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Sensorimotor signals are integrated and processed by the cerebellar circuit to predict
accurate control of actions. In order to investigate how single neuron dynamics
and geometrical modular connectivity affect cerebellar processing, we have built
an olivocerebellar Spiking Neural Network (SNN) based on a novel simplification
algorithm for single point models (Extended Generalized Leaky Integrate and Fire,
EGLIF) capturing essential non-linear neuronal dynamics (e.g., pacemaking, bursting,
adaptation, oscillation and resonance). EGLIF models specifically tuned for each neuron
type were embedded into an olivocerebellar scaffold reproducing realistic spatial
organization and physiological convergence and divergence ratios of connections. In
order to emulate the circuit involved in an eye blink response to two associated stimuli,
we modeled two adjacent olivocerebellar microcomplexes with a common mossy fiber
input but different climbing fiber inputs (either on or off). EGLIF-SNN model simulations
revealed the emergence of fundamental response properties in Purkinje cells (burst-
pause) and deep nuclei cells (pause-burst) similar to those reported in vivo. The
expression of these properties depended on the specific activation of climbing fibers
in the microcomplexes and did not emerge with scaffold models using simplified point
neurons. This result supports the importance of embedding SNNs with realistic neuronal
dynamics and appropriate connectivity and anticipates the scale-up of EGLIF-SNN
and the embedding of plasticity rules required to investigate cerebellar functioning at
multiple scales.

Keywords: olivocerebellar circuit, spiking neural network (SNN), point neuron, non-linear neuronal dynamics,
eyeblink response

INTRODUCTION

A broad set of experimental observations has suggested that cerebellar circuit functioning relies on
a number of detailed features distributed over multiple scales. Single neuron properties along with
an organized modular connectivity shape population-specific spiking patterns and spatio-temporal
network dynamics, which in turn determine the relationship between input stimuli and responses.
The precise encoding of spatio-temporal features into the output (which is in motor domain)
corresponds to the cerebellar contribution in sensorimotor tasks (Llinas and Negrello, 2011;
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Llinás, 2014; D’Angelo, 2018). Indeed, together with synaptic
plasticity, single neuron electroresponsiveness and network
connectivity affect motor learning and alterations of these
elements can significantly compromise movement adaptation
(Peter et al., 2016).

At the cerebellar input, the Granular layer is thought
to act as a spatio-temporal filter of sensory inputs (Marr,
1969). This operation has been related to specific properties
of Golgi cells (GoCs) and Granule cells (GrCs), such as
oscillatory and resonant dynamics, along with the arrangement
of microcircuit connectivity, which includes recurrent GoC-
GrC inhibitory loops and GoC local networks (D’Angelo
et al., 2013; Gandolfi et al., 2013). The GoCs contribute to
process sensory signals coming from Mossy Fibers (MFs) by
shaping the activity of GrCs. GrC signals converge to the
Molecular and Purkinje cell layers through Ascending Axons
(AAs) and Parallel Fibers (PFs), with a very precise geometrical
organization. Purkinje cells (PCs) are the final integrators
of the cerebellar cortex, inhibiting the cerebellar output that
drives motor responses (Heiney et al., 2014). In vivo, intrinsic
simple spikes of PCs are modulated by excitation from GrCs
and inhibition from Molecular Layer Interneurons (MLIs).
Moreover, inputs from Inferior Olive (IO), through Climbing
Fibers (CFs), elicit PC complex spikes (Davie et al., 2008).
Deep Cerebellar Nuclei cells (DCNs) are the only output of
the cerebellar circuit, projecting centrally to multiple brain
areas, and peripherally to the motor pathways. Integrating the
inputs from the cerebellar cortex and MFs, DCNs can modify
their spontaneous firing and generate pauses and bursts. Burst-
pauses in PCs and pause-bursts in DCN cells are thought to
be essential to finely tune the motor responses (Shadmehr,
2017). DCNs also continuously control learning processes
through inhibitory feedback loops to the IO (De Zeeuw et al.,
2011). The PC-DCN-IO loop connections are organized to
form microcomplexes: CFs from IO sub-regions project to
different sagittal stripes of PCs, which in turn receive signals
from subvolumes of the granular layer and of the molecular
layer (i.e., microzones); then, PCs of a microcomplex target
the corresponding nuclear regions reached by the same CFs
(Llinas and Negrello, 2011; Ruigrok, 2011; D’Angelo et al.,
2013). On the other hand, GrCs project in the medio-lateral
direction by PFs (Uusisaari and de Schutter, 2011), carrying
the same signals transversally to multiple microcomplexes.
The result is a modular geometrically-organized architecture,
where each microcomplex integrates sensorimotor information
from different sources and emits spike patterns that, in turn,
correlate with specific aspects of behavior (Zhou et al., 2014;
Powell et al., 2015).

In this scenario, single neuron properties and cerebellar
connectivity are sufficiently well characterized and can be
simplified to simulate behavioral tasks using bioinspired
cerebellar models (Yamazaki and Igarashi, 2013; Casellato
et al., 2014; Antonietti et al., 2016). However, the key causal
relationships across scales, i.e., from neuron properties to
network dynamics and finally to behavior, are still unclear.
To what extent do intrinsic excitability and synaptic inputs
contribute to the spiking patterns of PCs and DCN cells during

a behavioral task? How do complex firing patterns emerge in
cascade within the network?

Here, we have reconstructed and simulated an olivocerebellar
microcircuit by integrating monocompartmental neurons with
complex electroresponsiveness into the geometrically-organized
connectivity of a spiking neural network (SNN). The simulations
provide the network with sensory-like stimulation patterns and
monitor the microcircuit responses. Such a computational tool
compromises between biological plausibility and computational
load, allowing a multiscale investigation of the cerebellar
network. This is achieved by integrating two main aspects. The
first one is the Extended-Generalized Leaky Integrate and Fire
(EGLIF) point neuron that maintains salient electrophysiological
features – autorhythm, bursts, adaptation, oscillations and
resonance – by using just a few state variables (Geminiani et al.,
2018b). The EGLIF proved capable to reproduce the rich set
of firing patterns of the main olivocerebellar neurons: GoCs,
GrCs, PCs, MLIs, DCNs, and IO (Geminiani et al., 2019). The
second aspect is network geometry derived from a cerebellar
scaffold model, which reproduces the physiological convergence
and divergence ratios of connections with a realistic spatial
organization (Casali et al., 2019). Here, EGLIF neurons are
here evaluated within the whole SNN, where positioning and
connectivity of each neuron type are based on their morphology
and density within the cerebellar microcircuit (Casali et al., 2019).
Therefore, the EGLIF-SNN is exploited to investigate how single
neuron properties and network architecture allow the emergence
of spatio-temporal dynamic properties, such as burst-pause in
PCs and pause-burst in DCN cells. In particular, the EGLIF-
SNN is tested by using input patterns encoding two types of
sensory signals, whose timing association elicits an eyeblink
motor response with multiple afferent pathways specifically
activating interconnected microcomplexes (De Zeeuw et al.,
2011). The simulations using EGLIF-SNN have been compared
to others using simple LIF neurons, in order to understand
the impact of single neuron dynamics on network functioning
and signal encoding. These results provide a critical assessment
of the role of microcircuit properties needed for future
closed-loop simulations of cerebellum-driven learning tasks
(D’Angelo et al., 2016).

MATERIALS AND METHODS

Reconstruction of the Olivocerebellar
Network
To evaluate the role of single neuron electrophysiology and,
at the same time, of geometrical and statistical connectivity,
a SNN was developed, reproducing an olivocerebellar volume.
The reconstructed volume included 96′767 neurons and
4′151′182 total synapses and represented a portion of two
cerebellar microcomplexes with the corresponding olivary nuclei
(Figure 1). The SNN was built based on the cerebellar scaffold
developed in Casali et al. (2019). In this scaffold, neurons
were placed in the selected volume based on known cell
densities from neurophysiology and geometric features. Then,
they were connected according to connectivity rules based
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FIGURE 1 | Olivocerebellar scaffold with neurons placed in the selected
volume, including two cortical microzones (granular, molecular and PC layers)
with their corresponding nuclear and olivary cells. Connections between PCs
from each microzone and the corresponding target cells in the cerebellar
nuclei are highlighted. The two microcomplexes are labeled in yellow (1) and
blue (2). Granular and molecular layer cells are subsampled and GrC in the
two microzones are not differently labeled for figure readability.

on proximity of neuronal processes (pre-synaptic axon span
extension and post-synaptic dendritic field extension) and on
statistical convergence/divergence ratios (Casali et al., 2019). The
starting network version was made up of cells distributed in
a multi-layered volume including the Molecular, Purkinje and
Granular layers of the cerebellar cortex – 400 × 330 × 400 µm3,
and the underlying cerebellar nuclei – 200 × 600 × 200 µm3

(Table 1). The thickness (along y-direction) was fixed based on
neurophysiology (330 µm for cortex+ 600 µm for nuclei), while
the other two sizes (x and z) were flexible, and there defined in
order to have a complete exemplificative reconstruction, able to
include all the elements in a functional representative module.
Here, we subdivided the scaffold cortex into two sub-volumes,
by a parasagittal plane, so obtaining two microzones with a
transversal length of 200 µm each (along z-axis). Consequently,
we reorganized the PC-DCN connections to be confined within
the same subvolumes, with a neurophysiological crosstalk. This
way, two adjacent microcomplex volumes were reconstructed
(Uusisaari and de Schutter, 2011). Then, we added an olivary
volume of 100 × 200 × 40 µm3 chosen to maintain the ratio
between the cerebellar cortical volume and the olivary one

measured in mice, i.e., ∼ 66–68:1 (Lein et al., 2007). Based on
IO neuron density (i.e., ∼ 15′172 cells/mm3), we positioned
12 cells in the olivary scaffold volume (Zanjani et al., 2004).
The neurons were placed using self-avoiding bounded random
walk procedure. For each olivocerebellar microcomplex, six IO
neurons were included.

In the cerebellar nuclei, we considered two types of neurons:
non-GABAergic DCNs, which are the principal large neurons
projecting outside the cerebellum in an excitatory way (DCNp),
and GABAergic interneurons (DCNi), which send inhibitory
feedback signals to IO. For each DCNp, already present in the
previous scaffold release (Casali et al., 2019), we added one
DCNi, positioned around the corresponding DCNp, at a random
distance d in the range between d1 (minimum to avoid somata
overlap) and d2 (maximum in order to have a DCNi as a satellite
of a specific DCNp, i.e., closer to that DCNp than to the other
DCNp neurons):

d1 = rDCNp + rDCNi

d2 = mean_dist/4− rDCNp − rDCNi

where:
rDCNp, rDCNi = radius of DCN neurons′ somata;
mean_dist = mean pairwise distance between DCNp in the

scaffold (Casali et al., 2019).

Connections to and from IO were organized to mimic
the geometry of microcomplexes. IO and DCN neurons
were divided into two clusters based on their position and
connected to PCs in homologous microzones. This topological
segregation was maintained also in connecting IO to DCNp, and
DCNi to IO cells.

Furthermore, also the connections from IO to MLIs were
introduced following the microcomplex correspondence (Szapiro
and Barbour, 2007; Jörntell et al., 2010). The resulting
convergence/divergence values of the connections within the
entire olivocerebellar scaffold are reported in Table 2.

Single neurons in the SNN were modeled as EGLIF, able to
reproduce the full set of spiking patterns of cerebellar neurons
(Geminiani et al., 2018b). In details, a cell-specific parameter
set was applied to meet the electroresponsive phenotype
of each olivocerebellar neuron (e.g., GoC: autorhythm,
adaptation, rebound bursting, phase reset, subthreshold
oscillations, resonance; GrC: subthreshold oscillations and

TABLE 1 | Neuron types and numbers in the olivocerebellar scaffold.

Neuron type Number of neurons

MF 7073

GoC 219

GrC 88164

MLI 1206

PC 69

DCNp 12

DCNi 12

IO 12
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TABLE 2 | Olivocerebellar scaffold connections with convergence/divergence ratios (reported as mean ± Standard Deviation, SD) and corresponding synaptic
parameters.

Convergence
(mean ± SD)

Divergence
(mean ± SD)

Weight [nS] Delay [ms] τ α [ms] Connection type

MF-GrC 4 50 ± 22 0.15 4.0 5.8
(Prestori et al., 2008)

exc

MF-GoC 65 ± 27 2 ± 1 1.5 4.0 0.23
(Kanichay and Silver, 2008)

exc

GoC-GrC 2 ± 1 624 ± 267 0. 6 2.0 13.6
(Mapelli et al., 2009)

inh

GoC-GoC 34 ± 8 34 ± 9 0.3 1.0 10 inh

AA-GoC 360 ± 81 1 1.2 2.0 0.5
(Kanichay and Silver, 2008)

exc

PF-GoC 1600 4 ± 2 0.05 5.0 0.5
(Kanichay and Silver, 2008)

exc

MLI-MLI 4 ± 2 4 0.2 1.0 2 inh

PF-MLI 1004 ± 221 (BC)
1021 ± 221 (SC)

12 ± 4 (BC)
12 ± 5 (SC)

0.015 5.0 0.64 exc

MLI-PC 20 3 ± 1 0.3 4.0 (BC)
5.0 (SC)

2.8
(He et al., 2015)

inh

AA-PC 249 ± 13 1 0.7 2.0 1.1
(Miyazaki et al., 2004)

exc

PF-PC 28401 ± 776 23 ± 3 0.007 5.0 1.1
(Miyazaki et al., 2004)

exc

PC-DCNp 26 ± 2 5 ± 1 0.4 4.0 0.7
(Uusisaari and Knöpfel, 2008)

inh

PC-DCNi 26 ± 4 5 ± 1 0.12 4.0 1.14
(Uusisaari and Knöpfel, 2008)

inh

MF-DCNp 147 1 0.05 4.0 1
(Wu and Raman, 2017)

exc

CF-PC 1 6 ± 1 (min = 4;
max = 8)

350.0 4.0
(Llinás, 2014)

0.4
(Miyazaki et al., 2004)

exc

CF-MLI 3 ± 1 115 ± 23 1.0 70.0 ± 10.0
(De Zeeuw et al., 2011)

1.2
(Szapiro and Barbour, 2007)

exc

IO-DCNp 6 6 0.1 4.0
(Hoebeek et al., 2010)

1
(Wu and Raman, 2017)

exc

IO-DCNi 6 6 0.2 5.0 3.64
(Uusisaari and Knöpfel, 2008)

exc

DCNi-IO 6 6 3.0 20.0
(Best and Regehr, 2009)

60.0
(Best and Regehr, 2009)

inh

resonance; PC: autorhythm and bursting; DCN: autorhythm,
adaptation and rebound bursting; IO: subthreshold oscillations,
rebound spiking, phase reset), as optimized in Geminiani
et al. (2019) (Supplementary Material). Only the firing
irregularity parameters were modified with respect to Geminiani
et al. (2019), to account during network simulations for
higher noise components that are absent during in vitro
experiments (Supplementary Material). As a result, we obtained
physiological Coefficient of Variation of Inter-Spike Intervals
(CVISI) and average firing frequency (ftonic) observed in vivo
(Ten Brinke et al., 2017; Boele et al., 2018). Specifically, PCs
showed ftonic = 85 Hz and CVISI = 0.2, and DCNp, ftonic = 65 Hz
and CVISI = 0.2.

Then, the same reconstructed circuit was populated by basic
LIF neurons (LIF-SNN). The passive membrane parameters were
set equal for EGLIF and LIF neurons, specific for each neuron
type (Supplementary Material). The intrinsic current generating

spontaneous firing was tuned in the LIF neurons using trial and
error, to obtain the same desired autorhythm rates.

Synaptic transmission was regulated by alpha-shaped
conductance-based synapses, where reversal potentials were
set to 0 mV for all excitatory synapses and −80 mV for
inhibitory synapses (Cavallari et al., 2014). Multiple synapses
on the same post-synaptic neuron were introduced in order to
modulate the impact of different pre-synaptic populations, by
using ad hoc synaptic parameters. The time constants of the
conductance functions (τα) and the synaptic delays were defined
based on scaffold values (Casali et al., 2019) and literature
data (Table 2). Synaptic weights were set through trial and
error in order to generate reference firing rates of each neural
population, during baseline state of the network, i.e., without
external stimuli. In setting those synaptic weights, qualitative
and comparative information were taken as constraints, e.g.,
the robust connections from IOs to PCs through CFs, and the
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stronger effect of GrCs on the post-synaptic neuron when the
connection is through AAs than through PFs (Casali et al.,
2019). Since the non-synaptic “spill-over” interaction between
CFs and MLIs (Szapiro and Barbour, 2007; Jörntell et al., 2010),
delay values of CF-MLI connections were set not all equal, but
randomly chosen within a normal distribution to represent
the slow and gradual neurotransmitter release. Short 1 ms
delays (corresponding to the simulation resolution) were used
in the interneuron inhibitory subnetworks (GoCs-GoCs and
MLIs-MLIs) to mimic gap junctions (Hahne et al., 2015). The
same synaptic delays and weights were used in both EGLIF-SNN
and LIF-SNN, to ensure that the response differences between
the two models could be ascribed unequivocally to different
single neuron dynamics.

Network Stimulation Protocol and Data
Analysis
The reconstructed olivocerebellar network with optimized cell-
specific neuron models (Geminiani et al., 2019) was then
simulated in PyNEST (Diesmann and Gewaltig, 2002; Eppler
et al., 2009). The emergent spatio-temporal dynamics was
analyzed, such as the responses of all neuron populations
to sensory signals involving different input pathways. To
understand the impact of single neuron dynamics in emerging
properties at network and signal encoding level, the same
simulation protocols were applied in the two network models,
EGLIF-SNN and LIF-SNN.

The chosen input signals mimic those used in EyeBlink
classical conditioning (EBCC), a well-known cerebellum-driven
task, commonly used to investigate cerebellar learning and the
underlying circuit mechanisms (Jirenhed et al., 2007). Recruiting
different sensory pathways, the input signals during EBCC are
usually a continuous light signal (a LED) and a time-locked short
air puff stimulation on the eye. On the other hand, the motor
response is an eye closure. Our model focused on the beginning
of this task, when timing associative learning has not occurred
yet, and only the second stimulus is supposed to generate an
attention-triggered motor response. Within our SNN, the light
stimulus was encoded as a 40 Hz Poisson process conveyed
through a wide MF bundle investing both microcomplexes.
Moreover, transversal PF projections from the Granular layer and
MF collaterals to DCN cells allow the signals to travel across
adjacent microcomplexes (Kalmbach et al., 2010). The air puff
was a 500 Hz burst conveyed to CFs belonging specifically to
one microcomplex (Ten Brinke et al., 2015, 2017). The output
motor response was decoded from the net spiking activity of
DCNp neurons.

The network testing protocol included a first 1-s baseline
phase with a 4 Hz Poisson process to MFs. This baseline input
simulated the typical in vivo background noise (Rancz et al.,
2007). Afterward, a 40-Hz MF spike train (associated to LED
light) started, lasting 260 ms. It co-terminated with the 500-Hz
CF burst (associated to air puff) which lasted 10 ms. A final 500-
ms phase was added after this stimulation pair, to evaluate the
capability of the network to return to baseline rest condition (Ten
Brinke et al., 2015, 2017).

The input spike train activated a MF bundle in the scaffold
network, specifically a cylinder with a basis radius of 150 µm
at the center of the transversal x–z plane, and a height of
150 µm thus including the whole granular layer thickness.
This activation pattern was chosen based on the experimental
observation that cerebellar activation is region specific and
topographically organized, with MFs activating in bundles
eliciting local responses (Morissette and Bower, 1996; Diwakar
et al., 2011). In addition, this pattern allowed to avoid edge effects
due to truncated connectivity close to the borders. As a result,
about 80% of glomeruli received the afferent input.

To avoid unnatural synchronization of populations’ initial
spikes, the membrane potential of each neuron was initialized to
a random value between the population-specific resting potential
and threshold potential, in both EGLIF-SNN and LIF-SNN.

Raster plots of example neurons were used to visualize single
neuron responses, while the network activity was represented
as PeriStimulus time histograms (PSTH) with time bin = 5 ms,
for each neural population at rest and during the imposed
stimulation patterns.

PC and DCNp populations represented the convergence
stages of both input stimuli pathways. Therefore, the
instantaneous firing rates of PC and DCNp neurons in the
first microcomplex (the one receiving both MF input and CF
burst) were computed as the convolution between the neuron
spiking patterns and a gaussian sliding window of 5 ms and
10 ms, respectively (Dayan and Abbott, 2001). To evaluate the
difference in the responses between EGLIF-SNN and LIF-SNN,
for each PC and DCNp neuron, we measured the activity
change – response speed – following the second stimulus
(i.e., CF burst):

speedi =
max_ratei − min_ratei

1t
for each neuron i,

being max_ratei and min_ratei, the maximum and minimum
firing rate of the i-th neuron within the 100-ms interval
starting 5 ms after the CF burst onset, and 1t the time
interval between them.

Finally, the resulting motor response was computed from
DCNp activity: the spiking pattern of each microcomplex was
first decoded using an update and decay rule (update constant:
1.0; decay time constant: 10 ms) and then filtered with a
moving average filter using a 50-sample window. The final
eyeblink response was computed from the net decoded activity
of both microcomplexes.

RESULTS

The olivocerebellar SNN was organized into two cortical
microzones, distinguished by their connections from CFs while
sharing information from the granular layer (Voogd and
Glickstein, 1998). The two microzones, differentially connected
to DCN and IO, formed two distinct microcomplexes (Ito, 1984;
Figure 1). The olivocerebellar SNN was able to encode different
inputs into output spike patterns. We have analyzed in detail the
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response to spike trains imitating EBCC-like sensory inputs. The
comparison between the EGLIF-SNN and LIF-SNN allowed to
identify the contribution of non-linear single neuron properties
to ensemble network dynamics.

The basal activity of cerebellar neurons and their response to
MF and CF inputs is illustrated in Figures 2–7. In both EGLIF-
SNN and LIF-SNN models, during baseline MF activation with
random noise at 4 Hz (Rancz et al., 2007), the GrCs were driven
into low frequency firing, and the GoC, MLI, PC and DCN
neurons slightly increased their firing rate compared to intrinsic
pacemaking (Geminiani et al., 2019).

The activity of EGLIF-SNN and LIF-SNN changed during
stimulation of the MFs (260 ms at 40 Hz on a MFs bundle,
see section “Materials and Methods”) and when a burst was
generated in CFs coming from the IO (10 ms at 500 Hz
on one microcomplex, see section “Materials and Methods”).
At the onset of stimulation, when only MFs were active, the
firing rates for all neural populations of the cortical microzones
increased with average frequency values within the physiological
range. In particular, an increase of about 10 Hz in PC firing
rate with respect to 85 Hz baseline emerged, consistent with
experimental observations showing that PC activity is largely
sustained by pacemaking (Cerminara and Rawson, 2004). The
responses of DCN neurons demonstrated a reduction in DCNi,
which received only inhibition from PCs, and almost no change
in DCNp, which received balanced excitation from MFs and
inhibition from PCs, revealing the regulatory power of the system
on the cerebellar output. On the other hand, when also the
CF burst was injected, complex dynamic spiking patterns were
elicited, differentiated in the two microcomplexes; and here the
superiority of EGLIF-SNN with respect to LIF-SNN to simulate
non-linear responses emerged.

Granular Layer
Both in EGLIF-SNN and LIF-SNN, the GrCs showed a
background low-frequency sparse activation that increased and
then recovered to baseline without apparent rebounds. The GoCs
also increased firing frequency during the MF stimulus, and then
showed a rapid reduction at its end lasting about 30 ms. This was
due to slow recovery of the pacemaker cycle reflecting a phase-
reset mechanism (Solinas et al., 2007; Geminiani et al., 2018b).
The GrCs did not show a corresponding remarkable rebound
in their firing rate, probably because of the prolonged effect
of GoC-GrC synaptic inhibition, which lasts for about 50 ms
(Bengtsson et al., 2013).

Molecular Layer, PC, and DCN –
Microcomplex 1
The activation of IO neurons connected to microcomplex 1
caused a characteristic spiking pattern. In the EGLIF-SNN,
the IO input burst induced a typical response in connected
PCs, consisting of synchronous complex spikes followed by
a pause (burst-pause). Each complex spike included a first
burst approximating dendritic spikelets, induced by the 10-ms
IO input, and a subsequent pause/hyperpolarization, resulting
from intrinsic neuron model mechanisms (De Zeeuw et al.,
2011; Geminiani et al., 2019). After the burst-pause response,
firing recovered but a second firing decrease occurred, caused
by spillover-mediated inhibition from MLIs (about 70 ms
after the IO burst onset). The PC complex spikes triggered
by the IO silenced DCNp neurons (pause), which, after the
hyperpolarization, generated a rebound burst. The DCNp pause-
burst response matches neurophysiological observations (Pugh
and Raman, 2006; Zheng and Raman, 2010). DCNi received

FIGURE 2 | Raster plots of three examplar GrC and GoC neurons from EGLIF SNN (A) and LIF-SNN (B) simulations. The stimulation paradigm (MF input) is
indicated.
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FIGURE 3 | PSTH of all Granular layer neurons in EGLIF-SNN (A) and LIF-SNN (B). In both cases, stimulation of a MF bundle common to both microcomplexes (top
panel) causes the mean firing rate of granule cells and Golgi cells to increase. Note the similar patterns of neuronal activity in the two networks. The absolute values
of firing rates are within physiological ranges in vivo. Each PSTH bin is 5 ms long.

only PC and IO inputs but not MF excitation, they generated
a rebound spike after the strong inhibition from PC complex
spikes. In the LIF-SNN, the burst-pause regime of PCs and
pause-burst regime of DCN cells did not emerge.

Molecular Layer, PC, and DCN –
Microcomplex 2
Neurons belonging to microcomplex 2 received only the
MF stimulus causing a net increase of firing rates in MLI,
PC and DCNp neurons, and a pause in DCNi cells not
receiving MF excitation.

For PC and DCNp in the microcomplex 1, where PF and
CF stimuli converged, the average firing rate response was
sharper in the EGLIF-SNN (Figure 8A), impacting on the
timing precision of the network output. Indeed, the dynamic
modulation of spike patterns observed using EGLIF could not
be reproduced with LIF network models, since the simplified
dynamics of single neurons prevented from generating bursting,
pause and rebound responses. Consequently, the response speed
was significantly higher in PC and DCNp neural populations
within EGLIF-SNN (PC speed: −23.82 ± 1.96 Hz/ms in EGLIF-
SNN vs.−2.25± 0.91 Hz/ms in LIF-SNN, t-test: p< 0.01; DCNp
speed: 1.72 ± 0.83 Hz/ms in EGLIF-SNN vs. 1 ± 0.06 Hz/ms in
LIF-SNN, t-test: p < 0.01).

As a result, the eyeblink response computed from the net
decoded activity of DCNp neurons was faster and sharper in the
EGLIF-SNN simulations (Figure 8B).

DISCUSSION

The main observation in this study is that neuron models with
realistic non-linear properties EGLIF (Geminiani et al., 2018b,
2019), once embedded into networks with realistic geometry
and connectivity (Casali et al., 2019), have a significant impact
on ensemble response dynamics compared to simpler models
(LIF). The effectiveness of EGLIF emerged as a pattern of burst-
pause and pause-burst responses in PC and DCNp neurons
reproducing observations in vivo (Herzfeld et al., 2015; Moscato
et al., 2019) and was most evident when the microcomplex
received the CF stimuli. Since we used stimulus patterns
emulating those occurring in the eye-blink reflex, it is anticipated
that single neuron properties will reverberate on sensorimotor
control in closed-loop.

Single Neuron Activity and SNN
Responses to Stimuli
In EGLIF-SNN simulations, the integration of bursts on the
CFs and spike trains on PFs proved fundamental for generating
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FIGURE 4 | Raster plots of three example IO, MLI, PC, DCNp and DCNi neurons in the first microcomplex, from EGLIF-SNN (A) and LIF-SNN (B) simulations. The
stimulation paradigm (MF input and CF burst) is indicated.

a realistic PC output. These stimuli caused PCs to shift from
spontaneous background activity to complex spikes and simple
spike trains taking the form of a burst-pause response. The
burst-pause was the consequence of intrinsic PC non-linear

electroresponsive dynamics engaged by patterned synaptic inputs
from PFs, MLIs, and IO (Jirenhed et al., 2013). Always in EGLIF-
SNN simulations, DCNp neurons showed pause-burst responses
deriving from intrinsic DCNp neuron electroresponsiveness
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FIGURE 5 | PSTH of IO, MLI, PC and DCN neurons in microcomplex (1) in EGLIF-SNN (A) and LIF-SNN (B). The first stimulus (MF input) increases the firing rate in
MLI, PC and DCNp neurons during the 260 ms interval, while DCNi cells that do not receive MF inputs, get inhibited by the increased PC firing. The air puff is
encoded as a burst from CFs. MLIs receive the CF stimulus through the IO pathway causing a delayed protracted increase in firing rate about 70 ms after the
stimulus, due to neurotransmitter spillover from CFs. At PC level, CF stimulation results in a complex spike (burst-pause, black arrow) causing a pause-burst in DCN
neurons (white arrow). Note that these dynamic behaviors are observed only in the EGLIF-SNN due to the complex intrinsic dynamics of EGLIF neuron models. In
LIF-SNN, the PC burst caused by CF input is not followed by the pause, while in DCNp neurons the pause due to PC complex spike inhibition is followed by a
synchronous restart of firing (causing the increased instantaneous frequency) without any rebound burst. Note that the lower irregularity of firing in LIF-SNN
simulations resulted in apparent higher firing rates, due to non-physiological synchronization of population spikes. Each PSTH bin is 5 ms long.
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FIGURE 6 | Raster plots of three example MLI, PC, DCNp and DCNi neurons in the second microcomplex, from EGLIF-SNN (A) and LIF-SNN (B) simulations. The
stimulation paradigm (MF input) is indicated.

engaged by synaptic inputs from PCs, MF and CF collaterals
(Herzfeld et al., 2015; Moscato et al., 2019). Indeed, these spiking
patterns proved to have a crucial impact on response speed
and time precision (Figure 8) providing a potential advantage
for cerebellum-driven tasks, in which the cerebellum acts as a
millisecond-precise controller (Bareš et al., 2019; Heck et al.,
2013). The intrinsic bursting properties of the EGLIF model,
already proved in simulations of single neuron responses to
current steps (Geminiani et al., 2019), here proved fundamental
to capture emergent network dynamics. It should be noted
that, in LIF-SNN simulations, burst-pause and pause-burst
responses did not emerge. These results therefore support the

adequacy of EGLIF neurons for realistic simulations of cerebellar
SNNs in closed-loop.

The impact of EGLIF neurons on oscillatory network
dynamics, that are expected to emerge from feedback circuit
loops in the granular layer (D’Angelo et al., 2013; Maex
and De Schutter, 2013), remains to be investigated. Indeed,
the intrinsic membrane potential oscillations of EGLIF in
single neuron stimulation protocols could impact on network
oscillations, and should be further investigated (Geminiani et al.,
2019). An open question is also how the EGLIF representation
compromises with non-linear dendritic processing in PCs, in
which the excitatory post-synaptic potentials are locally amplified
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FIGURE 7 | PSTH of MLI, PC and DCN neurons inmicrocomplex (2) in EGLIF-SNN (A) and LIF-SNN (B). The stimulus causes an increased firing rate in MLIs and
PCs. In the nuclear layers, DCNp neurons receive both a higher excitation from MFs and an increased inhibition from PCs due to the stimulus, resulting in a net
non-significant change of their firing rate. Conversely, DCNp neurons get silenced by the PCs during the stimulation, as they do not receive MF excitation. Each
PSTH bin is 5 ms long.

by Calcium spikes and integrated into complex spatio-temporal
sequences (Masoli et al., 2015; Masoli and D’Angelo, 2017).
A similar case applies to DCN cells too, in which the inhibitory
post-synaptic potentials set up non-linear interactions with low-
threshold calcium spikes (Si Feng et al., 2013). These aspects
need to be further investigated by comparison with detailed
multicompartmental neuron models.

Neuronal Wiring and Synaptic
Transmission in the SNN
The importance of geometry and connectivity was recently
addressed using LIF neurons in a scaffold cerebellar network
(Casali et al., 2019). Here the network has been upgraded with

EGLIF neurons and extended to include the IO-DCN sub-circuit
to form two different microcomplexes, demonstrating additional
network properties. In the current configuration, as said, the
network generated spiking patterns similar to those observed
in vivo. A critical issue in this context is the definition of
synaptic models (Cavallari et al., 2014). Here we have chosen
conductance-based synaptic models implemented with alpha
functions, which accounted in an accurate yet simplified form
for neurotransmission kinetics (Table 2). A future improvement
could be to define conductance changes using specific NMDA,
AMPA and GABA kinetics in each neuron type [e.g., see
(Wu and Raman, 2017)]. In addition, the more precise spiking
patterns of the EGLIF-SNN make this network a better
candidate also to investigate short-term plasticity mechanisms.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 October 2019 | Volume 13 | Article 68

https://www.frontiersin.org/journals/computational-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-13-00068 September 27, 2019 Time: 16:30 # 12

Geminiani et al. An Olivocerebellar Spiking Network With EGLIF Neurons

FIGURE 8 | (A) Mean instantaneous population firing rate of PC and DCNp
neurons from microcomplex (1), averaging all neurons (35 PC and 6 DCNp)
and all simulations (n = 5), comparing EGLIF-SNN (continuous line) and
LIF-SNN (dashed line). The presence of burst-pause and pause-burst
responses in EGLIF PC and DCNp neuronal populations, results in a faster
and more precise change of the overall population activity (more sensitivity).
(B) Eyeblink response signal averaged over the five simulations; the DCNp
activity of microcomplexes (1) and (2) is first decoded and then the net signal
of both microcomplexes is computed to obtain the final response. As a result
of the underlying neural mechanisms, the motor response is faster and
sharper in the EGLIF-SNN simulations. The orange bar represents the time of
the CF bursting input.

For example, it could be possible to evaluate whether short-
term facilitation can further enhance the time precision of the
response, amplifying bursting mechanism. In addition, EGLIF-
SNN simulations with short-term plasticity could allow to clarify
how single neuron and synaptic dynamics interact to generate
proper network dynamics.

Finally, phenomena like neurotransmitter spillover and
electrical transmission through gap-junctions were approximated
here by tuning delay parameters, but could be better reproduced
by customized models (Latorre et al., 2013). In GoC and IO
neuronal populations, more realistic gap junctions would allow,
for instance, to investigate more in detail circuit oscillation
properties (Leznik and Llinás, 2005).

Implications for Eyeblink Conditioning
and Other Cerebellum-Driven Paradigms
The stimulation patterns used here mimicked the typical input
signals that are used in EBCC tasks including a prolonged
and spatially distributed sensory stimulus (CS, light) and a
short attentional signal [Unconditioned Stimulus (US), air puff].
The current study focused on the response before learning:
CS excited the granular layer across microzones, consistent
with the operation of signal analysis (through recombinatorial
expansion) carried out by the granular layer (D’Angelo et al.,
2013; Gilmer and Person, 2017). The granular layer output was
then synthesized and further processed in the PC layer (Dean
and Porrill, 2011). US influenced individual microcomplexes
through specific IO projections, segregating the attention (or
error) signal within the network. These modular activation
patterns represent the most elementary instantiation of cerebellar
functioning, i.e., the ability to correlate neural signals transmitted
along different afferent pathways, the MFs and CFs. These signals,
in a behavioral context, are needed to allow the cerebellum to
learn to predict the precise timing of correlated events, setting the
basis for cerebellar contribution to motor and cognitive control
(Ivry, 2000; D’Angelo and Casali, 2013). It seems therefore
highly relevant that the emerging burst-pause and pause-burst
responses in PC and DCNp neurons are precisely reproduced
using EGLIF-SNN. These activity patterns will be critical for
generating the proper time-locked response in future simulations
of EBCC (Rasmussen et al., 2008). This will require to endow
the current SNN model with distributed long-term plasticity to
simulate learning mechanisms (Antonietti et al., 2016). While the
current work evaluated the impact of non-linear single neuron
dynamics and network topology on stimulus-response spiking
patterns, closed-loop simulations of a full cerebellum-driven
learning task with the EGLIF-SNN will allow to evaluate the
impact of long-term plasticity, mainly spike-timing dependent
plasticity mechanisms, driven by IO and PC spikes.

As a result of modularity and specific connectivity to various
brain regions, different cerebellar modules are engaged in
different tasks (D’Angelo and Casali, 2013). The modules receive
various kinds of input signals, which carry information about
specific sensory modalities or specific body parts as well as about
activity in motor and associative cortical areas. The modules can
differ not only in terms of sources and pathways of the incoming
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signals, but also in terms of specific electroresponsive properties
of neurons. For example, differences in the autorhythm of PCs
were observed between regions involved in EBCC and vestibulo-
ocular reflexes (Zhou et al., 2014). Similarly, a modulation of
oscillatory properties emerge in the IO neural population when
encoding either somatosensory or visual stimuli (Llinás, 2014).
The possibility to easily modify neuron models and connectivity
in our olivocerebellar EGLIF-SNN would allow to fine tune
specific features associated to sensorimotor loops and functional
cerebellar regions (Casellato et al., 2014; Geminiani et al., 2017;
Luque et al., 2019).

According to the modular organization of the cerebellum,
these microcomplexes could be multiplied and reconnected
to investigate how input signals are integrated and elaborated
to control complex movements, for example in whisking
and locomotion (Romano et al., 2018). Scaling-up the
network modular architecture would require to re-organize
connectivity among microcomplexes, which can determine
fundamental properties of cerebellar functioning, such as
somatotopic organization, fractured somatotopy mapping and
multimodal sensory fusion.

CONCLUSION

Since the model satisfactorily captures fundamental properties
of microcomplexes, it can help shedding light on the links
between structure, function and dynamics in the cerebellum
under physiological and pathological conditions and during
learning (D’Angelo and Gandini Wheeler-Kingshott, 2017).
These extended applications are warranted by the flexible
structure of the scaffold (Casali et al., 2019) and the tunable
nature of EGLIF neurons (Geminiani et al., 2018b, 2019). For
example, in different species or in pathological conditions,
EGLIF-SNN could account for variations in the number
of neurons as well as in their connectivity and intrinsic
electroresponsiveness, while maintaining high efficiency when
running large-scale simulations in closed-loop. Future work will
endow the EGLIF-SNN cerebellum models with mechanisms
for synaptic plasticity in order to evaluate the impact of single
neuron and network properties on motor learning (Hansel et al.,
2001; Schonewille et al., 2010; Gao et al., 2012; D’Angelo, 2014;
Boele et al., 2018). Eventually, the model may be exploited to

mimic pathological conditions at multiple scales (Geminiani
et al., 2018a) providing new insights into the role of cerebellum
in brain diseases (D’Angelo and Casali, 2013; D’Angelo, 2019;
Schmahmann, 2019). It is also envisaged that the EGLIF scaffold
strategy could be customized to model and simulate other brain
regions (like the cerebral cortex, hippocampus or basal ganglia).
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