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Effect of temperature fluctuation 
on the localized pattern of action 
potential in cardiac tissue
Clovis Ntahkie Takembo1* & Henri Paul Ekobena Fouda2

Based on the improved FitzHugh–Nagumo myocardial model driven by a constant external current, 
the effect of temperature fluctuation in a network of electrically coupled myocardial cells are 
investigated through analytical and numerical computations. Through the technique of multiple 
scale expansion, we successfully reduced the complex nonlinear system of equations to a more 
tractable and solvable nonlinear amplitude equation on which the analysis of linear stability is 
performed. Interestingly from this analysis, a plot of critical amplitude of action potential versus 
wave number revealed the growth rate of modulational instability (MI) is an increasing function of 
the thermoelectric couplings; T (1) and T (2) , under fixed conditions of nonlinear electrical couplings. In 
order to verify our analytical predictions through the study the long-time evolution of the modulated 
cardiac impulses, numerical computation is finally carried out. Numerical experiment revealed the 
existence of localized coherent structures with some recognized features of synchronization. Through 
the mechanism of MI, changes in thermoelectrical couplings promote wave localization and mode 
transition in electrical activities in the cell lattice. Results could provide new insights in understanding 
the underlying mechanism of the manifestation of sudden heart disorder subjected to heavily 
temperature fluctuation.

Understanding mode transition in electrical activity in cardiac tissue from a normal rhythm to various path-
ological states has aroused the interest of several  researchers1–4. The electrical activity in cardiac tissue and 
excitable network have been shown to be affected by a number of factors. These include internal factors like 
distribution of ion channel, topological set up, ionic permeability and intrinsic noise. External factors such as 
external stimulus current, environmental noise and temperature. Systemic temperature may remain constant 
during various cardiac physiological processes but in the event of clinical surgery and many other environmental 
fluctuation, temperature variation affects cardiac electrical activities. In fact, temperature variation influences 
excitability by regulating the conductance and gating kinetics of ion  channel5,6. Xu et al.5, using memristive ion 
channels embedded on cell membrane reported the dependence of ion channels conductance on temperature 
fluctuation. The frequency and amplitude of action potential were observed to be modulated by temperature 
change. Indeed, thermoelectric coupling has been reputed for modifying complex spatiotemporal pattern of 
excitable  media7. Benndorf et al.8 reported the opening time of ion channel increases greatly with a decreased in 
temperature. Readers can find many other reports on the effect and possible biological implications of intrinsic 
and environmental temperature variation in excitable media in the following  references9,10. Temperature affects 
the time constant of the local kinetic reactions thereby inducing a degree of heterogeneity in the  tissue11. Many 
modeling and computationally-oriented investigations including several experimental studies have confirmed 
substantial differences in conduction speed and spiral drift of chaotic electric potential propagation due to 
temperature  fluctuation12.

In addition, the heart functioning relies on the collective dynamics of myocardial cells communicating 
through voltage-senstive gap junction  proteins13. The nature of the coupling function among individual dynami-
cal units affects significantly this collective dynamics. Complex spatiotemporal patterns attributed to the cou-
pling topologies have been reported in several excitable  networks15–17. For example, chimera states have been 
observed in non locally, globally, locally or nearest neighbor coupled networks and even complex  networks17. 
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Inhomogeneity within the cardiac tissue supports the existence of nonlinearity in the coupling function which 
plays an important role in modulating intercellular communication among the dynamical units.

In this paper, a realistic model for cardiac electrical activity is proposed from the standard two variables 
FitzHugh–Nagumo equations, where the effect of temperature change and nonlinear coupling are included. 
These factors influence on the network dynamics in relation to pattern formation and synchronization have 
been promptly studied through the technique of modulational instability (MI). Indeed, MI is a well known and 
documented mechanism in nonlinear physics. This ranges from fluid  dynamics22, Bose Einstein  condensate23, 
neurons electrical  activities24 and cardiac action potential  dynamics25. MI leads to the formation of soliton and 
wave trains in dynamical system due to the interactive effects of dispersion and nonlinearity. With complex 
spatiotemporal cardiac dynamics widely observed experimentally as a result of fast pacing and their connection 
with nonlinear diffusion, there has been growing need for a realistic model capable of discerning the mechanistic 
description of this pattern. Using the improved model proposed in this work, we show numerically the present 
of discrete localized wave patterns under the effects of nonlinear and thermoelectric couplings. The numerical 
experiment agrees with our analytical predictions.

Model description
The qualitative local dynamical behaviors in neuronal electrical activities notably regular bursting, chaotic 
bursting, rhythmic spiking can be sufficiently captured by the FitzHugh–Nagumo (FHN)18,19 models. Aliev 
et al. modified the FHN model so that it describes adequately the dynamics of pulse propagation in the canine 
 myocardium20. Indeed, the revised version of the FHN are often used to describe cardiac tissue electrical 
 activities4,21,25. The evolution of the network dynamics under temperature fluctuation and nonlinear  coupling26 
in cardiac tissue is described by:

where n = 1, 2, . . . ,N and N represents the position of excitable node in the network. The variables vn and wn 
describe the activator and the inhibitor of the nth node. I0 is the stimulation current, T(1) and T(2) are the thermo-
electric couplings. The nonlinear reaction functions f (vn,wn) and g(vn,wn) identify a discrete FHN model, which 
are capable of reproduces generic dispersion and restitution characteristics of cardiac tissue. They are given by:

For simplicity and to be consistent with previous works, we set the system parameters at 
I0 = 1.2, k = 8.0, a0 = 0.15,µ1 = 0.2,µ2 = 0.3, ε = 0.002. Cardiac tissue are characterized by multiple physi-
cal couplings, whereby myocardial cells communicate through voltage-sensitive gap junction  proteins13. The 
voltage-dependent gap junction coupling for synaptic connection is given by the nonlinear function D(vn):

Equation (3) accounts for electrical couplings, with D0 as the standard nearest-neighboring interaction strength 
of the gap junction, enriched by linear D1 and quadratic D2 , couplings. To be consistent with previous work on 
non-linear diffusion in cardiac  electrophysiology14,26, we set D0 = 0.02,D1 = 0.50, and D2 = 0.85 . The nonlinear 
inhibitor or slow variable ion current term is expanded. The realistic system of Eq. (1) reduces to:

with 
α0 = ak β0 = a0εk β3 = ka0
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)
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2

Iext = I0T
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The system of equations above are then reduced to a more tractable nonlinear amplitude equation using the 
discrete multiple scale expansion proposed by Leon et al.27,28.

Method
Equation (4) obtained above is a system of nonlinear differential equations with no exact analytical solution. 
There exist several techniques of converting these equations into more integrable  form25,29,30. Here, we make 
use of the reductive perturbation method popularly known as the multiple scale expansion method. The dis-
crete multiple scale expansion is an interesting technique developed by Leon and  Manna27,28. It’s an asymptotic 
analysis of a perturbation series, based on the existence of different scales, with the amplitude and the carrier 
wave both kept discrete. This expansion enables the deduction of a more manipulable equation from the model 
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without losing their vital characteristics features. It has recently being widely extended to many other physical 
and biological  media4,31,32.

Through the multiple scale analysis expansions, the first particle of chain network (n = 0) , is set into oscilla-
tions when subjected to an external forcing with the natural frequency � . As a result of nonlinearity present in 
the media, which naturally exists and affects real systems, the natural frequency deviates, with actual frequency 
ω and wave number q, becoming ω = �0 + ǫ� and q = q0 + ǫ �

Vg
+ ǫ2Cg�

2 + · · · , with 1Vg
= (

∂q
∂ω

)� being the 
group velocity and the group velocity dispersion 2Cg = (

∂2q

∂2ω
)� . Where � is a small deviation from the natural 

frequency �0 . If ǫ = 0 , the frequency ω reduces to the natural frequency �0 of the system. The state vector 
Un(t) = {vn(t),wn(t)} are used to summarize the main variables of Eq. (4). The generalized form of the unper-
turbed expressions are taken in the form

with Û(ω) = {v̂(ω), ŵ(ω)} . Where the expanded ω and q along with change of variables τn = ǫ(t + n/Vg ) and 
ζn = ǫ2n and with the condition Cg = 1 , the generalized trial solutions take the form

where A(n, t) = ei(qn+ωt) . A new lattice number m is introduced to support a large grid. Thus for a given lattice 
number n, only the set of lattice points . . . , n− N , n, n+ N , . . . can be indexed in terms of the slow variable m as 
{. . . , (n− N) → (m− 1) , n → m , (n+ N) → (m+ 1) . . . , } , where N = 1/ǫ2 is assumed. We recall that since 
the model under studies considers discreteness to be highly pronounced, this justifies the above assumption for 
N31. In so doing, the slow modulation U(ζn, τn) of the plane wave A(n, t) can be replaced by the functions U(m, τ) , 
with τ = τn , and making use of the Fourier series in power of the parameter ǫ

With θ−l
p (m, τ) = (θ lp(m, τ))∗ , and χ−l

p (m, τ) = (χ l
p(m, τ))∗ . The above solutions are inserted into Eq. (4) lead-

ing to a set of coupled equations. They can be solved at different orders of the small parameter ǫ , with the cor-
responding harmonics l. As such, the leading order (1, l) yields a homogeneous set of equations where when 
l = 0 , we obtain:

Similarly, taking l = 1 leads to a linear system whose determinant is null, yielding the dispersion relation:

According to the above dispersion relation, the non-trivial solutions θ11 (m, τ) and χ1
1 (m, τ) of the resulting 

homogeneous set of equations could be looked out in the form:

At the order (2, l), when l = 0 , the solutions of the resulting system equations give

where,
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For the solution tobe found in the form

where δ(m, τ) is taken to be an arbitrary function. At the same order, but for l = 2 , solutions are derived in the 
form

where

Finally, we solve the system for θ13 (m, τ) and χ1
3 (m, τ) , that is for p = 3 and l = 1 , which yields, while making 

use of the previous solutions, the amplitude equation in ψ(m, τ) = ψm as:

with

Modulaional instability analysis
Linear stability analysis. In resolving boundary value problems in optical fibres, the continuous version of 
Eq. (17) is a well-known model usually  encountered33. Recently, this model has also been reported in biological 
 media24. We build an approximate solution of Eq. (17) in the form

where ψ(m, τ) admits the stationary solution

with the wave number ϑ and the frequency of perturbation Ŵ . By inserting Eq. (20) in Eq. (17) we obtain the 
nonlinear dispersion relation given by

It is expected that when Ŵ2 < 0 , we should obtain unstable waves within the media. By considering the sign of 
γ (q) = R

Q and |ψ0|
2 −

D0 sin(q)
R sin(ϑ) and taking into consideration that we are deally with a boundary condition 

problem then as ϑ is bounded due to discreteness effect, we set sin(ϑ) = 1 . The quantity γ (q) < 0 , implies MI 
result when |ψ0|

2 −
D0 sin(q)

R > 0 . Thus

When the above condition is not respected, the wave remains stable and will propagates via the lattice without 
distortion. The instability condition for γ (q) < 0 can now be stated exclusively as

It’s expected from the above analyzes that when the parameters fall inside the unstable region, unstable patterns 
of waves will be observed in the cell lattice through the activation of MI.
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The analytical plots of the critical amplitude versus the wave number according to Eq. (23) for different ther-
moelectric couplings are depicted in Figs. 1 and 2. The stable/unstable regions of modulational instability (MI) are 
clearly portrayed in Fig. 1. The critical amplitude is observed to be an increasing function of the thermoelectric 
couplings T(1) and T(2) . These results indicate a non negligible role of temperature fluctuation on the collective 
electrical activities of myocardial cells, through the promotion of MI. Based on the theory of MI, it is expected 
that when parameters of the system are picked from unstable regions, localized wave patterns will emerged in 
the network lattice, due to the concomitant effect of dispersion from the nonlinear electrical couplings and non-
linearity from the thermoelectrical couplings. A possible mechanism could that temperature fluctuation in the 
media induces a thermoelectric voltage which further modulates the electrical activities of cardiac tissue. This 
modulation consequently modifies the nonlinearity of the media which undoubtedly promotes the mechanism 
of MI, as revealed from the analytical plots. Numerical experiments are further performed in the next subsection 
to confirm our analytical results.

Spatiotemporal patterns under thermoelectric couplings. The linear stability analysis of MI dis-
cussed in the preceding subsection gives reasonable prediction of the non negligible role of thermoelectric cou-
plings on the collective electrical activities amongst myocardial cells. However, the linear stability analysis does 
not give any insight into the long-time dynamics of the modulated plane waves under investigation. Thus in 
other to examine the long time evolution of the modulated wave in the network as well as to verify the analytical 
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Figure 1.  Plot of critical amplitude ( ψ0,cr ) versus wave number (q) for different values of thermal coupling T(1) . 
The rest of the system parameters set at T(2)

= 1.0 , D0 = 0.02,D1 = 0.50, and D2 = 0.85.
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predictions, we carried out the numerical simulation of the Eq. (1) via fourth-order Runge Kulta Computational 
scheme. The initial conditions are carefully selected from the unstable region of MI, to correspond to plane 
waves slightly modulated. The wave numbers set at q = 0.21π and ϑ = 0.10π . By setting the thermoelectric 
couplings at T(1) = 1.4 and T(2) = 2.4 , we present the patterns of electrical activities of cardiac tissue in Figs. 3, 
4 and 5 for an array of 400 cells.

Figures 3, 4 and 5 portrait the features of the cardiac action potential of the network. Figure 3 presents the 
3D patterns, Fig. 4 presents the spatiotemporal evolution and Fig. 5 presents the spatial features. They are clearly 
localized wave pattern. Firstly, the wave localization pattern observed, confirms our analytical predictions, based 
on the well documented theory of modulational instability, which predicts the existence of localized modes in 
all systems where dispersion and nonlinearity are  present22. The modulated wave structures obtained though 
regular patterns are nonlinear waves since the thermoelectric couplings parameters ( T(1) = 1.4,T(2) = 2.4 ) are 
selected from the unstable region of MI, as provided by Fig. 1. The bright regions observed in the spatiotemporal 
pattern as presented in Fig. 4 indicates where the neurons fire, while the blue regions quiescent state. These bright 
regions correspond to the firing mode of individual spikes inside a burst. The result obtained in this work also 
agrees with experimental observations from cultured cardiac  myocyte34,35. Spatiotemporal dynamical patterns 
including the wave pattern obtained in this work in the form of discrete pulses have been reported in excitable 
network, physical and biological  media24,32,36,38. Spatiotemporal patterns have been reported in excitable brain 
micro-circuits, described to be highly relevant in intercellular communication such as visual and olfactory 
 cortices37. According to the analytical predictions, changing the thermoelectrical couplings should influence 
the patterns obtained. Figures 6 and 7 present the spatiotemporal evolution of the transmembrane potential for 
different values of T(1) and T(2).

Figure 3.  Panel shows 3D evolution pattern of the cardiac action potential for an array of 400 cells, for 
T
(1)

= 1.4,T(2)
= 2.4 , D0 = 0.02,D1 = 0.50, and D2 = 0.85.

Figure 4.  Spatiotemporal evolution (X,Y) of the cardiac action potential for an array of 400 cells presented in 
Fig. 3, for T(1)

= 1.4 and T(2)
= 2.4 . Time increases from top to bottom.
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Figure 5.  Spatial feature (Y, Z) of the 3D pattern presented in Fig. 3, for T(1)
= 1.4 and T(2)

= 2.4.

Figure 6.  Spatiotemporal evolution pattern (X,Y) of 400 cells, for T(1)
= 6.0 and T(2)

= 6.0 . The rest of the 
system parameters are kept fixed as in Fig. 3.
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Figures 6 and 7 presents the spatiotemporal evolution pattern of the modulated wave, when the thermo-
electrical couplings are increased, while keeping the rest of the system parameters constant. As expected from 
analytical predictions, the patterns emerging from the lattice are modified. As T(1) and T(2) are both changed 
from 6.0 (Fig. 6) to 8.0 (Fig. 7) respectively, we observe a delay in wave formation and localization in the lattice. 
The localized structure evolves towards a homogenous state, destroying discreteness. It could be thought that as 
the temperature of the media is increased, the resulting feedback modulation in the collective electrical activities 
increases the threshold transmembrane potential required for the emergence and propagation of an action poten-
tial. The disappearance of the discrete wave pattern suggests the possible assimilation of the network dynamics 
into a single myocardial cell behavior. In order to quantitatively characterize the changes in the amplitude of 
the modulated wave, we present the corresponding spatial patterns (presented in Figs. 6 and 7) in Figs. 8 and 9.

Figure 7.  Spatiotemporal evolution pattern (X,Y) of 400 cells, for T(1)
= 8.0 and T(2)

= 8.0 . The rest of the 
system parameters are kept fixed as in Fig. 3.

Figure 8.  Spatial evolution (Y, Z) at T(1)
= 6.0 , T(2)

= 6.0 of modulated wave for an array of 400 cells.
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Figures 8 and 9 show a rise in the modulated wave amplitude as the value of thermoelectrical couplings are 
increased. Such growth will surely promote the break down of the modulated wave propagating in the network 
into trains of solitonic objects. From biophysical point of view, a great variation in temperature from both the 
internal and external environment could initiates mode transition in the electrical activities of cardiac tissue, 
while a low value, the myocardial cells could maintain its normal electrical activities through spiking activity. 
This is confirmed in Figs. 10 and 11. An optimal temperature of ion channels could enhance signal transmission 
during the physiological activities of the cells.

Normal electrical activities of neurons and myocardial cells are very vital in maintaining the normal physi-
ological activities of the nervous and cardiac systems. Injury of these vital systems have been proven fatal and 
compromising to health. Investigating the cellular changes in electrical activities of cells could be a fruitful avenue 
in discerning organ physiological activities as well as possible pathological states. Severe sickness and sudden 
heart disorder are often associated to thermal effect in biological  cells39. Oakley et al.40 reported increase in the 
number of recorded epileptic seizures in hot weather condition. Understanding the basis of such manifesta-
tion is crucial in cardiology, biophysics and several related medical practices. Several contributions have so far 
enlightened the relationship between cardiac pacing and the initiation of cardiac arrhythmias. Fenton et al.7 
through numerical experiments reported that such mechanism is closely linked to thermal effect. Lu et al.41 
observed numerically in a network of neurons, the existence of Arnold tongue-like structure in the time series 

Figure 9.  Spatial evolution (Y, Z) at T(1)
= 8.0 , T(2)

= 8.0 of transmembrane potential for an array of 400 cells. 
The amplitude of modulated wave is observed to be an increasing function of the thermoelectrical couplings.
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Figure 10.  Spatial features (Y, Z) with T(1)
= 2.0 , T(2)=2.0 at the time unit t = 50.
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of membrane potential dependent on temperature parameter. In this current contribution, we have presented 
a methodology based on analytical and numerical simulation to account for the physiological changes occur-
ring at the cellular level due to temperature fluctuation. Results from our analytical calculations predict thermal 
couplings promote the growth rate of modulational instability (MI) of the propagating plane wave in the cell 
lattice. This prediction is confirmed by numerical experiments whereby parameters picked from the unstable 
region of MI generates a localized wave pattern in the lattice, dependent on the thermal couplings. High thermo-
electrical couplings under fixed stimulation current, promotes wave localization. The increase the amplitude of 
action potential could be at the basis of turbulent electrical activities, observed during the event of sudden heart 
disorder. Changes in temperature can therefore fluctuate electrical behavior of cardiac tissue. This result partly 
confirms the investigations of Lu et al.41 and Zhao et al.42, obtained in the case of neuronal electrical activity. As 
perspective, a more realistic model can be envisaged to include the physical law of electromagnetic induction 
and  radiation4,31,43, time  delay44,45,  noise46,  autapses47 and the action of chemical  synapses48. Researchers may 
further build neural circuits coupled with thermistors, whose conductance is temperature dependent in other 
to investigate cooperative behaviors such synchronization consensus due to heat  capture49.

Conclusion
Modulational instability (MI) has been explored in the frame work of the improved myocardial cell model to 
investigate the effect of temperature fluctuation on electrical activity. By introducing thermoelectrical couplings 
in the minimal model, we analyze both analytically and numerically via the technique of MI, its effect on wave 
localization during intercellular communication. Analytically, thermoelectrical couplings considerably modify 
instability features as the growth rate of MI is observed to be an increasing function of the thermoelectric cou-
plings. By selecting suitable parameters based on our analytical predictions, localized solitonic wave patterns are 
obtained from the lattice with some features of synchronization. The localization of wave patterns in the network 
are observed to be dependent on the thermoelectric couplings. High thermoelectric couplings increases the 
amplitude of myocardial action potential. Temperature fluctuation modifies the nonlinearity of the media and 
thus promotes the mechanism of MI, since it is known that due to competitive interaction between nonlinear-
ity and dispersion, a small perturbation on the envelope of an impulse plane wave could induce an exponential 
growth in amplitude, leading to the breakup of the carrier-wave into a train of localized waves. Finally, some 
open problems are presented for readers extensive investigation.
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