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Delineating gene regulatory networks that orchestrate cell-type specification is a con-
tinuing challenge for developmental biologists. Single-cell analyses offer opportunities
to address these challenges and accelerate discovery of rare cell lineage relationships and
mechanisms underlying hierarchical lineage decisions. Here, we describe the molecular
analysis of mouse pancreatic endocrine cell differentiation using single-cell transcrip-
tomics, chromatin accessibility assays coupled to genetic labeling, and cytometry-based
cell purification. We uncover transcription factor networks that delineate β-, α-,
and δ-cell lineages. Through genomic footprint analysis, we identify transcription
factor–regulatory DNA interactions governing pancreatic cell development at unprece-
dented resolution. Our analysis suggests that the transcription factor Neurog3 may act
as a pioneer transcription factor to specify the pancreatic endocrine lineage. These find-
ings could improve protocols to generate replacement endocrine cells from renewable
sources, like stem cells, for diabetes therapy.
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More than 400 million people are living with diabetes worldwide. Diabetes results
from loss or dysfunction of hormone-producing endocrine islet cells in the pancreas,
whose principal roles include regulation of circulating glucose levels. Advances in tissue
engineering to replace nonfunctioning endocrine cells have sustained interest in under-
standing the molecular mechanisms of pancreatic endocrine cell differentiation (1).
A key event during endocrine pancreas development is expression of the transcrip-

tion factor (TF) Neurog3 in select pancreatic duct cells (2). Neurog3 specifies endo-
crine progenitor cells, which differentiate into hormone-producing cells that delaminate
from the duct and aggregate to form pancreatic islets (3–5). Several distinct endocrine
cell types aggregate within pancreatic islets, including insulinpos β-cells, glucagonpos
α-cells, somatostatinpos δ-cells, ghrelinpos ε-cells, and PPYpos γ-cells. Mice lacking
pancreatic Neurog3 fail to develop endocrine islet cells (2, 6–8) In one model based on
lineage tracing (9, 10), Neurog3pos cells are postulated to originate from a “bipotent
progenitor” with potential to generate either ducts or islets (11).
Emerging single-cell technologies are revolutionizing developmental biology by

enabling quantitative molecular analysis of transient, rare cell types in developing
organs, especially lineage progenitor cells. Recently, several groups used single-cell
RNA sequencing (scRNA-seq) to catalog dynamic transcriptome changes during mouse
pancreas development and endocrine cell differentiation (12–17). Some studies provide
evidence for the existence of endocrine progenitor subtypes, which may be biased
toward specific hormone (17–19). While these reports contributed substantially to our
understanding of endocrine pancreas development, they did not report the specification
of the crucial islet δ-cell lineage (20) or investigate chromatin conformation changes by
overcoming cell labeling ambiguities related to Neurog3-green fluorescent protein
(GFP) cells (21).
To address these unmet needs, we used an integrative approach that combined cell-

surface-marker-based sorting, genetic labeling, chromatin analysis, and single-cell assays to
elucidate molecular mechanisms underlying gene expression changes during endocrine
pancreas differentiation. By establishing pseudotime trajectories for hormone lineages,
including islet δ-cells, we identified unique combinations of TFs guiding differentiation
of the β-, α-, and δ-lineages. Chromatin accessibility analysis using Assay for Accessible
Chromatin (ATAC-seq) (22) unexpectedly revealed extensive similarities between duct
cells and those that activate Neurog3. We discovered genomic regions that undergo
substantial transformation during development and identified enriched motifs in open
chromatin specific to differentiation stages. We also applied powerful genomic footprint
analysis to identify TF activity in open chromatin regions and found evidence of specific
TF footprints linked to their associated motifs. Our analysis suggests a revised model for
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endocrine pancreas development by providing evidence for direct
development of this lineage from duct cells and the absence of a
bipotent progenitor.
Our results demonstrate the feasibility of using a combined

scRNA-seq and ATAC-seq analysis to map gene regulatory net-
works that define pancreatic cell lineages. We anticipate our
findings and those from similar works should foster efforts aim-
ing to direct the development of renewable cell sources, like
stem cells, for tissue replacement and regeneration.

Results

Single-Cell Transcriptomic Analysis of Endocrine Pancreas
Development. To understand gene expression dynamics during
pancreatic endocrine cell differentiation, we performed scRNA-
seq on cells isolated from mouse embryonic day 15.5 (E15.5)
and E17.5 pancreas. We used the Neurog3-eGFP knock-in and
Neurog3-Cre,Rosa-mTmG mice combined with cell-surface
markers to isolate specific populations from the embryonic pan-
creas (see Methods) (21,23,24). We followed the SMART-Seq2
(25) protocol to sequence messenger RNAs (mRNAs) from sin-
gle cells sorted into 96-well plates by fluorescence-activated cell
sorting (FACS; SI Appendix, Fig. S1 A–D). Using this strategy,
we collected and sequenced a total of 604 cells: 461 from E15.
5 cells and 143 from E17.5 cells.
After initial read processing to count transcripts for each gene

in each cell (Dataset S1), we used Monocle2 (26), a single-cell
analysis tool, for downstream cell clustering and trajectory analy-
sis (SI Appendix, Fig. S2). Unsupervised clustering organized cells
based on transcriptome similarity, revealing a recognizable
sequence of pancreatic endocrine cell differentiation (Fig. 1A and
SI Appendix, Fig. S1 C and D). This developmental process
included a progenitor cluster expressing high levels of Neurog3, a
transitioning early endocrine cell cluster, a definitive endocrine
cluster marked by high levels of Chga expression, and a cluster of
exocrine cells marked by Cpa1 expression (Fig. 1B). We also
found a small cluster of mesenchymal cells (14 cells, <3% of total
cells), which were excluded from further analysis.
To delineate gene expression programs involved in endocrine

cell development, we aligned cells in a pseudotime trajectory
based on quantitative gene expression profiles that change contin-
uously in differentiating cells. This analysis placed all cells on a
single trajectory that corroborated the known progression of duct
cells into Neurog3pos progenitors, followed by hormone-expressing
endocrine cells (Fig. 1C). We found more than 2,500 genes
whose expression changed significantly along this pseudotime tra-
jectory (q value < 0.05). Then, k-means analysis partitioned these
differentially expressed genes into distinct gene clusters (Fig. 1D
and Dataset S2). To better visualize the gene expression trends in
each cluster, we used LOESS (or locally weighted) smoothing
along pseudotime (Fig. 1E and SI Appendix, Methods). Gene
Ontology (GO) term analysis identified enriched biological pro-
cess terms in these clusters relevant to pancreatic differentiation
(false discovery rate [FDR] < 0.2; Fig. 1E and Dataset S3) (3, 5).
Cluster 1 included genes that are expressed at high levels at

the start of the pseudotime trajectory, then decline significantly
or are extinguished as cells differentiate into the endocrine line-
ages. These genes included known regulators of multipotent
pancreatic progenitor or exocrine cells (Ptf1a, Hes1, Notch1,
Rbpj), the cell cycle (Mki67, Ccna2, Cdk1), and factors
involved in maintenance of chromosome organization or cova-
lent chromatin modifications (Smc4, Ezh2, and Ctcf). Cluster 2
genes had a similar trend, although their expression remained
detectable in endocrine cells. These include genes regulating

RNA binding and splicing, translation initiation, and ribonu-
cleoprotein complexes. Cluster 3 genes are mainly expressed in
endocrine progenitor cells and trend similarly with Neurog3
expression, including Pax4, Tox3, and Cbfa2t3. Most Cluster 3
transcripts were detectable only transiently in progenitor cells,
then extinguished in endocrine cells. Cluster 3 was associated
with GO terms related to cell differentiation and endocrine
pancreas development (Dataset S3). Clusters 4, 5, and 6 con-
tained genes whose expression increased following the Neurog3
induction. Cluster 4 genes included Chga, Pcsk2, Pax6, Iapp,
Neurod1, and Isl1 and were turned on shortly after Neurog3
expression peaked, in early endocrine cells that still lack
mRNAs encoding the principal islet hormones. Clusters 5 and
6 genes include the hormones Ins1, Ins2, Ppy, Sst, and Gcg,
whose expressions peak in endocrine cells. These clusters also
included genes involved in vesicle-mediated transport, ion
transport, response to endoplasmic reticulum (ER) stress, regu-
lation of insulin secretion, and exocytosis. Cluster 7 contained
genes enriched with functions in the mitochondrial respiratory
chain complex, proton transport, and ATP synthesis. Taken
together, pancreatic endocrine cell specification involves highly
dynamic gene regulatory programs, encompassing multiple
groups of gene families with distinct functions.

Analysis of Pancreatic Endocrine Progenitors. Prior studies
reported the existence of distinct Neurog3pos endocrine progeni-
tor subtypes (17–19). To investigate the heterogeneity in
Neurog3pos progenitor cells, we focused on the cells expressing
Neurog3 transcript in our dataset and visualized them using the
t-SNE (t-distributed stochastic neighbor embedding) method.
This analysis identified three clusters based on Neurog3 tran-
script abundance—designated as hi, med and lo—though none
of the clusters split into visually distinct groups on the t-SNE
projection (Fig. 2A). The Neurog3hi cells had the highest Neu-
rog3 levels compared to other clusters (Fig. 2B), likely the result
of increased Neurog3 transcription that occurs during the sec-
ondary transition of endocrine differentiation (7). Fewer than
10% of the Neurog3hi cells had detectable Chga expression (Fig.
2C). In comparison, Neurog3med and Neurog3lo cells had lower
Neurog3 transcript levels, while Chga mRNA levels were
increased (Fig. 2C). Thus, the observed “transcriptional hetero-
geneity” in Neurog3pos cells is likely a direct reflection of
advancing development. Moreover, these data argue against a
model where endocrine progenitor cells randomly develop from
cells with heterogeneous Neurog3 levels. When we analyzed the
expression of individual hormone genes, we found that the
number of cells expressing Ins1, Ins2, Gcg, or Sst increased as
cells transitioned from Neurog3hi to Neurog3lo progenitors, with
Sst appearing only in the Neurog3lo cluster (Fig. 2D). Addition-
ally, we investigated the number of cells simultaneously express-
ing one, two, or three of these hormone genes and found that
the number of cells coexpressing multiple hormone genes
increased as Neurog3 expression decreased. For instance, none
of the Neurog3hi cells were polyhormonal, whereas 18% of
Neurog3lo cells expressed two and 2% expressed all three hor-
mone genes (Fig. 2E).

To investigate whether there is transcriptional heterogeneity
in Neurog3pos endocrine progenitors isolated from different
developmental stages, we examined all Neurog3pos cells by incor-
porating the embryonic stage information onto the clusters
(Fig. 2F). We did not observe distinct clustering of E15.5 and
E17.5 Neurog3pos endocrine progenitors; rather, the cells were
arranged coincident with their developmental stage (Fig. 2F).
When temporally ordering Neurog3pos cells via pseudotime
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analysis, the continuous developmental progression was appar-
ent in a single trajectory without any branching (Fig. 2G).
Taken together, in our dataset, we did not find evidence for

lineage biases or subtypes in endocrine progenitors isolated
from different embryonic time points. We found that nascent
endocrine cells may transiently coexpress mRNAs encoding
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Fig. 1. (A) t-SNE plot showing single-cell clusters, colored by cluster. Each dot is a single cell. Cluster names are indicated on the graph. (B) Marker gene
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multiple hormones in an intermediate “polyhormonal” state
preceding branch specification.

Single-Cell Trajectories Defining Endocrine Cell-Type Specification.
While Neurog3 is necessary and sufficient to establish the pancre-
atic endocrine lineage, the mechanisms underlying subsequent
endocrine lineage diversification are not well established. Other
studies using single-cell approaches successfully delineated β- and
α-cell branches of islet endocrine cell differentiation but failed to
identify a distinct branch for δ-cell specification (13, 15–19). In
our data, an unsupervised approach including all cells also did
not yield trajectories defining individual hormone lineages (Fig.
1C). We reasoned that when all cells are included, the substantial
shift in gene expression programs at the onset of Neurog3 activa-
tion might hinder the discovery of less-pronounced differences in
the initial β-, α-, and δ-cell lineage decisions. To circumvent this
issue, we focused analysis on cells after Neurog3 peak expression
(SI Appendix, Fig. S3) and performed semisupervised clustering
with marker gene information (26). Briefly, endocrine progeni-
tors and β-, α-, and δ-cells were preassigned based on marker
genes before attempting clustering. A prior study used a similar
approach to resolve mixed hematopoietic lineages (27). We then
performed iterative rounds of trajectory analysis, sequentially
removing cells already assigned to an endocrine cell branch in
each iteration, until all branches were identified (Fig. 3 A and B).
This approach successfully partitioned β-, α-, and δ-cells into
nearly exclusive, specific branches (Fig. 3C), suggesting that

expert curation can overcome some limitations of trajectory anal-
ysis (also see Discussion).

TF Networks Regulating Islet Cell Lineage Gene Expression.
To reveal the gene expression changes underlying distinct
trajectories of endocrine cell specification, we performed differ-
ential gene expression analysis among cells assigned to the β-,
α-, and δ-lineages. We defined the lineages as beginning from
the duct cells and ending with hormone-expressing endocrine
cells (Fig. 3 A and B and Dataset S4). We focused our analysis
on TFs due to their well-established role in determining cell
fates. This analysis revealed 145 TFs whose expression changed
significantly during endocrine cell differentiation (SI Appendix,
Fig. S4). We visualized how these TFs may be regulating dis-
tinct lineages by constructing a network based on TF expres-
sion patterns in each cell type (duct, β-, α- and δ-cells) or state
(early progenitor, late progenitor; Dataset S5, also see SI
Appendix, Methods for details). For instance, Hes1 was detected
in duct cells and, thus, was connected to the node representing
the duct cell.

Topological examination of the TF expression–cell-state
interaction network revealed three network patterns. In net-
work pattern 1, we found TFs highly specific to a single line-
age. For example, 92% of cells in the β-cell lineage express
Nkx6-1, and 71% of α-cells express Arx. Nkx6-1 is thought to
repress transcription of Arx, which specifies the α-cell lineage;
conversely, Arx is postulated to repress transcription of Nkx6-1,
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which specifies the β-cell lineage (28). We found that Smarca1
is highly specific to the α-cell lineage, and this is consistent
with recent reports of Smarca1 activation during α-cell develop-
ment, prior to Gcg expression (13, 17). Smarca1 is an ATP-
dependent chromatin remodeler, which can be selectively
recruited to cell-type-specific enhancer elements (29). A second
TF, Etv1, is a Neurog3 target (30), and in our data we find
Etv1 is highly specific to the fetal α-cell lineage, indicating this
TF has a functional role in α-cell development. In our network,
we confirmed that Hhex is specific to the δ-lineage (31) and
found additional factors. Zbtb20 has increased expression in
δ-cells relative to β- and α-cells and, to our knowledge, has not
been reported before. Instead, Zbtb20 was recently identified as
a TF upregulated in the α-cell lineage (17). Because the
δ-lineage was not defined in this report, it is possible that the
uncategorized δ-cells aligned with the α-lineage instead. Other
TFs that are highly specific to the δ-cell lineage, but with no
known functions, include Zfhx2, Rere, and Cxxc4.
In network pattern 2, we found TFs that are expressed in

multiple cell types or states. For instance, the high mobility
group proteins Hmgb2, Hmgb3, and Tead2, a YAP (Yes-associ-
ated protein 1) signaling factor, are initially expressed in duct
cells and continue to be expressed in early Neurog3pos progeni-
tors. We also found known TFs—including Isl1, Rfx6, Pax6,
and Meis2—in the β-, α-, and δ-cell lineages. In line with a
prior report, almost all endocrine cells in the β-, α-, and δ- line-
ages appear to pass through a Fevpos stage after Neurog3 expres-
sion (13). In this network, Fev is most specific to late

progenitors. After islet cells transit through a Fevpos stage, Fev
expression rapidly declines in the β-cell lineage but remains at
detectable levels in α- and δ-cells (SI Appendix, Fig. S4).

Network pattern 3 includes TFs that follow an ON-OFF-
ON pattern as cells differentiate from duct to progenitors to
endocrine lineages. For example, Xbp1 is abundant in duct
cells, but its levels decrease in early and late Neurog3pos progeni-
tors then increase in β-, α-, and δ-cells. In mice, loss of Xbp1
results in hyperglycemia (32), abnormal zymogen granules, and
aplasia of acinar cells (33). Xbp1 is an essential regulator of the
unfolded protein response and ER stress (34). Similarly, Creb3
and Id2 follow the ON-OFF-ON pattern. These TFs were
recently reported to be associated with ER and oxidative stress
response programs in human islet β-cells (35).

Chromatin Accessibility Dynamics during Islet Endocrine Cell
Differentiation. To investigate chromatin accessibility changes
during endocrine cell differentiation, we performed ATAC-seq
(22) on purified populations of duct, endocrine progenitor,
and endocrine cells isolated from E15.5 pancreas using the
Neurog3-eGFP knock-in mice (21) (Fig. 4A and SI Appendix,
Table S1). In these mice, the coding region of Neurog3 is
replaced by an eGFP cassette, thereby regulating eGFP produc-
tion from the endogenous Neurog3 cis-regulatory element,
including the promoter. As reported previously, heterozygous
Neurog3eGFP/+ animals form a complete endocrine pancreas
with no discernable phenotypes (21). However, in homozygous
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Neurog3eGFP/eGFP animals, eGFPpos cells lack Neurog3 and fail
to differentiate further into the endocrine lineage.
To achieve requisite specificity needed for experiments involv-

ing purification of Neurog3-expressing cells, we managed two
concerns not addressed in prior studies (19, 36). First, since
Neurog3 protein stability is transient and short-lived compared
to eGFP (37), we needed methods to discriminate between
eGFPpos Neurog3pos progenitors and eGFPpos Neurog3neg endo-
crine cells that have ceased to express Neurog3. We achieved this
using modified cell-sorting strategies (24) (see Methods). Second,
to address possible concerns about Neurog3 gene dosage effects
on endocrine cell differentiation, we used mice that are wild type
(Tg[eGFP]; Neurog3) (38), heterozygous, or homozygous null for
Neurog3 (Fig. 4B). This enabled direct comparison of chromatin
states in endocrine progenitor cells with varying Neurog3 gene
dosage. Specifically, we analyzed four distinct cell populations in
different genetic backgrounds: 1) Neurog3pos hormoneneg cells
(Neurog3); 2) eGFPpos Neurog3-null cells (Neurog3 null); 3)
hormonepos islet cells (endocrine); and 4) duct cells (duct) (Figs.
4 A and B and SI Appendix, Table S1). In total, we performed
ATAC-seq on 15 primary pancreatic cell samples.
After aligning sequencing reads, we visually inspected loci near

genes essential for pancreas development like Ptf1a, Neurog3,
Neurod1, and Ins1 (Fig. 4C). ATAC-seq revealed substantial reor-
ganization of chromatin accessibility in regions near these and
other genes (see below) during differentiation from duct cells to
Neurog3pos endocrine progenitor cells and endocrine cells. For
instance, open chromatin “control regions” in the Ptf1a locus
were detected in wild-type duct cells and Neurog3-null cells; the
accessibility of this chromatin was then eliminated as duct cells
transitioned into endocrine progenitors, a “closed” state also main-
tained in endocrine cells (39). Neurog3 is thought to bind its own
promoter (40), and, consistent with this view, we observed open-
ing of the Neurog3 promoter in Neurog3 cells, coinciding with
Neurog3 expression (Fig. 4C). In Neurod1 locus, an established
Neurog3 target, promoter-proximal chromatin was closed in duct
cells but became accessible in Neurog3pos endocrine progenitors.
In the Ins1 locus, chromatin in control regions remained closed
until cells committed to the endocrine lineage. Thus, cell purifica-
tion combined with ATAC-seq generated high-quality chromatin
maps that corresponded to distinct differentiation stages.
To investigate the similarity in chromatin states between

ATAC-seq samples, we calculated pairwise Pearson correlation
coefficients and organized samples by clustering (Fig. 4D). This
analysis revealed three groups that corresponded to duct cells,
Neurog3pos progenitors, and endocrine cells. Chromatin profiles
of cells isolated either from wild-type or heterozygous Neurog3
mice were similar. Unexpectedly, Neurog3-null cells clustered with
wild-type duct cells (Fig. 4D). If ductal epithelia harbored bipo-
tent cells that could become either endocrine progenitors or duct
cells, we expected to see a distinct clustering of Neurog3-null
from duct cells. Thus, cells that activated Neurog3 transcription in
the ductal epithelium but could not differentiate into endocrine
lineage have chromatin that is indistinguishable from duct cells.
This suggests that chromatin “priming” in duct cells prior to
expression of Neurog3 is not required for endocrine differentiation.
Furthermore, Neurog3 might be a pioneer TF whose functions
include the capacity to initiate nucleosome displacement or con-
formational changes in inaccessible chromatin (Fig. 4E) (41).

Differentially Accessible Chromatin Regions Reveal Cis-Regulatory
Elements that Mediate Endocrine Lineage Specification. To iden-
tify differentially accessible chromatin regions in our sorted cell
types, we analyzed the ATAC-seq signal at every peak across all

samples using the DESeq algorithm (42). From a total of
116,942 ATAC-seq peaks, we found 10,687 that have signifi-
cant accessibility changes between samples (FDR < 0.001).
The k-means clustering of differentially open peaks revealed
three main groups of genomic regions that represent the open
chromatin profiles of distinct cell states (Fig. 5A and Dataset
S6). In group I, we observed 2,754 accessible regions in duct
cells (either wild type or Neurog3 null) that switch to a closed
state in Neurog3pos progenitors and remain closed in endocrine
cells. Using the GREAT algorithm (Genomic Regions Enrich-
ment of Annotations Tool) (43), we found that these regions
were associated with genes that have established roles in exo-
crine pancreas cell development, gland development, and cell
proliferation like Fgfr, Smad, Ptf1a, Hes1, and Notch signaling
(Fig. 5B). Group II includes 6,312 and group III includes 1,621
accessible regions (Fig. 5A). Based on the ATAC-seq signal, we
observed that these regions are closed in duct cells, are open in
Neurog3pos progenitors, and remain in open state in endocrine
cells. The regions in group III have significantly stronger ATAC-
seq signal in endocrine cells compared to endocrine progenitors,
suggesting that other regulatory factors independent of Neurog3
might be enhancing the accessibility in these regions once the
cells begin producing hormones. GREAT analysis linked chroma-
tin from groups II and III to genes known to regulate endocrine
pancreas differentiation, or cardinal features of islet function
including peptide hormone processing, and regulation of calcium
ion-dependent exocytosis (Fig. 5B).

To discover TF motifs within these dynamic chromatin
regions, we performed TF motif enrichment analysis using the
HOMER algorithm (Hypergeometric Optimization of Motif
EnRichment) (44). Consistent with the GREAT analysis, we
found overrepresented motifs (Fig. 5C) of exocrine lineage specific
factors like Tead, Rbpj, and Nr5a2 in accessible chromatin regions
of duct cells in group I. In contrast, our analysis of regions in
group II identified Neurog3, NeuroD, Rfx, and Pax motifs— all
known regulators of endocrine pancreas development. Likewise,
the analysis of group III regions yielded enriched TF motifs of lin-
eage markers of β- and α-cells, including Mafb and Isl1. Thus, by
combining cell sorting, mouse genetics, and ATAC-seq, we identi-
fied developmentally resolved chromatin states and found
sequence motifs enriched for regulators of pancreas development,
demonstrating the sensitivity and specificity of our approach.

Identifying TF Occupancy in Regulatory Genomic Regions
during Endocrine Cell Differentiation. Chromatin accessibility
assays, like ATAC-seq and Dnase-seq, enable identification of
TF occupancy sites where DNA is protected from enzymatic
cleavage or transposition due to TF binding, leaving a “TF
footprint” (22, 45). We envisioned that an integrative approach
combining TF footprint and single-cell gene expression profiles
could uncover TF activity during endocrine pancreas differenti-
ation. We used the BaGFoot algorithm (Bivariate Genomic
Footprinting) to identify changes in TF occupancy between
two cell states using our ATAC-seq samples (46). BaGFoot cal-
culates two parameters for each TF motif: 1) footprint depth
(FPD), the relative protection of DNA at the TF motif site;
and 2) flanking accessibility (FA), the quantification of accessi-
ble chromatin near the TF motif (Fig. 6A). TF binding dynam-
ics is expected to affect these two parameters genome-wide;
thus, by comparing the FPD and FA between two samples, we
can infer changes in TF activity. For instance, a motif with a
deep FPD and high FA would indicate strong protection at the
motif site. These results are represented in “bagplots,” which
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are analogous to “box and whisker” plots (Fig. 6B, also see SI
Appendix, Methods).
We calculated the FPD and FA values for more than 650

curated TF motifs using our ATAC-seq data. Pairwise compari-
son of footprint signatures in duct cells and Neurog3pos progeni-
tors or duct cells and endocrine cells revealed changes in TF
activity. Consistent with the HOMER-based motif analysis, we
found strong footprint signals for Gata and Onecut TFs and
nuclear receptors in duct cells. In endocrine cells, we detected
footprints for homeobox TFs including Isl1, Hnf1a, and Pou TFs
(Fig. 6 C–E and Dataset S7). Comparison of Neurog3pos progen-
itors and endocrine cells revealed relatively modest TF activity
changes (Fig. 6D). Similar to the findings above, the most signifi-
cant changes in TF footprint activity occur during the transition
from ductal to endocrine progenitor state, supporting the view
that activation of Neurog3 is the main driver of changes in chro-
matin accessibility and gene expression.
We also calculated the FA and FPD scores of the TF motifs we

derived de novo from our ATAC-seq motif enrichment analysis
(Fig. 5C). These motifs displayed increased FA or FPD in the
appropriate cell type (indicated in bold; Fig. 6 C–E and Dataset
S7), independently validating the TF occupancy at these sequences.
While FPD and FA are often correlated, some TFs exhibited

only increased FA without a detectable footprint, likely due to
distinct DNA binding kinetics— for instance, those TFs with
high OFF rates (46, 47). TFs matching this profile were basic
helix–loop–helix factors including Neurog3, Neurod1, and Ascl2
in endocrine progenitors. In addition, some motifs were found in

the second quadrant, displaying deeper FPD but decreased FA in
endocrine or Neurog3pos progenitor samples compared to duct
cells. This profile is consistent with repressor TFs, whose DNA
binding activity leads to decreased accessibility surrounding the
motif. We found that Tead factors and ETS (Erythroblast Trans-
formation Specific) family TFs—including Etv6, Elf2/4, and
Erf—were included in this group (Fig. 6 C and E).

Paralogous TFs often bind similar DNA motifs, resulting in
nearly identical footprint scores. For instance, Neurog3 motif
could also be recognized by Neurog1 or Neurog2 (Fig. 6 C
and E). Thus, footprint analysis alone cannot determine which
TF family member might be occupying the regulatory sequen-
ces in a particular cell type. Integrating BaGFoot results with
single-cell expression data overcomes this limitation. We found
more than 50 TFs whose expression correlates with a matching
footprint (Fig. 6F and SI Appendix, Fig. S5 and Dataset S8).
Among the TFs whose expression was detected in at least 25%
of the cells within each group (Fig. 6F), we confirmed the
activity of known regulators—for instance, Nr5a2 and Gata4
in duct cells (48, 49). In addition, we found footprints of sev-
eral relatively less-studied nuclear receptor TFs (Nr2f6, Nr3c1),
and we identified a Nuclear Factor 1 family TF, Nfix, that has
increased activity in Neurog3pos progenitor cells (Fig. 6D and
SI Appendix, Fig. S5). Taken together, footprint and expression
analysis predicted dozens of regulators whose roles have not
been previously explored in endocrine cell development and
provided quantitative evidence of selective TF occupancy in
different pancreatic cell types.
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Discussion

Here, we established an integrative approach combining cell
purification, genetic labeling, single-cell transcriptomics, chro-
matin accessibility assessment, and TF footprint analysis to elu-
cidate molecular mechanisms underlying pancreatic endocrine

cell specification. We show that mouse pancreatic endocrine cell
development is a dynamic process involving a network of TFs
whose expression is selectively tuned to define specific hormone
lineages. We were able to delineate gene expression changes
leading to δ-cell specification and nominate unrecognized
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factors that could regulate δ-cell function. We demonstrate that
in developing pancreatic epithelial cells, chromatin undergoes
substantial reorganization upon Neurog3 induction. In remod-
eled genomic regions during development, we identified
enriched TF motifs and footprints that correspond to TF activ-
ity in specific cell types.
Two prior studies (17, 19) postulated that the Neurog3pos

progenitors exhibit heterogeneity and temporal lineage biases.
In our study, using the same mouse models and embryonic
stages, we did not find evidence for such bias even though our
gene expression results aligned well with differential gene
expression reported by Scavuzzo and colleagues. Thus, differ-
ences in our findings may reflect interpretation of alternative
analytical approaches, rather than primary data. Similar views
about the challenges in single-cell analysis and biological inter-
pretation were discussed in recent reviews (50, 51).
Using an iterative, semisupervised clustering approach, we

successfully identified branching points that specify three hor-
mone lineages, including β-, α-, and δ-cell lineages. In our
dataset, we found only 13 pancreatic polypeptide (PP) cells,
which did not provide sufficient statistical power to permit a
PP-branch identification. Due to the known regulatory role of
TFs, we focused on differentially expressed TFs between these
lineages. We identified known, as well as previously under-
studied, pancreatic TFs that may have roles in islet endocrine
cell specification. Based on analysis of TF expression in specific
developmental timelines, we suggest that pancreatic lineage
specification is governed by a network of TFs with dynamic,
overlapping expression profiles. For instance, while Neurog3 is
necessary for the endocrine lineage, it needs to be turned off to
permit further differentiation of endocrine cell lineages. We
speculate that this may explain the low efficiency observed in
direct reprogramming approaches when a handful of lineage-
specific TFs are constitutively overexpressed to force nonislet
cells toward a β-cell fate (52, 53). Our focused analysis of
Neurog3pos cells revealed that the pan-endocrine state precedes
specific endocrine lineages. This may explain why the intercon-
version of hormone cell types does not require Neurog3
(54, 55). Consistent with this view, a recent report showed that
NEUROG3 binds genomic regions regulating pan-endocrine
genes but not regions regulating specific hormone expression
(56). Likely reflecting the sensitivity of SMART-seq assays used
here, we found that the early endocrine cells are polyhormonal
as defined by their transcriptome. These results are also remi-
niscent of reports of polyhormonal cells generated during the
in vitro differentiation experiments using human embryonic
stem cells or adult tissues with endoderm origin (14, 57–60).
Chromatin accessibility is thought to be a better predictor of

cell identity than transcriptome analysis, with changes in chro-
matin states often preceding changes in gene expression (61).
By taking advantage of established cell markers and genetic
models, we were able to dissect the chromatin accessibility
changes during endocrine cell differentiation at unprecedented
resolution. The unexpected similarity between duct cells and
those that activate Neurog3 forced us to re-evaluate extant
endocrine cell development models. For example, our findings
provide evidence that pancreatic “trunk cells,” previously postu-
lated to be oligopotent progenitors, may simply be duct cells
that default to the ductal lineage in the absence of Neurog3
(Fig. 4E). Comparison of Neurog3pos cells from heterozygous
(Neurog3+/eGFP) and homozygous wild-type (Tg(eGFP);
Neurog3+/+) mice showed that a single, wild-type Neurog3 allele
is sufficient to drive global chromatin reconfiguration in the
pancreatic endocrine lineage. It is likely that in individual

ductal epithelium cells, Neurog3 concentration needs to reach
a critical threshold to compete with histone proteins for DNA
binding (11, 62).

Using a TF footprint algorithm, we provide quantitative,
cell-type-specific TF occupancy profiles at nucleotide resolution
in pancreatic duct, endocrine progenitor, and endocrine cell
regulatory DNA. To our knowledge, this is the most compre-
hensive analysis of TF activity correlated with gene expression
during pancreas development in any organism. TF-regulatory
DNA interactions form the basis of gene regulatory networks,
which are central to determining and maintaining cell-type-
specific transcription, cell fate, and function. Further deli-
neation of gene regulatory networks defining pancreatic cell
lineages will be crucial for understanding pancreas disorders
and has the potential to improve gene therapy approaches using
CRISPR-guided synthetic engineering to generate cells and tis-
sues (63). Expanding these strategies to human pancreas or
in vitro differentiation efforts using emerging single-cell tech-
nologies that query chromatin and gene expression profiles (64)
could offer new approaches to investigating the pathogenesis of
type 1 and type 2 diabetes.

Materials and Methods

Tissue Processing and FACS. Pancreata were dissected from E15.5 and E17.5
embryos and checked for GFP using a fluorescence dissecting microscope.
Details of mouse models can be found in SI Appendix, Materials and Methods,
section A. GFPpos pancreata were then digested with Tryp-LE express (Thermo-
Fisher, 12605-010) for 5 min at 37 °C, with regular pipet agitation to disrupt tis-
sue. The digestion reaction was stopped by adding FACS buffer, which contains
Ca2+ and Mg2+ free PBS (phosphate buffered saline) supplemented with 2%
bovine serum albumin and 10 mM EGTA (ethylene glycol-bis(β-aminoethyl
ether)-N,N,N0,N0-tetraacetic acid). The cell suspension was filtered to remove
debris using a cell 70-μm cell strainer (BD Biosciences). Red blood cells were
eliminated from dissociated cells using a lysis buffer (BioLegend). Cells were
then stained with Aqua live/dead viability dye (Thermo Fisher) to exclude dead
cells during sorting. Cells were incubated with a blocking solution containing
FACS buffer and goat immunoglobulin G (Jackson Labs, 1:20 dilution) prior to
staining with cell-surface antibodies. After blocking, antibody staining was per-
formed on ice for 30 min using the following antibodies: biotin mouse anti-
CD133 (13A4, 1:100; eBioscience) and Streptavidin-APC (1:200; eBioscience).
We also used CD45-PE-Cy7 (eBioscience) to label and exclude leukocytes. We
previously showed that CD133 labels Neurog3pos endocrine progenitors and
duct cells (24). By contrast, hormonepos islet cells that no longer produce
Neurog3 are CD133neg. After exclusion of CD45pos cells, the following gating
strategies defined pancreas cell subpopulations: GFPposCD133neg cells were con-
sidered “endocrine,” GFPposCD133poscells were “Neurog3pos” or “Neurog3 null”
if obtained from null animals, and GFPnegCD133pos cells were considered “duct”
(24, 30). Representative gates are shown in Fig. 4B. Note that the GFP intensity
of Neurog3-null cells is reduced. In wild type cells, Neurog3 normally enhances
its own expression through an autoregulatory “positive feedback loop.” In null
cells, this mechanism is likely absent (21, 40, 65).

scRNA-seq. scRNA-seq libraries were generated using the SMART-Seq2 method
as described (25). Dissociated cells were sorted directly into 96-well plates con-
taining lysis buffer with ERCC (External RNA Controls Consortium) RNA spike-in
controls (ThermoFisher). The details about the sorted cell populations, genotypes,
and associated plate codes are available in the Gene Expression Omnibus (GEO)
metadata file linked to this study (GSE146006). The lysis reaction was followed
by reverse transcription with template-switch using an LNA-modified (locked
nucleic acid) template switch oligos to generate complementary DNA (cDNA).
After preamplification, DNA was purified and analyzed on an automated Frag-
ment Analyzer (Advanced Analytical). A cDNA fragment profile corresponding to
each single cell was individually inspected, and only wells with successful amplifi-
cation products (concentration higher than 0.06 ng/ul) and no detectable RNA deg-
radation were selected for final library preparation. Tagmentation assays and
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barcoded sequencing libraries were prepared using Nextera XT kit (Illumina) accord-
ing to the manufacturer’s instructions. Barcoded libraries were pooled and subjected
to 75-bp paired-end sequencing on the Illumina NextSeq instrument. Details of
scRNA-Seq analysis are in SI Appendix, Materials and Methods, sections B–F.

ATAC-seq Assays and Data Processing. Three mouse genotypes were used
for ATAC-seq analysis: Tg-eGFP; Neurog3+/+, Neurog3eGFP/+, and Neurog3eGFP/eGFP.
From these animals, different cell populations were isolated as described in
the Tissue Processing and FACS section (also see SI Appendix, Table S1). ATAC-
seq was performed following the protocol in Buenrostro et al. (22). On aver-
age, 10,000 sorted cells were used for each ATAC-seq assay. Sorted cells were
pelleted at 300 g and washed once with PBS. Nuclei were isolated, followed
by the transposition reaction. Transposed DNA fragments were purified using
the Qiagen MinElute kit and amplified six to eight cycles using the Nextera
(Illumina) PCR primers. Libraries were sequenced as 50 bp paired-end on
HiSeq2000 platform. ATAC-seq data processing and genome alignment were
performed with PEPATAC (version 0.8.2), a pipeline developed to analyze
ATAC-seq samples (66). PEPATAC begins by trimming adapters using skewer
(version 0.2.2) with the parameters “-f sanger -t 8 -m pe”. Trimmed fastq files
were then mapped to the mm10 genome with bowtie2 (67) and the parame-
ter “–very-sensitive.” Lastly, peaks were called using MACS2 (68) with “-q 0.01
–shift 0 –nomodel.” At the end of PEPATAC processing, 42 to 88 million reads
aligned to the mouse genome, and 15,377 to 55,676 peaks per sample were
detected. These peak regions were then merged using BedTools (69) to gen-
erate a nonoverlapping consensus peak list for downstream analysis. ATAC-
seq fragments corresponding to the peaks were quantified by using the anno-
tatePeaks.pl function in the HOMER suite, a genome analysis tool (v.4.10)
(44). DESeq (42) was used to find regions with significantly different ATAC-
seq counts by running a generalized linear model with the modelFormula set
to “count∼condition” and “count∼1.” Accordingly, DESeq calculates P values

and FDR. Peaks passing the FDR threshold < 0.001 were considered differen-
tially open regions (DORs) between cell types (∼10,600 DORs). Pearson
correlation coefficient method was used to determine the similarity between
ATAC-seq samples based on DORs. The results were visualized using the
R package ggcorrplot with hierarchical clustering. DORs and samples were
clustered by Cluster 3.0 tool using the k-means method (70). ATAC-seq frag-
ment counts were further normalized by log2 transformation after shifting
values +1 for visualization in TreeView (71). To assign DORs to regulatory
domains and putative target genes, we used the GREAT algorithm (v3.0.0)
(43) with default settings. GREAT also outputs enriched GO terms associated
with these regions. For the GO term enrichment analysis, DORs were used as
test regions against whole genome (mm10) as background. Additional details
about TF enrichment and footprint analysis are in SI Appendix, Materials and
Methods, sections G–I.

Data Availability. The data discussed in this publication have been deposited
in National Center for Biotechnology, Gene Expression Omnibus (GEO) (72) and
are accessible through GEO Series accession numbers GSE146006 (73) and
GSE65794 (74).
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