effect of immune-related
genes biomarker in the immunotherapy. Third, the associated
analysis between immune-related genes and clinical features
was not enough; thus, we should conduct additional clinical
features, such as Barcelona Clinic Liver Cancer (BCLC) stage
and Child-Pugh grading. Given this, the clinical application
of the nine-IRGP signature is not very clear and needs further
validation. In the current study, we constructed a nine-IRGP
signature based on multigene expression data set for the
prognostic prediction of HCC patients. These results suggest
that the nine-IRGP signature may be a potential biomarker
for the prognosis of HCC patients.
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