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Abstract: Intelligent materials, also known as smart materials, are capable of reacting to various
external stimuli or environmental changes by rearranging their structure at a molecular level and
adapting functionality accordingly. The initial concept of the intelligence of a material originated from
the natural biological system, following the sensing–reacting–learning mechanism. The dynamic and
adaptive nature, along with the immediate responsiveness, of the polymer- and fiber-based smart
materials have increased their global demand in both academia and industry. In this manuscript,
the most recent progress in smart materials with various features is reviewed with a focus on their
applications in diverse fields. Moreover, their performance and working mechanisms, based on
different physical, chemical and biological stimuli, such as temperature, electric and magnetic field,
deformation, pH and enzymes, are summarized. Finally, the study is concluded by highlighting the
existing challenges and future opportunities in the field of intelligent materials.

Keywords: intelligent materials; stimuli-responsive; polymers

1. Introduction

The unique properties of polymers have long been gaining attention and investigation
from both academia and industry. The characteristics of different polymers rely on how
the long chains of the molecules repeat themselves and bond with each other [1]. The
inherent structure, along with the way molecules arrange themselves and cross-link, aids
materials’ responsiveness to trivial environmental changes [2–4]. Intelligent polymers, as
the word ’intelligent’ implies, are the polymers that are responsive to single or multiple
stimuli, which could be either chemical or physical [2,5].

It is essential at the beginning of this review to define what an intelligent polymer
is. To clarify the term “intelligent” with more accurate standards, we look back at the
origin of it, which is borrowed from science-fiction literature as the opposite of those that
are obtuse to environmental changes, that have no such ability to make choices and that
cannot respond or adapt to comprehend complex situations or learn from the past. As
well-established terminology in human intelligence and artificial intelligence [6,7], it is the
intellectual power that gives human cognitive capabilities along with self-awareness to
reason and understand, think and resolve, innovate and design, plan and predict, commu-
nicate and interact with each other. In a word, human intelligence can be seen as the ability
to define, solve and learn from problems in various scenarios [8–10]. Similarly, from the
deduction of parallel interpretation, the “intelligence” of a material could be considered to
be the capability of property changes responsive to environmental stimuli with correspond-
ing molecular-level structural rearrangement [11–13]. These external stimuli, as seen in
Figure 1a, could be referring to changes in light intensity, temperature, pH, electricity or
magnetic field, mechanical deformation or pressure, biological stimuli, etc. [14–16]. The
prototype of an intelligent polymer could be defined as a material that comprehends expe-
riences, is self-aware and responds purposefully. Such ability to be aware of environmental
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changes allows intelligent polymers to adapt to ensure future improved behaviors in simi-
lar situations and in certain applications [17–20]. On the other hand, some researchers have
also worked on implementing artificial-intelligence methodologies, like machine learning
(ML), into the development of polymers, such as the ML model for polymer swelling
in liquids [21], the prediction of point defects in materials [22] and sustainable material
synthesis [23].
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Keeping an eye on the increasing demands in developing and promoting smart
materials in various types of applications in both academia and industry, polymer- and
fiber-based materials are of the most interest [24]. With Figure 1b illustrating the trends of
major progress and publications in intelligent polymers, the increasing amount of research
works in several directions. Figure 2 shows the historical tendency of major engineering
material systems to transition from structural to functional with a prospective future of
low-carbon sustainable intelligent materials [25]. Major preoccupations have seen materials
starting from Stone Age primitive materials and the rudimentary use of chemistry to treat
natural rubber and metals, followed by electrochemistry in the last century, with numerous
materials developed or discovered in between [26,27]. Nowadays, the wide use of polymers
and ceramics makes industrial and daily-life products feasible, affordable and suitable for
mass production [28–30]. Piezoelectric, semiconducting and thermoelectric materials are
seen in many state-of-the-art applications [31–34] and intelligent devices based on their
unique characteristics. Nevertheless, these materials still hold a certain level of limitations
regarding the degree of intelligence, as most of them lack certain functionalities such as
self-control, decision-making, self-learning or ease of recycling, which are critical to the
demanding sophisticated modern way of life [25].
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In this review, features of polymer- and fiber-based materials are discussed, followed
by applications in various fields and comparisons and summaries of the properties, char-
acteristics and mechanisms of intelligent materials from a perspective of functionalities
due to triggering stimuli, which range from physical (temperature, electric and magnetic
field and deformation), chemical (pH) and biological (enzyme) basis. Section 2 focuses on
the basic working mechanisms of several widely used intelligent polymers, followed by
their respective characteristics and comparisons of performance in various applications.
After investigations on shape-memory polymers (SMPs) in Section 2.1 and self-healing
polymers in Section 2.2, Section 2.3 focuses on multiresponsive polymers that are magnetic-,
humidity- and pH-responsive. Section 3 gives a brief review on the following developed
fields of polymer applications: drug-delivery systems, smart textiles and polymer-based
healthcare wearables. Section 4 summarizes the discussion on intelligent polymers, points
out the current research gaps and provides possible future research directions on intelli-
gent polymers.

2. Classifications and Underlying Mechanisms of Intelligent Polymers

From the level of macroscopic consideration, the adaptive performances of intelligent
materials are achieved by the autonomous behaviors of molecules or atoms at a nanoscopic
level [35]. When stimuli are introduced, aggregation, rearrangement and directional move-
ment occur among the molecules and atoms [36,37]. To perform an optimal response—either
in reflection of changes in shape or color or in generated electrical signals—to the stimuli,
which could be changes in electricity, magnetism, heat, humidity, stress, light intensity, nu-
clear radiation level, introduced chemicals, etc., the adaptiveness of an intelligent material
is shown at both a micro and macro level [14,38]. To obtain an overall understanding of
intelligent polymers, in this section, we present the fundamentals of intelligent polymers.
Specifically, polymer-based materials and fiber-based materials are introduced in detail
from their characteristics and mechanisms to their use-case scenarios, which play impor-
tant and inevitable roles in modern society. By introducing the working mechanisms of
smart polymers utilized in three major fields (shape-memory, self-healing and responsive
polymers), the underlying principles of stimuli-responsive features have been discussed.
As clarified in the introduction, intelligent polymers hold various working mechanisms
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for multiple specialized applications, whilst possess memorizing, learning and reacting
capabilities from a molecule level.

2.1. Shape-Memory Intelligent Polymers

SMPs are polymeric materials that are able to transit between different predefined
shapes when external stimuli are introduced [38]. They offer a wide range of applications,
both currently and in the immediate future, in biomedical, intelligent devices, medicine,
aerospace, photonics, manufacturing, textiles and household goods, as well as microstruc-
ture printing for anticounterfeiting [39–42]. Two approaches are mainly taken, either the
viscoelastic approach or the phase transition approach [43], to analyze and model the
behavior of SMPs. Significant progress has been made in optimizing and broadening
the transforming behaviors of shape-memory polymers to not limit them with bare dual
shape-memory transitions [44,45].

Among SMPs with various working principles, thermoresponsive SMPs are most
studied [46–49]. A typical thermoresponsive SMP working cycle [38] is illustrated in
Figure 3a. When the surrounding environment is at a lower temperature, the memorized
stage of a thermoresponsive SMP has a less-ordered configuration [50]. In shape A, the
molecular connections are relaxed and stable with weak thermal motion; the switching
segments are elongated and fixed in the polymer. When heat is applied, the polymer shows
viscoelastic characteristics as the molecular motion becomes active, chain orientations
are switched and net-points are dislocated, leading to a new set of interactions between
SMP chains [51,52]. For example, Ansari et al. [53] discussed the angle recovery of SMP
under different temperatures. To fabricate complex shape-memory polymer geometry,
Zhang et al. [54] reported a material and process concept to allow the fine control of
SMP fabrication during a short period of time—30 s—of 4D printing, of which time is
the fourth dimension, as depicted in Figure 3c. The idea of 4D printing [55,56] was
introduced to enhance the performance of SMPs by improving durability and achieving
more complicated shape-memory behavior compared to 3D printing. Additionally, with the
help of digital light modulation, the spatial-temporal tuning of the material properties has
been achieved [54,57]. In Figure 3b,d, working mechanisms of SMPs under stimuli triggers
are illustrated. Bonding in metal retains strength retainability over covalent bonds, while
dynamic reversible molecular bonds in polymers serve as a complementary switchable
property, in addition to the bonds present in metals that are observed in metallopolymers.
Combining the mechanical features of both metal and polymer together in the design
of metallopolymer shape-memory material, a unique way to control metal ion diffusion
in the linear polymer network [58] was proposed by Yang et al., as in Figure 3b. By
doing so, the overall network yields a gradient plasticity. By using this concept, the
linear polymer network was synthesized with terpyridine-containing acrylate (Tpy-A),
methyl methacrylate (MMA) and butyl acrylate (BA) in a N,N-dimethylformamide (DMF)
solution first, then added to metal salt to obtain the gel form. During characterization,
they compared stress relaxation for samples doped with different metal ions, namely
Ni, Fe and Zn. As in Figure 3d, another major domain of interest is light-responsive
SMPs. Other than the reversible transitions mentioned above, it is possible for the shape-
memory effect to be triggered under other circumstances, such as changes in light intensity,
humidity and electric fields [59]. For instance, with additional iron oxide added, the
SMP can be triggered by UV to present magnetically guidable features [57]. Table 1 lists
the performance of polymer-based SMPs with various material combination and their
features. Versatile manufacturing methods indicate the feasibility of generating on-demand
SMPs for different applications with various composite materials added. A high shape-
recovery rate and biocompatibility made them suitable for wearable electronics and health
monitoring devices.
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Table 1. Performance of various shape-memory polymers.

Material Feature Shape
Fixity

Shape
Recovery Rate Method Application Ref.

MA/IBOA/HDDA Shapeshifting through time 100% >97.2% Digital light curing Nanophotonics,
shrinkable electronics [54]

tBA/HDDA/TPO Photosensitive 96% 100% Digital light
processing printer

Aerospace domain and
biomedical applications [62]

Tpy-A/MMA/
BA/DMF Plastic morphing versatility 99% 95% Chemical synthesis 3D shape construction [58]

PU/Al foil Triboelectric output
when recovering . . . >95% Electrospinning Self-powered

wearable devices [63]

Polycaprolactone/
Ebecryl 8413/BA

Color changing feature,
thermal triggered 97% 97% Chemical synthesis Soft robotics,

artificial skins [64]

SA/P(AA-AM)/
LiCl Hydrogel

Controllable
thermal-responsive 95% 97% Radical

polymerization Motion-sensing element [65]

Another essential emerging class of SMPs is vitrimers, or covalent adaptable networks
(CANs). Such thermosetting polymers are biobased, solvent-resistant and recyclable, thus
offering various functionalities in industrial applications, such as protective coatings,
reinforced or adhesive composite materials and biomedical devices [66,67]. Vitrimers
with dynamic covalent bonds based on associate mechanisms are able to maintain cross-
linked networks when heat is applied [68] and are consequently able to build controlled
multishape memory vitrimer by hot-pressing [67], as Pei and colleagues reported. With
optimized synthesis methods to further investigate, such as introducing 3D-printable
composites [66], controlling the tensile strength property by adjusting the molar ratio of
crosslinking functional groups [69], improving the mechanical properties and shape fixity
to 98% and above by bringing in graphene composites [70], vitrimers have the potential to
be applied in cases requiring reconfigurable, self-healing and self-welding features.

To conclude, polymers sensitive to temperature changes can be divided into two cate-
gories based on their phase transition behavior. When the temperature is raised, polymers
present upper critical solution temperatures (UCST) and undergo transition from biphasic
to monophasic [71,72], while those in transit from monophasic to biphasic are considered to
be low critical solution temperature polymers (LCST), leading to a transition of hydrophilic
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to hydrophobic behavior in the polymer, the latter of which has more investigation than
the former. The reason radical change occurs in the solubility of thermoresponsive poly-
mers when the temperature changes is that a miscibility gap is observed in the phase
diagram [72,73]. Besides commonly used LCST polymers such as poly(N-substituted acry-
lamide) and poly(vinylamide), and including poly(oligoethylene glycol (meth)acrylate)
families, there are also others that present similar temperature-responsive behavior when
macromolecular hydrophilic and hydrophobic balance is satisfied [74]. This feature could
be useful in drug delivery applications [72–75], designing thermoreactive self-folding
materials [76], the controlled permeability of fiber coatings [77] and membranes [78].

2.2. Self-Healing Polymers

Mechanical stimuli, such as stress, strain and twist, cause changes in the form of
polymers, and some polymers show recovering properties to transfer back to their previous
defined shapes [79–81]. Compared with metals and ceramics, these polymers are easier
to process at lower costs [82,83]. The self-healing ability of a polymer is obtained either
extrinsically (from the polymer structure), or intrinsically (from the material molecular
chain) [84]. Extrinsic healing comprises the majority of cases, in which healing compounds
are stored in capsules or nanoparticles isolated from the polymer matrix. Otherwise,
intrinsic self-healing polymers utilize the mobility of molecule chains by rearranging their
configuration. Either way, the original functions, such as electrical conductivity, integrity
of the surface structure or other mechanical properties of the material, are restored [85],
which is where the term “self-healing” comes from.

Since most studied self-healing polymers are in gel form [84], polymer hydrogels are
vital in the process of manufacturing modern biomaterials, as their richness in hydration
and similar three-dimensional structure render themselves compatible with natural tis-
sue [86,87]. Stretchable, switchable and elastic, hydrogels are hydrophilic with cross-linking
structural networks [88]. However, despite these outstanding features, hydrogels’ applica-
tions still present a certain level of limitation due to their weakness in bonding, inability to
be controlled, difficulty to actuate and complexities in design-responsive polymers [89].
When single or multiple stimuli are applied to the material, macroscopic responses, such
as swelling/collapse or solution–gel transitions, are induced, depending on the physical
state of the chains [3].

Two prerequisites are considered for the material to recover from the mechanical de-
formation: switching transition between different phases should be reversible, supported
by a stable polymer network responsible for a stable original shape. After mechanical
deformation is stimulated, shape-memory polymers can fix the temporary structure via
various transitions, such as liquid crystal anisotropic transition, molecule cross-linking,
crystallization melting or supramolecular association/disassociation [1,90]. Normally,
shape-memory polymers show recoverability from strains, but due to poor mechanical
properties, less satisfying recovery from stresses is observed [3]. Therefore, increasing atten-
tion and investigations aim to develop reinforced properties of shape-memory composites.

In other cases, polymers play important roles in adding to the damage tolerance in
deformable electronic devices, making the self-healing of mechanically defected electri-
cal metals possible. Polymer composites serving as a passivation film was reported by
Kunmo et al. [91]; where metal conductors are damaged, filler released from liquid metal
capsules self-heals the injured site and provides recovered conductivity, as in Figure 4a.
In this case, liquid metal capsules are wrapped with a polymer matrix of poly(urethane
acrylate) (PUA) to heal the Au contact in the device. After cutting the passivation film, the
power-conversion efficiency of the electronic device is well-maintained with a reduction
of only around 3%. Another study proposed by Luo et al. [92] involves embedded silver
nanowires to the self-healing polymer matrix to diversify its conductivity with respect to
monitoring the stages of healing. Figure 4b,c, depicts the self-healing behavior of polymer
gels. A comparison of the performance of selected polymers responding to mechanical
deformation is listed in Table 2. As shown, polymer-based shape-memory materials hold
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advantages in almost full-ratio recoverability, extensive durability and prominent stain
resistance, compared to generally less than 50% in shape-memory alloys [93,94].
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Table 2. Comparison of selected novel intelligent polymers’ responses to mechanical deformation stimulus and their performance.

Material Novelty Fabrication
Method

Working
Mechanism

Shape
Recovery

Ratio

Strain
Resis-
tance

Tensile
Strength Durability Application Ref.

(PMMA-b-
P(BA-co-
AMPS))

Self-healable
shape-recovery

ability

RAFT
copolymerization

Physical
supramolecular

crosslinking
/interactions

95% 500% 10 MPa . . .
Nanophotonics,

shrinkable
electronics

[90]

PU-co-
TPGDA

Shape recovery no
longer relies on ther-

moprogramming;
instantaneous shape

recovery

Colloidal
templating

Changes in
solvability of

swelling polymer
solvent triggered by

evaporation

100% . . . . . . >500
cycles

Aerospace
domain and
biomedical

applications

[96]

Graphene-
rubber

elastomer
nanocom-

posite

Sensing strain with
high resolution of

0.125%

Chemical
synthesis

followed by
vacuum filtration

process

Thermoelectricity . . . 200%
Sensitivity

~2.52
ln(nA)/%

>1000
cycles

3D-shape
construction [34]

CNF−PPy/
PB hybrid
hydrogel

Low density and
biocompatible

self-healing hydrogel
Polymerization Hierarchically

conductive network 100% 600% ∼62.8 kPa >1500
cycles

Motion-
sensing
element

[97]

2.3. Responsive Polymers Triggered by Other Stimuli

Although mechanical- and thermal-responsive polymers are gaining a significant
amount of attention among researchers, as mentioned in previous sections, other types of
responsive polymers are also studied, such as those responsive to magnetic fields, humidity
fluctuations or pH changes. Most likely, these different responsiveness are combined to
achieve the maximized performance of designed functionalities.
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Magnetic-resistant polymer gels and elastomers, for example, are composites based
on magnetic nanoparticles scattered in a high-elastic polymeric matrix [98], so that their
behaviors can be controlled spatiotemporally via external magnetic fields [99,100]. For
those composites, adding magnetic nanoparticles leads to added magnetic features, so
that materials can interact with magnetic fields [101]. As a result, the magnetic field
easily deforms the polymer matrix without noise, heat or fatigue, making it suitable for
the preparation of sensors, micromachines, energy transducers, controlled distribution
systems and environmental and biomedical applications [102–104]. Although the un-
controllable manner of the way magnetic nanoparticles scattered in the gel hindered the
promotion of its applications, this issue has been solved by forming cross-linking hydrogel
nodes [98,105]. For instance, as shown in Figure 5a, Perera et al. [106] reported one novel
type of drug carrier for controlled drug release due to the magnetic sensitivity of biocompat-
ible microfibers. Polyvinyl alcohol incorporated with Fe3O4 MNP (magnetic nanoparticles)
is used to fabricate biocompatible magnetically actuated microfibers. Such magnetically
actuated composite microfibers are triggered to release active pharmaceutical ingredients
by remote control, which makes accurate and secure pathways of drug delivery possible.
The chain behavior in magnetic gel before and after introducing a magnetic field is shown
in Figure 5c.

With a combination of novel techniques such as 3D printing, future magneto-responsive
polymers can be functionalized in an economic customizable shape [107]. Synthesized
3D-printer ink makes dispersing magnetic particles and flakes in a gel matrix feasible. The
obtained magneto-responsive ink can be further used in a wide range of printed appli-
cations such as medical devices, micro robotics or magnetic control [108]. The ability to
respond to noninvasive, external magnetic fields contributes to the applications of adaptive
soft materials [109].Polymers 2021, 13, 1427 9 of 20 
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Humidity sensing is also another well-studied field of intelligent polymers. A variety
of sensing applications is also another well-studied field of intelligent polymers. A variety
of applications have been developed taking advantage of moist characteristics of polymers,
including humidity sensors, actuators and membranes (which have various applications
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such as biomimetic fibrous fabrics [110,112,113]). Response to humidity means the hy-
drophilic polymer should have porous networks to form the fiber structure [110] to let
water molecules go through. When ambient humidity is raised, polymers are to absorb
those water molecules and desorb in low-moisture circumstances. Depending on working
mechanisms, humidity sensors can be divided into two categories: namely, capacitive sen-
sors and resistive sensors [110,114]. As capacitance or resistance values change in response
to surrounding humidity changes, such as from adsorbing or releasing water molecules, a
signal response from the electric circuit is generated [16].

The multiresponsiveness of the polymer allows its applications to encompass various
combined features. In these cases, polymers are normally designed to be responsive to not
only humidity but also to other stimuli such as heat, light or chemical vapors. Recently, ac-
tuating applications have been investigated, wherein using polymers to convert chemical or
physical energy into mechanical energy enables them to serve as actuators. As in Figure 5d,
Zhou et al. propose a multistimuli-driven actuator [111] that can sense both light and hu-
midity changes, where the hygroexpansion effect of the CNT-paper composite corresponds
to humidity sensitivity, and the mismatch of the CTE (coefficient of thermal expansion)
between the BOPP (biaxially oriented polypropylene) layer and CNT-paper composite
layer corresponds to light sensitivity. Such actuators can be used in biomimetic appli-
cations, such as artificial biomimetic muscle or skin [115]. Another typical solution to
implementing multiresponsiveness in polymers, as Chakraborty et al. reported, is to intro-
duce and synthesize functional groups, such as carboxylic acid groups, in the design of a
multifunctional Pt(II)-based metallo-supramolecular polymer (polyPtC). In this case, when
external stimuli are introduced, Pt-Pt [116] interaction, which is noncovalent, may lead to
dynamic changes at a macroscopic level and end with irreversible results. Although they
exhibit multifunctional behavior, such metallo-supramolecular polymers are inappropriate
to be considered as “intelligent”.

On the other hand, sensing applications are also performed. By varying microchannel
alignment, in Figure 5b, Liang et al. [110] managed to develop reversibly responsive film
depending on the divergence of absorption abilities between patterned poly(vinylidene
fluoride) (PVDF) and 3-aminopropyltriethoxysilane (APTES) films of humidity. With the
design of microchannels and various aligned angles, the cut strips can perform heterolo-
gous coiling motility. Table 3 includes a selected comparison of multiple stimuli-driven
polymer applications.

Table 3. Selected comparison of multiple stimuli-driven polymer applications.

Application Category Material Fabrication Method Working Mechanism Features Novelty References

Moisture-
wicking

fabric

Moisture-
sensitive
polymer

C6FPU
Electrospray,
dip-coating

self-synthesized

Water transport due
to differential

capillary forces

Water evaporation
rate of

0.67 g/h

Biomimetic
membrane fastens
water evaporation
and transportation

[117]

Humidity-
driven

actuator

Moisture-
sensitive
polymer

CNT-paper/
BOPP

Dip-coating of
CNT-paper

composite, attached
with BOPP film

Hygroexpansion
effect

Curvature change
from 1.2 cm-1 to 0

w.r.t relative humidity
change 14% to 60%

Dual-mode actuating
performance [111]

Shape-
programmable
soft robotics

Moisture-
sensitive
polymer

PVDF/
APTES

Spin-coating with
chemical synthesized

template

Hygroscopicity of
microchanneled film

Bending and coiling
due to anisotropic
flexural modulus

Microchannel
structure design on
one side of polymer

film

[110]

Piezo-
switchable

surface

Electric field
triggered PVDF/PMMA Electrospinning Functional groups

rearrangement

Fabricated surface
responds to the

electric field

Tunable surface
water/oil wettability [113]

Site-specific
drug delivery

pH-/heat-
responsive

Polypyrrole-
coated

PCL-PTX
Electrospinning

Physicochemical
characteristics of

fibrous mats

Superior drug release
in environment with

pH 5.5

Stepwise-based
drug-release behavior [118]

Corrosion
sensing and
protection

pH-sensitive HQ/
HQSEA Chemical synthesis

Release of
encapsulated

corrosion inhibitor
under acidic

condition

Enhanced
fluorescence on the

material after
nanoparticles

released

Corrosion sensing
and protection [119]

Wearable
sensing
devices

pH-
/humidity-

sensitive
polyPtC Chemical synthesis Crystalline−amorphous

transition

Reversible
yellow-to-black
electrochromism

Structural design of
metallo-

supramolecular
polymer

[116]



Polymers 2021, 13, 1427 10 of 19

3. Overview of Intelligent Polymer-Based Applications in Multiple Fields

Although smart polymers are widely used in the biomedical field, aiming at develop
new therapies for disease treatment or cautiously designed medical devices that react to
surrounding tissues or external stimuli, this chapter gives special emphasis on the relevant
applications of smart polymers and their future trends within the field of electrical and
material science and mechanical engineering based on three years of recent research. More-
over, with functional molecules incorporated into the chemical structure, most polymers
are easily functionalized to achieve our desired properties through prepolymerization or
postpolymerization. In other words, the potential for designing new materials or modi-
fying them to meet a wide range of application-need-based criteria standards or specific
requirements is unlimited and worth exploring. Table 3 in the previous section details a per-
formance comparison of multiple stimuli-driven polymer applications, listed considering
various fabrication methods, materials, working mechanisms and features. For example,
thermal-responsive polymers can be applied even in a wide range of applications such as
data storage [120]. In this chapter, an attempt is made to discuss the other three major fields
of applications. To do so, we briefly reviewed polymers used in drug delivery systems,
smart textiles and polymer-based membranes and fibers. Trigger-dependent sustained
drug-release systems are presented in Figure 6a,b.
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Figure 6. Applications using responsive polymers: (a) schematic representation of the trigger-dependent sustained release
of a drug from a mixture of nanoparticles having varying trigger sensitivities [121,122]; (b) schematic illustration of
the NIR-triggered drug release from the PPy-coated fiber (Reprinted with permission from Tiwari, A. P.; Hwang, T. I.;
Oh, J.-M.; Maharjan, B.; Chun, S.; Kim, B. S.; Joshi, M. K. K.; Park, C. H.; Kim, C. S. pH/NIR-Responsive Polypyrrole-
Functionalized Fibrous Localized Drug-Delivery Platform for Synergistic Cancer Therapy. ACS Appl. Mater. Interfaces, 2018,
10(24), 20256–20270. Copyright American Chemical Society) [118]; (c) schematic illustration of the pH-responsive release
system [123].



Polymers 2021, 13, 1427 11 of 19

Polymer-based nanocarriers enable controlled drug delivery at the right place and
right time. The early stages of research on dendrimer-based drug carriers [124] derived
the structural designs of polymer drug carriers that are now investigated and developed.
Acting in a crucial role in the production of active and selective therapeutic applica-
tions [125,126], the further understanding of molecular biology and ways to synthesize
newer, multistimuli-responsive polymers has resulted in more efficient, precise and cus-
tomized therapies. Some polymers can react to environmental pH fluctuations to protonate
or deprotonate correspondingly [123,127,128] as Figure 6c shows. When the pH condi-
tion of their surroundings changes, these polymers change their conformation, surface
behavior and solubility by acquiring or losing ionizable basic groups or acid groups, there-
fore tuning the solubility of the polymeric nanoparticles [129], fabricating ion-stabilized
membranes [130] or designing core-shell nanoparticles [131].

Such characteristics are the origin of how the pH-sensitive release of drug-delivery
carriers works. As a promising approach especially in cancer treatments, localized drug-
delivery carriers made by polymers decrease the toxicity of the drug and, via site-specific
release, enhance the effect of the active compounds [73,106,118,132]. For example, in-
telligent biocompatible cellulose nanofibers (CNF) developed by He et al. [133] enable
sustained drug release via the pH responsiveness of grafted polyethylenimine (PEI). The
generated CNF-PEI displayed a rapid response to pH, reflected by its wettability, con-
verting to hydrophobicity when surrounding pH changed from acidic to alkaline and
returning to hydrophilicity when pH conditions reversed back. Entering a new generation
of enhanced widely used drug-delivery systems for humans has resulted in safety issues
and research gaps requiring further investigation. Current research interests includes
minimizing the degradation of pharmaceutically active ingredients during the in vivo
transporting process [134] and optimizing the formulation methodology of nanoparticles
with better release precision [135], as shown in Figure 7.
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For example, for site-specific drug delivery, Tiwari et al. developed a tailorable fibrous
platform [118] that can release rationally controlled drugs in an environment with pH
5.5, triggered by pH and near-infrared radiation (NIR). Particularly when combined with
the NIR-responsive nature of polymers, photothermal therapy has become an alternative
therapeutic solution to cancer and has noninvasive benefits [111,118,137]. Other cases of
combining polymers with magnetic fields or magnetic nanoparticles have been reported.
For instance, Perera and Zhang proposed a way that the remote-controlled release of a
drug can be achieved [106]. In their study, Fe3O4 nanoparticles are used to generate fibers
through infusion gyration. As Deshpande et al. reported [121], a drug-delivery system
of doxorubicin with polymeric shell nanoparticles and a gold core was developed. The
release depends on the thermo- and radiofrequency-responsive features of biocompatible
poly(N-isopropylacrylamide) (pNIPAm)-based polymer shells.

Textiles have also experienced great improvements through the incorporation of dif-
ferent kinds of smart polymers to their formulation. Temperature, pH, moisture and light
were responsible for the variable aesthetic appeal, smart controlled drug release, wound
monitoring and smart wetting [138] properties of new textiles. In addition, textiles that
provide safety against significant changes in weather environments and textiles with medic-
inal properties has also been accomplished through smart polymers [139–141]. Other than
smart polymers, other materials are also making smart textiles accessible and feasible. In
Figure 7a, Ma et al. reported a novel type of yarn-shaped fiber [114] for humidity sens-
ing, which has a faster response time—3.5 s—and recovery time— 4 s—over commercial
polyimide substitutes. By wrapping yarn as a dielectric layer on copper wire electrodes, a
biaxial-sheathed shape is fabricated based on the outstanding humidity-transmission abil-
ity of yarns. As water molecules transport on fiber and yarn sensors, the structural design
contributes to the larger surface area of each fiber, and the cross-shaped connection further
enhances the ability to hold more water molecules in the sensor and form directional water
movement on fibers. Similar designs include utilizing hydrophilic groups of amino acids
in silk fiber [142]. Wang et al. constructed fiber-based porous membranes [117] inspired
by water transportation in vascular plants. They generated nanofibers through electro-
spinning, then used dip-coating and electrospraying methods to fabricate the biomimetic
membrane. Such membranes have ultrahigh one-way moisture transport capability and
hold an outstanding water evaporation rate 5.8 times higher than cotton fabric.

Recent rapid developments in textile-based triboelectric and piezoelectric nanogen-
erators (NGs) will inevitably boost next-generation intelligent wearable electronics [143],
as Figure 7b shows. A textile-based NG combines both mechanical energy harvesting
and sensing abilities, whilst providing the versatile design of a carrier from the flexible
platform of textiles. Current difficulties include the trade-off between the achievements of
outstanding electrical performance and textile properties in fiber-based NGs [144].

The wide use of fibers in many other fields have been applied to a number of prac-
tical applications, for example, fibrous porous media. Model design of fibrous porous
media [145,146], such as nanofibrous and microfibrous channels for faster capillary flow,
were also reported to improve the performance of fluidic devices. Furthermore, in addition
to the above areas, another direction worth investigating is interpenetrating polymer net-
works (IPNs), which can bring about a multitude of smart solutions in polymer and fiber
science. Distinguished from other multipolymer combinations, IPNs are stable in solvents
with suppressed creep and flow [147] and are thus suitable for biomedical applications,
damping materials, tough and impact-resistant materials, etc. Some examples include
light-gated control [148], greener extraction [149], increased robustness [150] and organic
photovoltaic inks [151].

Besides electronic polymer-based fibers, wearables using smart and intelligent polymer-
based membranes are gaining rapid growing interest due to their precise adjustability,
permeability and adaptive properties [152]. As Chu et al. reported [153], boronate crosslink-
ing bonds provide excellent elasticity of break strength at 33.4 MPa and 17.8% elongation.
Using bioinspired membranes with adaptable wettability [154], the on-demand smart
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separation of an oil–water mixture [155] can be achieved, according to Li et al. With a
similar idea, Liu et al. developed a semipermeable capsule membrane system [156] to
detect and trace lead ions by selectively letting lead ions and water pass through.

For environmental or biological monitoring, molecularly imprinted polymers are also
actively used. For instance, a fluorescence surface imprinted sensor towards tetracycline
(TC) detection was reported by Wang et al. [8]. When combined with conductive fabrics,
as Yinben et al. reported [157], a hybrid triboelectric nanogenerator fabricated by silk
fibroin and poly(vinylidene fluoride) possesses great power-density performance and
electrical properties.

4. Outlook

To summarize, we have attempted to redefine the ‘intelligence’ of a polymer by
deducting from the term’s use in artificial intelligence. When referring to an intelligent
material, it is wise to evaluate the degree of intelligence as equivalent to ‘intelligence’ in
humans’ neural networks, inspired by biological sensing-reacting-learning behaviors in
nature. As an intelligent polymer, the material should be able to process external signals
and, at the same time, deal with signals generated internally to ensure the capacity to
accomplish its desired goals. For future studies, the authors are of the opinion that it is
necessary to clarify the difference between intelligent polymers and smart polymers, given
the ambiguous boundary in-between and the considerable occasions they substitute for
each other without distinction. As a consequence of small environmental variations, smart
polymers undergo large reversible changes, either physical or chemical, in their properties.
Although stimuli-responsive features are considered to be the main characteristic of smart
polymers, intelligence should be considered more than responsiveness, because it holds
the key point: the capacity to learn from the past, which is the premise of comprehension,
adaption and active decision-making for future cases. Therefore, with the above discussion,
one could notice that a nonlinear scale could be used as a more reasonable standard to
define the intelligence of a material.

To make use of real ‘intelligent’ polymers, further systematic research is required to
bring about the potential, from composition to the structural design of different materi-
als. Specifically, intelligent SMPs should be beyond merely responsive to environmental
changes but rather be able to select from behaviors and perform an action, which requires
it to firstly, be not limited to one memorized shape, and secondly, to react with respect to
different conditions. For self-healing polymers, future works could emphasize the opti-
mization of their mechanical properties and their compatibility with alloys or ceramics to
open new avenues in multiresponsive and multifunctional systems for advanced applica-
tions. Multiresponsive polymers are inevitably heading the path to more comprehensive
utilization in complex environments.
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