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Abstract 

Background:  Cancer arises from an evolutionary process where somatic mutations give rise to clonal expansions. 
Reconstructing this evolutionary process is useful for treatment decision-making as well as understanding evolution‑
ary patterns across patients and cancer types. In particular, classifying a tumor’s evolutionary process as either linear 
or branched and understanding what cancer types and which patients have each of these trajectories could provide 
useful insights for both clinicians and researchers. While comprehensive cancer phylogeny inference from single-cell 
DNA sequencing data is challenging due to limitations with current sequencing technology and the complexity of 
the resulting problem, current data might provide sufficient signal to accurately classify a tumor’s evolutionary history 
as either linear or branched.

Results:  We introduce the Linear Perfect Phylogeny Flipping (LPPF) problem as a means of testing two alternative 
hypotheses for the pattern of evolution, which we prove to be NP-hard. We develop Phyolin, which uses constraint 
programming to solve the LPPF problem. Through both in silico experiments and real data application, we demon‑
strate the performance of our method, outperforming a competing machine learning approach.

Conclusion:  Phyolin is an accurate, easy to use and fast method for classifying an evolutionary trajectory as linear or 
branched given a tumor’s single-cell DNA sequencing data.

Keywords:  Intra-tumor heterogeneity, Perfect phylogeny, Constraint programming, Single-cell DNA sequencing, 
Perfect phylogeny

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​cdoma​in/​
zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
The clonal theory of cancer states that tumors arise from 
the accumulation of somatic mutations in a popula-
tion of cells [1]. This process leads to a tumor comprised 
of heterogeneous clones—groups of cells with similar 
genotypes—or what is commonly referred to as intra-
tumor heterogeneity. By performing bulk and/or single-
cell DNA sequencing of a heterogeneous tumor biopsy, 
researchers and clinicians may infer reasonable models 
of this evolutionary process for important downstream 

analysis and clinical decision-making. Specifically, the 
evolution of a tumor is represented by a phylogeny, i.e. 
a rooted tree where the leaves of the tree represent the 
extant cells of the tumor, internal vertices represent 
ancestral tumor cells, and the root represents a normal 
cell. Due to trade-offs between the two data types, tech-
niques for phylogeny inference have been developed for 
either bulk sequencing or single-cell data individually 
[2–6] as well as combined for joint inference [7–9]. Bulk 
sequencing data is less costly than single-cell data but 
results in a set of plausible phylogenies making it diffi-
cult to uniquely determine the true evolutionary history 
of a tumor [10, 11]. Conversely, single-cell data allows 
more precise reconstructions of a tumor’s evolutionary 
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history but is subject to high rates of sequencing errors 
and is more expensive than bulk sequencing. In particu-
lar, single-cell sequencing has a high false negative rate, 
as much as 40% [12], implying that actual mutations 
present in a cell might not be indicated correctly in the 
resulting data. Doublets, where multiple cells are simul-
taneously sequenced as a single cell, are also a unique 
challenge of single-cell data. Less problematic are false 
positives, which indicate the presence of a mutation that 
is not present in a cell. While these rates are low (ranging 
from 0.0001 to 0.001 [12]) in comparison to false negative 
rates, it is important to account for false positives when 
inferring the evolutionary history of tumor.

One important open question is whether certain types 
or subtypes of cancers follow specific evolutionary pat-
terns. Since tumors are typically biopsied at only a sin-
gle point in time for reasons related to patient care, there 
does not yet exist sufficient longitudinal data to fully 
answer this question. However, it is believed that there 
are four high-level categories of tumor evolution: linear 
evolution, branched evolution, neutral evolution and 
punctuated evolution [13]. Linear and branched evolu-
tion are the focus of this work as neutral and punctuated 
evolution are special cases of these two high level cate-
gories. Linear evolution results when subsequent driver 
mutations develop a strong selective advantage and out-
compete other clones during a clonal expansion [13]. 
By contrast, in branched evolution, a clone can diverge 
into separate lineages resulting in distinct branches and a 
tree-like model of evolution.

A useful first step in gaining insight into the evolution-
ary patterns of different cancer types is to compare the 
likelihood of the observed single-cell data under these 
two alternative hypotheses, linear and branched. Sup-
pose we are given single-cell data in the form of a matrix 
where each row in the data is a cell and each column is a 
single-nucleotide variant (SNV), hereafter referred to as 
mutation. The entries in the data would then be either 1 
or 0 indicating the presence or absence of a mutation in 
a particular cell. Suppose also that we assume a model of 
linear evolution and are given a false negative rate for the 
technology under which the single-cell sequencing was 
performed.

We could then determine the minimum number of 
changes from 0 to 1, indicating the entry was a false 
negative, such that the data is representative of a lin-
ear perfect phylogeny. This would then allow us to esti-
mate the likelihood of the data under a hypothesis of 
linear evolution with false negative rate distribution 
in accordance with the sequencing technology. Under 
an alternative model of branched evolution, the num-
ber of flips required to obtain a linear perfect phylog-
eny and the associated false negative rate would follow 

a different distribution since many more flips would be 
required to not only correct actual false negatives but 
also to remove the implied branching.

Azer et  al. [14] utilized a deep learning approach to 
decide if single-cell data indicates whether a tumor 
followed a linear or branched evolutionary process. 
Although their method is fast at prediction time and 
performs well on simulated data, it has not yet been 
proved whether the problem of identifying the mini-
mum number of flips to obtain a linear perfect phylog-
eny is NP-hard. Additionally, the neural networks are 
trained on inputs of a fixed size. While padding could 
be used in predicting an input smaller than the fixed 
size [14], a new network would have to be trained if the 
input size is larger than the trained network. This draw-
back significantly reduces the speed advantage of such 
an approach as training of neural networks is a time 
consuming process.

Here, we prove that the problem of determining the 
minimum number of flips from 0 to 1 in single-cell data 
in order for the data to represent a linear phylogeny 
under the infinite sites model is NP-hard. We develop a 
method called Phyolin that makes use of constraint pro-
gramming to find the minimum number of flips required 
to represent a linear perfect phylogeny. The outputted 
number of flips from Phyolin is then used to compute the 
strength of the evidence of the two alternatives of the pat-
tern of evolution (Fig. 1a). We evaluate the performance 
of Phyolin on both simulated and real datasets, demon-
strating that our method is an accurate and reasonably 
fast method for classifying an evolutionary trajectory as 
linear or branched.

Preliminaries
Let n be the number of single cells sequenced and m be 
the number of unique mutations present in the n cells. 
In the following, after introducing the Linear Perfect 
Phylogeny Flipping problem, we describes two alter-
natives models of evolution.

Problem statement
Under the infinite sites assumption (ISA), where each 
mutation i is gained exactly once and never subsequently 
lost, each sequenced cell corresponds to a leaf and we 
may infer a two-state perfect phylogeny using a poly-
nomial time algorithm [15] where the binary character 
states encode the presence of mutation  j in a cell  i. We 
may equivalently represent a perfect phylogeny T as a 
binary matrix B ∈ {0, 1}n×m where bij = 1 if cell i harbors 
mutation j and 0 otherwise. We provide the following 
definition [16] for convenience.
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Definition 1  Given an n by m binary-character matrix 
B for n cells and m mutations, a perfect phylogeny for B is 
a rooted tree T with exactly n leaves provided that: 

1.	 Each of the n cells labels exactly one leaf of T.
2.	 Each of the m mutations labels exactly one edge of T.
3.	 For any cell p, the mutations that label the edges 

along the unique path from the corresponding leaf to 
the root specify all of the mutations of p whose state 
is one.

Next, we formalize the notation of a set of cells that 
contain a mutation as the one state.

Definition 2  The one state Oj of mutation j is the set of 
single cells i where bij = 1.

A perfect phylogeny T either depicts linear evolu-
tion or branched evolution. Intuitively, a matrix B rep-
resents linear evolution if there exists a total order of 
the set of one states with respect to the subset relation. 

Otherwise, we say perfect phylogeny T represents 
branched evolution. Also, we note that perfect phylog-
eny T is not necessarily bifurcating.

Utilizing the collection of one states for all m muta-
tions, we determine if a given binary matrix B represents 
a linear perfect phylogeny as follows (Fig. 1b).

Definition 3  A binary matrix B ∈ {0, 1}n×m is a lin-
ear perfect phylogeny if there exists a permutation 
π : [m] → [m] such that Oπ(1) ⊆ · · · ⊆ Oπ(m).

However, single-cell sequencing is not error free and 
matrix B can fail to represent a linear perfect phylogeny 
even when it is representative of the true evolutionary 
process. False negatives, where a mutation that is pre-
sent is not indicated as such, are particularly problem-
atic with rates of up to 0.4 [12]. False positives, where 
absent mutations are indicated as present, are less of an 
issue in practice with rates less than 0.0005 for typically 
used whole-genome amplification strategies [17]. If the 
false positive error rate is known, we may estimate the 
expected number z of false positives in the observed data.

Given that false negatives are particularly prevalent, we 
would like to know how many false negatives would have 
had to occur in order for the inferred perfect phylogeny 
under the ISA to have a linear structure? This leads to the 
following problem statement.

Problem  1  (Linear Perfect Phylogeny Flipping 
(lppf)) Given a matrix B ∈ {0, 1}n×m and an integer z, 
find the minimum number of bit flips from 0 to 1 in B 
yielding a linear perfect phylogeny and the number of bit 
flips from 1 to 0 is at most z.

As we describe in “Methods”, upon obtaining the solu-
tion to the lppf, we utilize the total number of flips to dis-
tinguish whether the observed single-cell binary matrix B 
better supports linear or branched evolution.

Complexity
Following [18], we prove that lppf is NP-hard by a reduc-
tion from the chain graph insertion problem, a known 
NP-complete problem [19].

Theorem 1  lppf is NP-hard.

Proof  We prove that lppf is NP-hard by considering a 
decision version k-lppf asking whether there exist k bit 
flips in input matrix B from 0 to 1 yielding a linear perfect 
phylogeny when the number z of the reverse flips (1 to 0) 
is 0. We claim that k-lppf is NP-complete by reduction 
from the chain graph insertion problem.
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Fig. 1  a A graphical depiction of Phyolin identifying a linear perfect 
phylogeny in single-cell DNA sequencing data when given a binary 
matrix B and a false negative rate β∗ . b An example of error free 
single-cell data that represents a linear perfect phylogeny and the 
equivalent clonal tree representation
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We begin by stating the definition of a chain graph and 
introduce the chain graph insertion problem.

Definition 4  A bipartite graph G = (X ∪ Y ,E) 
is a chain graph if there exists a permutation 
φ : {1, . . . , |Y |} → Y  such that η(φ(1)) ⊆ · · · ⊆ η(φ(|Y |) 
where η(v) = {w ∈ X | (v,w) ∈ E} is the set of adjacent 
nodes of v.

Problem  2  (Chain Graph Insertion (cgi) [19]) 
Given a bipartite graph G = (X ∪ Y ,E) and integer k, 
does there exist a chain graph G′ = (X ∪ Y ,E′) such that 
E ⊆ E′ and |E| + k = |E′|?

k-lppf ∈ NP because given a certificate (set of k flips 
from 0 to 1) to k-lppf, we could order the columns by 
increasing cardinality of the resulting one state sets and 
then check if that permutation satisfies the definition of 
a linear perfect phylogeny. We will now show that cgi ≤p 
k-lppf.

Starting from an instance (G = (X ∪ Y ,E), k) of cgi, 
we construct an instance B of k-lppf in the following 
manner. Binary matrix B has |X| rows and |Y| columns, 
and its entries are directly obtained from the edge set E 
of G: For each v ∈ Y  , we set biv = 1 if i is a neighbor of v 
for all i ∈ X and let biv = 0 otherwise. This can be done in 
polynomial time. Figure 2a demonstrates the polynomial 
time reduction. We claim that k edge insertions suffice to 
obtain a chain graph from G if and only if B represents a 
linear perfect phylogeny when k bits are flipped from 0 to 
1 and no bits are flipped from 1 to 0 (i.e. z = 0).
(=⇒) Suppose (G, k) ∈ cgi. Then there exists an edge 

set D ⊆ {(u, v) | u ∈ X , v ∈ Y } \ E such that |D| = k 
and H = (X ∪ Y ,E ∪ D) is a chain graph. Then by defi-
nition of a chain graph, there exists an permutation 
φ : {1, . . . , |Y |} → Y  such that η(φ(1)) ⊆ · · · ⊆ η(φ(|Y |) . 
It is easy to see that by construction, η(v) = Ov , for all 
v ∈ Y  . Since φ exists, a permutation π of the one states 
also exists. Therefore, B represents a linear perfect phy-
logeny after flipping the 0-bits encoded in set D.
(⇐=) Suppose (B, k) ∈ k-lppf. Then there exists a set 

F of positions (i,  j) where bij = 0 to bij = 1 such that 
|F | = k . Let B∗ be the resulting matrix after each flip 
at position (i, j) ∈ F  is made. Then B∗ represents a lin-
ear perfect phylogeny and there exists a permutation 
π : {1, . . . ,m} → [m] such that Oπ(1) · · · ⊆ Oπ(|m|) . Using 
the equivalence between one-states and neighbors, 
H = (X ∪ Y ,E) can be constructed from B∗ in the follow-
ing manner. First, create the set X = [n] from the rows 
of B∗ and the set Y = [m] from the columns of B∗ . Then, 
create the set E of edges as {(x, y) ∈ X × Y | b∗xy = 1 }. By 
construction, H = (X ∪ Y ,E) is a chain graph. �

Methods
The following section describes Phyolin, which solves the 
lppf problem and computes the Bayes factor for distin-
guishing linear and branched evolution. We implemented 
Phyolin in C++ utilizing IBM ILOG CP OPTIMIZER1. 
Phyolin is publicly available at https://​github.​com/​elkeb​
ir-​group/​phyol​in.

Model
To solve the lppf, we formulate a constraint optimiza-
tion problem (COP) [20]. A COP is a constraint satis-
faction problem (CSP) with an objective function that 
specifies which feasible solutions are preferred based 
on an optimization criteria. A CSP is defined by a tuple 
(X ,D, C) , where X = {x1, . . . , xn} is the set of decision 
variables, D = {d1, . . . dn} is the set of domains for X  and 
C is a set of constraints that must be satisfied. A solu-
tion a ∈ A(X ,D, C) to a CSP is an assignment of values 
{x1 �→ v1, . . . , xn �→ vn} such that vi ∈ di for all i ∈ [n] and 
all constraints C are satisfied. To facilitate an objective 
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Fig. 2  Chain graph insertion problem reduction. a Polynomial time 
reduction of the cgi to lppf. b An equivalent solution of the cgi and lppf 
when k = 3

1  https://​www.​ibm.​com/​analy​tics/​cplex-​cp-​optim​izer.

https://github.com/elkebir-group/phyolin
https://github.com/elkebir-group/phyolin
https://www.ibm.com/analytics/cplex-cp-optimizer


Page 5 of 12Weber and El‑Kebir ﻿Algorithms Mol Biol           (2021) 16:14 	

function f : A(X ,D, C) → R , an initial assignment 
â ∈ A(X ,D, C) is found. Then, a preference constraint 
is added to C, such that f (a) ≤ f (â) for a minimization 
problem or f (a) ≥ f (â) for a maximization problem. 
The search is continued and the preference constraint 
updated each time a feasible assignment â is found until 
no more feasible assignments exist. When this occurs, the 
assignment â is returned and f (â) is the objective value. 
We note that in problems where multiple optimal solu-
tions exist, it is possible to return all such valid solutions. 
But even though multiple solutions may exist, our focus 
is on assessing the plausibility of the null hypothesis of 
linear evolution. Therefore, it is sufficient to consider any 
optimal solution even if the respective assignments yield 
different linear perfect phylogenies.

First, we describe the set X  of decision variables and 
the associated domains D used in the formulation. The 
set X  contains the variables x and c . Intuitively, the val-
ues taken by x represent a binary matrix B′ used to rep-
resent a linear perfect phylogeny after flipping. More 
formally, given a set n of cells and a set m of mutations, 
let xij = 1 if cell i has mutation j in the linear perfect 
phylogeny B′ after flipping and 0 otherwise for each cell 
i ∈ [n] , and mutation j ∈ [m] . Then, D(xij) = {0, 1} , for 
all i ∈ [n], j ∈ [m] . The variables c , are used to define a 
permutation of the columns in B′ , such that after flip-
ping is completed, B′ will adhere to the definition of a 
linear perfect phylogeny. Recall that in order to represent 
a linear perfect phylogeny, there must exist permutation 
π : [m] → [m] such that Oπ(1) ⊆ Oπ(2) ⊆ · · · ⊆ Oπ(m) . 
Let cj = π(j) for all j ∈ [m] . Then D(cj) = [m] for all 
j ∈ [m].

Since, our goal is to find the linear perfect phylogeny 
that requires as few flips as possible, that is minimiz-
ing the number of false negatives we infer, we define an 
objective function that minimizes the number of flips 
from 0 to 1.

The set C ensures that the outputted binary matrix B′ 
meets the conditions of representing a linear perfect phy-
logeny and also that the number of false positives, or flips 
from 1 to 0, is bounded above by z∗ . The set C consists of 
the following three constraints.

(1)min

n
∑

i=1

m
∑

j=1

�(bij = 0, xij = 1).

(2)ALLDIFFERENT(c),

(3)
n

∑

i=1

m
∑

j=1

�(bij = 1, xij = 0) ≤ z∗

Equation (2) is a global constraint that ensures that every 
mutation is assigned a unique ordering in the permuta-
tion. Equation (3) ensures that the number of false posi-
tives or flips from 1 to 0 is bounded above by the number 
of allowable false positives z∗ , as determined by a given 
false positive rate α . Finally, Eq.  (4) ensures the defining 
property of a linear perfect phylogeny is met by ensur-
ing that if π(k) is less than π(j) then it must hold that 
Ok ⊆ Oj for all k , j ∈ [m].

Two alternative hypotheses for the pattern of evolution
We have two competing hypotheses to explain the 
observed data B: (i) linear evolution ( Hlinear ) and (ii) 
branched evolution ( Hbranched ). The solution to the lppf 
is the total number y of flips from 0 to 1 in order to rep-
resent linear evolution. In addition, we obtain a matrix B′ 
containing the resultant bits after flipping. Let N be the 
total number of ones in B′ and β̂ = y/N  represent the 
fraction of false negatives in the solution to the lppf. We 
then hypothesize y was drawn from one of two different 
beta-binomial distributions.

Under the null hypothesis Hlinear of linear evolution, we 
have

where the mean µlinear equals the expected false negative 
rate β∗ and slinear is the beta-binomial precision param-
eter (controlling dispersion) of the used sequencing 
technology.

In the worst case, every 0 can be flipped to a 1. This 
results in a binary matrix with all values equal to 1, sug-
gesting a linear perfect phylogeny with a single clone har-
boring all of the mutations. The number of flips required 
to achieve such a solution may be implausible under a 
model of linear evolution, which seeks to characterize 
the true distribution of false negatives for the sequencing. 
Thus, we consider an alternative hypothesis that charac-
terizes the distribution of flips when a branched phylog-
eny is forced to be linear.

Under the alternative hypothesis Hbranched of branched 
evolution, Hφ , we have

where µbranched and sbranched parameterize a distribu-
tion that results from converting data generated under 
branched evolution into one that represents a linear 

(4)(ck < cj) ⇒ (xij ≤ xik) ∀k , j ∈ [m], ∀i ∈ [n].

(5)plinear ∼ beta(µlinear, slinear),

(6)y ∼ binomial(N , plinear),

(7)pbranched ∼ beta(µbranched, sbranched),

(8)y ∼ binomial(N , pbranched),
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perfect phylogeny. In other words, we expect the esti-
mated false negative rate β̂φ = y/N  to follow a differ-
ent distribution from that of the false negative rate β∗ of 
the sequencing technology since the number of flips for 
branched evolution will be greater for data generated 
under linear evolution.

While µlinear and slinear are typically known, param-
eters µbranched and sbranched are more challenging to esti-
mate. One approach is to generate simulated data under 
branched evolution and the given sequencing profile and 
utilize β̂φ to fit this distribution. As this is time consuming 
in practice, we offer two heuristics. First, given some hard 
threshold β∗ , which could be based on knowledge of the 
system estimated false negative rate or conservatively set at 
0.4 [12], we reject Hlinear that the phylogeny is linear when-
ever β̂ > β∗ . Unlike the Bayes factor, a hard threshold does 
not provide any evidence in support of Hlinear , only allow-
ing us to conclude the pattern of evolution is branched. 
Second, as a more robust alternative, one can establish a 
hypothetical threshold beta-binomial distribution with 
parameters µbranched and sbranched representing an implau-
sible distribution for the false negative rate of the sequenc-
ing technology.

Bayes factor
To determine the hypothesis that best explains the 
observed data B, we utilize the Bayes factor. The Bayes 
factor

quantifies the likelihood ratio of the two computing 
hypotheses ( Hlinear and Hbranched ) for the evolutionary 
pattern of the observed binary matrix B. A Bayes factor 
K > 1 is evidence in support of Hlinear and K < 1 is evi-
dence in support of Hbranched . Furthermore, Bayes factor 
K expresses how strongly the observed data supports one 
of the two alternative hypotheses.

Given two shape parameters θ1 and θ2 , the likelihood of 
the beta-binomial distribution modeling each of our two 
hypotheses is defined as

where B is the beta function.
We parameterize the statistical distribution of our 

hypotheses in terms of θ1 and θ2 via the conversion

(9)K =
P(B | Hlinear)

P(B | Hbranched)

(10)f (y |,Nθ1, θ2) =

(

N
y

)

B(θ1 + y,N − y+ θ2)

B(θ1, θ2)
,

(11)θi,1 = µisi,

(12)θi,2 = si − θi1,

for i ∈ {linear, branched} . Finally, substituting Eq.  (10) 
into Eq.  (9) for both hypotheses Hlinear and Hbranched 
yields Bayes factor K equal to

Results
In order to evaluate Phyolin, we perform in silico experi-
ments as well as run Phyolin on real data. First, we seek 
to evaluate the performance of Phyolin when the simu-
lated data closely approximates a recently published 
high throughput single-cell DNA sequencing study of an 
acute myeloid leukemia (AML) cohort [21]. Second, we 
establish the robustness of Phyolin to false positives and 
doublets. Third, we describe the application of Phyolin 
to patients with childhood acute lymphoblastic leukemia 
[22]. Finally, we apply Phyolin to the AML cohort [21] 
that inspired the initial set of simulations. All experi-
ments were conducted on a server with Intel Xeon Gold 
5120 dual CPUs with 14 cores each at 2.20 GHz and 512 
GB RAM.

Simulations approximating an acute myeloid leukemia 
cohort
In a recent study, Morita et al. [21] performed DNA sin-
gle-cell sequencing on a cohort of 123 patients with acute 
myeloid leukemia (AML) and inferred the evolution-
ary tree of each patient using SCITE [2]. Utilizing high-
throughput sequencing resulted in a median of 7584 
cells sequenced per patient [21]. AML is a cancer type 
where both linear and branching evolutionary patterns 
are suspected [21]. As a result, the set of trees published 
in Ref. [21] were a mix of linear and branched patterns. 
We design a simulation study to approximate a subset of 
patients in this cohort but where the ground truth evo-
lutionary pattern is known. We use the published trees 
and clonal prevalences in conjunction with estimated per 
false negative rate β = 0.05 for the sequencing technol-
ogy to generate simulated matrices B for a subset of 12 
AML patients [21]. Specifically, the prevalence of clone 
i is the number of cells in the sample mapped to clone 
i divided by the total number of cells in the sample. We 
consider six patients with linear trees and mutations 
ranging from 3 to 5 and six patients with branched trees 
and mutations ranging from 3 to 7. A total of 10 repli-
cations were performed per simulated patient. Table  1 
shows a summary of the patients selected for inclusion in 
the simulation study.

To utilize the Bayes factor, we require knowledge of 
the parameters of the prior distribution, µbranched and 
sbranched , under the branched evolution hypothesis 

(13)

B(θlinear,1 + y, θlinear,2 + N − y)B(θbranched,1, θbranched,2)

B(θbranched,1 + y, θbranched,2 + N − y)B(θlinear,1, θlinear,2)
.
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Hbranched . Since these are challenging to estimate, we 
demonstrate the first heuristic of classification utilizing 
a strict threshold at true false negative rate β∗ = 0.05 
and the second heuristic of applying Bayes factor on 
a theoretical distribution with µbranched = 0.15 and 
sbranched = 10 . For the linear evolution hypothesis Hlinear , 
we utilize µlinear = 0.05 , with precision slinear = 10 , 
matching known values for this sequencing platform [21].

We set an upper limit on runtime of Phyolin at 500  s 
with 80% of the replications returning an optimal solu-
tion in under the time limit. We chose the 500  s time 
limit to facilitate timely analysis of the input data. Fig-
ure  3a shows the distribution of runtime by the simu-
lated evolutionary pattern. Linear patterns resulted in a 
median runtime of 33 s (IQR: 8–82 s) and branched pat-
terns resulted in a median of 156 s (IQR: 117–502 s). The 
median input size (cells × mutations) of the linear pat-
terns was 24,435 and 28,775 for branched patterns. The 
largest input was for AML-74 with 9279 cells by 5 muta-
tions and no replications completed within the time limit. 
Only 1 replication with a linear pattern did not complete 
within the time limit. This implies that optimal solutions 
are found much faster when the true pattern is linear.

Figure  3b compares the distribution of the estimated 
false negative rate β̂ for the patients with linear versus 
branched published trees over all 10 replications. The 
simulated system false negative rate was 5% and is shown 
as a dashed line where relevant. From Fig. 3b, we note a 
significant difference in the distributions between linear 
and branched instances. Additionally, the median of the 
linear perfect phylogeny patients is 0.03 (IQR: 0.028–
0.032) and every linear replication is less than β∗ = 0.05 
while the median of the branched perfect phylogeny 

patients is 0.19 (IQR: 0.16–0.31) and every branched rep-
lication is greater than β∗ = 0.05.

Figure 3c shows the mean β̂ and standard error for each 
simulated patient over the 10 replications. The num-
ber of mutations are also shown in order to investigate 
if increasing number of mutations increases β̂ . Although 
there appears to be some effect when increasing the 
number of mutations, it does not strictly hold. However, 
utilizing a strict threshold of β∗ = 0.05 results in per-
fect classification of the topology for all patients and all 
replications.

Figure 3d compares the difference between Bayes fac-
tor K for patients with simulated linear and branched 
perfect phylogenies. Furthermore, without the presence 
of other sequencing errors, classification via a threshold 
β∗ = 0.05 and Bayes factor K are in agreement on all sim-
ulation replications. Additionally, Bayes factor K provides 
a more robust interpretation of the evidence for the two 
alternative hypotheses. For example, the median Bayes 
factor K for AML-63 is 0.65, which is maximum among 
all patients with simulated branching. AML-63 also had 
the lowest estimated median estimated false negative rate 
( β̂ = 0.084).

Since the number of mutations does not necessarily 
impact the estimated false negative rate β̂ , another con-
sideration is whether or not β̂ increases with the amount 
of branching. To this end, we compare the ancestor–
descendant distance between the simulated true tree B∗ 
and the inferred linear tree B′ . A mutation x is an ances-
tor of mutation y if x occurs on the path from the root to 
y, in which case y is said to be a descendant of x. Ances-
tor–descendant (AD) distance is defined as the size of the 
symmetric difference between the sets of ordered pairs of 

Table 1  Simulation study based on characteristics of a published AML cohort [21]

Shown is the patient identifier, the published evolutionary pattern of the tree, the number of mutations, the total cells sequenced [21], the median number of 
simulated false negatives over 10 replications, Phyolin estimated number of false negatives over 10 replications, the median β̂ over 10 replications, and the median 
probability of a linear perfect phylogeny as determined by the comparison deep learning method [14]

Patient Pattern # Mutations m # Cells n Median flips Phyolin median 
flips

Median β̂ Med prob.

AML-2 Linear 5 7931 1826 1039 0.037 0.70

AML-8 Linear 3 4675 759 294 0.029 0.42

AML-10 Linear 4 8729 1427 584 0.030 0.56

AML-33 Linear 3 8120 1091 350 0.027 0.41

AML-47 Linear 3 6491 1135 488 0.032 0.42

AML-58 Linear 3 8170 1280 472 0.029 0.40

AML-53 Branched 3 8013 544 2220 0.44 0.39

AML-62 Branched 6 4027 726.5 2299 0.19 0.58

AML-63 Branched 4 8347 1238.5 1432 0.084 0.44

AML-67 Branched 7 6024 1061.5 6440 0.31 0.71

AML-69 Branched 3 7462 651.5 1037 0.16 0.29

AML-74 Branched 5 9279 1020 2122 0.17 0.38
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characters, or ancestor–descendant pairs, introduced on 
distinct edges of perfect phylogenies B∗ and B′ . A higher 
AD distance implies a greater degree of branching in the 
true tree. For example AML-63 has only one branch and 
AML-67 has three distinct branching events. Figure  3e 
shows the relationship between the mean estimated false 
negative rate β̂ and the mean AD distance per simulated 
patient over 10 replications. The AD distance is 0 for all 
patients with a simulated linear perfect phylogeny. This 
means that Phyolin correctly infers the true tree when it 
is linear. In particular, for the branched instances, there 
is evidence of a correlation between the estimated false 
negative rate β̂ and the degree of branching as captured 
by the AD distance (Fig. 3e).

Azer et  al.’s [14] deep learning method for classify-
ing topology is the most similar method for comparison 
with Phyolin. Therefore, we retrained this deep neu-
ral network to support our input size of 9300 cells and 
7 mutations. We used a default hidden layer size of 100 
and drop-out rate of 0.9, 5000 training examples and 500 
epochs. We did not modify any other hyperparameters. 
The input size was selected so that only one network 
needed to be trained for all in silico experiments and we 

used padding for any instances where n < 9300 or m < 7 . 
After 200 epochs the best validation accuracy was 64.1% 
and completed in 2168  s (36.1  min). After 500 epochs, 
the best validation accuracy was 64.8% and completed in 
3997 s (66.6 min). This suggests that further learning was 
unlikely. We report the probability that the phylogeny is 
linear on the same simulation instances when evaluated 
with the trained model.

Table  1 shows the median probability that the phy-
logeny is linear over the 10 replications per simulated 
patient. We use a cutoff of 0.5 as the threshold for clas-
sifying a topology as linear. Figure  4a shows the distri-
bution of the probabilities over all patient replications 
by ground truth topology. Classification accuracy was 
100% for 6 of the 12 simulated patients (Linear: AML-
2, AML-10, Branched: AML-53, AML-63, AML-69 and 
AML-74) and 0% for the remaining 6 simulated patients. 
Figure 4b shows mean estimated probability per patient 
and standard error for the 10 replications. The predicted 
probability tends to increase as the number of mutations 
increases.

In summary, the simulated AML cohort results show 
that, in contrast to the deep learning approach [14], 

a b

d

c

e

Fig. 3  Phyolin results of the in silico experiments on a simulated cohort of patients with AML. a A comparison of Phyolin runtimes in seconds 
between instances with different evolutionary patterns. b A comparison of the distribution of β̂ between simulated linear and branched topologies 
over 10 replications. c The mean value of β̂ for each patient along with the standard error. d The distribution of Bayes factor K for each simulated 
patient separated by the true evolutionary pattern. The horizontal line at K = 1 represents the classification criteria ( K > 1 is classified as linear). 
e Relationship between estimated false negative rate and the ancestor–descendant distance. Each point represents the mean value over 10 
replications and is labeled by the numerical patient identifier. A linear trend line is shown with a 95% confidence interval
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Phyolin correctly and quickly classifies large instances 
as linear with a strict threshold β∗ set at the system esti-
mated false negative rate. Furthermore, as the amount of 
branching increases, the estimated β̂ tends to increase. 
Thus, the greater the difference between β̂ and β∗ , the 
more confident we can be in rejecting the hypothesis of 
linear evolution in favor of the alternative hypothesis of 
branched evolution.

Robustness to false positives and doublets
While the previous simulation study focused only on 
false negatives, here we examine the robustness of 
Phyolin to the presence of false positives and doublets. 
In addition, we demonstrate the technique of estimat-
ing the parameters of branched evolution hypothesis 
Hbranched . First, we generated a set of matrices repre-
senting a perfect phylogeny with 500 cells and muta-
tions m ∈ {10, 25, 50} using the ms simulator [23]. We 
then introduced errors to each simulated matrix B with 
false negative probability β ∈ {0.05, 0.15, 0.25} , false 
positive probability α ∈ {0.001, 0.01} and doublet prob-
ability δ ∈ {0.0, 0.2} . Note that z = ⌈α

∑n
i=1

∑m
j=1 bij⌉ 

for each simulation instance. We performed 5 repli-
cations for each combination of conditions and each 
type of evolution, linear or branched, for a total of 
360 instances. To account for the added complexity of 
false positives and doublets, we allowed each Phyolin 
instance to run for a maximum of 900 s. Independently, 
we created an additional set of experiments with only 

branched evolution with the same parameters as the 
simulation. We utilized this set of experiments to esti-
mate µbranching and sbranching from the Phyolin outputted 
false negative probability βbranching under branched evo-
lution separately for each m ∈ {10, 25, 50} . Using these 
parameters, we determined the category of evolution as 
linear or branched in accordance with the Bayes factor 
K.

We found Phyolin to be robust to both the presence 
of false positives and doublets with an overall accu-
racy of 97% (Fig. 5a). For doublet probability δ = 0.0 , 85 
out of 90 branched instances were correctly classified 
with 5 instances incorrectly classified as linear (median 
Bayes factor K = 0.94 ). A total of 87 out of 90 linear 
instances were correctly classified with 3 instances 
incorrectly classified as branched (median Bayes fac-
tor K = 0.005 ). Paradoxically, for doublet probability 
δ = 0.2 performance improves with only two linear and 
two branched evolutionary patterns incorrectly clas-
sified. This is explained by the fact that when the true 
evolutionary pattern is branched, a doublet comprised 
of cells on distinct branches of a tree will result in 
fewer cases of branching that must be flipped by Phyo-
lin. Therefore, when high doublet rates are suspected, 
experiments believed to be doublets should be removed 
from the data prior to utilizing Phyolin. In addition, we 
observe a significant difference in the Phyolin estimated 
false negative rate β̂ between simulated instances with 
linear (median: 0.18) and branched (median 0.61) evo-
lution (Fig. 5b).
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Fig. 4  Results of the deep learning approach [14] applied to the in silico experiments on a simulated cohort of patients with AML. a A comparison 
of the distribution of the probability of a linear perfect phylogeny between simulated linear and branched topologies over 10 replications. d The 
mean value of the probability of a linear perfect phylogeny for each patient along with the standard error. A horizontal line indicates the threshold 
probability (0.5) used to classify an input as linear.
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Real data of childhood acute lympoblastic leukemia 
patients
Gawad et al. [22] performed single-cell DNA sequencing 
on a cohort of six patients with childhood acute lympho-
blastic leukemia (ALL). As a subtype of leukemia, ALL 
is also postulated to follow both linear and branched 
trajectories [24]. We evaluate Phyolin on two of the six 
patients in this cohort: Patient 2 and Patient 6 (Table 2). 
The input size for Patient 2 was 115 cells by 16 mutations 
with an estimated false negative rate β∗ = 0.18 [22]. Two 
independent, previous analyses of the sequencing data 
of Patient 2 suggested a branched topology [7, 25]. For 
Patient 2, Phyolin estimated a false negative rate of 0.36, 
which is much greater than the previously estimated rate 
of 0.18 [22]. Moreover, the Bayes factor K = 0.26 implies 
accepting the branched evolution Hbranched hypothesis. 
This concurs with the branched trees published in [7, 25].

In addition, we consider Patient 6 because this patient 
was analyzed by the deep learning method [14]. The 
input size for Patient 6 was 146 cells by 10 mutations with 
an estimated false negative rate β∗ = 0.18 . For Patient 6, 
Phyolin estimated a false negative rate of 0.15, which is 

less than the published false negative rate β∗ = 0.18 [22]. 
Bayes factor K = 14.0 substantially supports the linear 
evolution hypothesis Hlinear . The comparison deep learn-
ing approach [14] also concluded that the phylogeny was 
linear. Table 2 summarizes results obtained by Phyolin.

Application to an acute myeloid leukemia cohort
We assess the performance of Phyolin by applying our 
method to single-cell DNA sequencing data for 9 of the 
12 patients included in our simulation study. We exclude 
3 patients (AML-10, AML-33, AML-58) with greater 
than 0.1 fraction of data missing. In addition, we ana-
lyze an additional 5 patients with trees highlighted in the 
original study [21] for a total of 14 patients (9 branched, 
5 linear). To obtain the input matrices B′ , we extract 
variant and total read counts from the loom files gener-
ated via the Mission Bio Tapestri pipeline. To discretize 
the read counts, we use the binomial exact test with null 
error rate 0.001 and p-value 10−6 . Sites with 0 total reads 
are labeled as missing data and ignored by Phyolin.

Given that the median estimate false negative 
rate for the cohort was β = 0.058 , we utilize prior 
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Fig. 5  Phyolin demonstrates robustness to false positives and doublets. a The confusion matrix for Phyolin classifications versus the true 
evolutionary pattern annotated by the proportion (total) of instances. b The distribution of Phyolin estimated false negative rates by true 
evolutionary pattern with colors depicting the Phyolin classification at simulated false negative rates β ∈ {0.05, 0.15, 0.25} , simulated false positive 
rates α ∈ {0.01, 0.001} and for double rates δ ∈ {0.0, 0.2}

Table 2  Summary of Phyolin analysis of two patients with ALL

Shown is the patient identifier, the number of cells sequenced [22], the number of mutations, the number of flips performed by Phyolin, the estimated false negative 
rate β̂ , the false negative rate threshold β∗ [26] that was estimated for the sequencing technology and Bayes factor K

Patient Cells sequenced [22] Mutations Phyolin flips β̂ β∗ [22] K

Patient 2 115 16 403 0.36 0.18 0.3

Patient 6 146 10 191 0.15 0.18 14.0
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parameters mean µlinear = 0.058 and precision 
slinear = 10 for our linear evolution hypothesis Hlinear . 
We parameterize the branched evolution hypothesis 
Hbranched with µbranched = 0.22 and sbranched = 11.8 
guided by our simulation study. Phyolin’s classification 
of the evolutionary pattern corresponded to the reported 
trees [21] in 12 out of the 13 instances. Fig.  6a demon-
strates a significant difference between the Phyolin esti-
mated false negative rate for linear (median: 0.04) and 
branched evolutionary (median: 0.16) as determined 
by Morita et  al. [21]. Furthermore, the Bayes factor K 
(Fig. 6b) similarly separates the two classes of evolution-
ary patterns as Morita et al. [21, 27]. Only patient AML-
02 differed with Phyolin classifying the evolutionary 
pattern as branched ( β̂ = 0.08 ). However, in the initial 
bioRxiv supplement [27], Morita et  al. reported 4 trees 
for each patient by running SCITE in different modes. 
We note that 2 trees were branched while 2 were linear. 
Thus, the Bayes factor K = 0.77 , helps contextualize the 
ambiguity surrounding the true evolutionary trajectory 
for this patient.

Conclusions
In this work, we introduced the Linear Perfect Phy-
logeny Flipping problem and showed that it is NP-
hard. To solve this problem, we developed a method 
named Phyolin that takes as input a binary matrix of 
single-cell DNA sequencing data and then identifies 
a linear perfect phylogeny in the data by assuming that 

any implied branching are actually false negatives. The 
outputted number of flips from Phyolin is then used to 
compute the strength of the evidence of the two alterna-
tives of the pattern of evolution. We tested Phyolin on 
both simulated data and real data and showed that it is 
more accurate than a recent deep learning method [14] 
and concurs with previously inferred evolutionary pat-
terns on two real datasets. In conclusion, Phyolin is a reli-
able, easy to use and fast method to assess the likelihood 
of a linear evolution before more complex reconstruction 
methods are utilized.

There are several future research directions. First, Phy-
olin could easily incorporate mutation and cell cluster-
ing through additional constraints when supplied with 
a number of cell clusters and/or mutation clusters. A 
search could be performed to find the optimal number of 
clusters such that the likelihood of the data of is maxi-
mized. Second, even when the phylogeny is branched, the 
trunk of the tree may be linear or there might be a long 
branch with linear evolution within that branch. This 
means that a subset of the mutations form a linear per-
fect phylogeny. A future direction is to explore if Phyo-
lin can identify a subset of mutations that are likely to be 
truncal or form a long branch of the tree, thus potentially 
providing fast partial inference of the tree.

Finally, exploring evolutionary models that allow ISA 
violations, such as mutation loss, is an exciting direc-
tion for future study. In particular, the 1-Dollo evolu-
tionary, where each mutation is gained exactly once 
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Fig. 6  Phyolin concurs with Morita et al. [21, 27] on the evolutionary pattern on a cohort patients with acute myeloid leukemia. a The distribution 
of Phyolin estimated false negative rates by evolutionary pattern reported by Morita et al. and by Phyolin classification with published false negative 
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and subsequently lost at most once, could potentially be 
achieved by replicating each column once and then using 
Phyolin. If the two columns representing the same muta-
tion are distinct in the inferred linear perfect phylogeny, 
then that implies that the mutation was lost once. The 
plausibility of a linear perfect phylogeny under both ISA 
and under a 1-Dollo model could be compared [3].
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