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Abstract: Glycan–protein interactions are highly specific yet transient, rendering glycans ideal
recognition signals in a variety of biological processes. In human norovirus (HuNoV) infection,
histo-blood group antigens (HBGAs) play an essential but poorly understood role. For murine
norovirus infection (MNV), sialylated glycolipids or glycoproteins appear to be important. It has
also been suggested that HuNoV capsid proteins bind to sialylated ganglioside head groups. Here,
we study the binding of HBGAs and sialoglycans to HuNoV and MNV capsid proteins using NMR
experiments. Surprisingly, the experiments show that none of the norovirus P-domains bind to
sialoglycans. Notably, MNV P-domains do not bind to any of the glycans studied, and MNV-1
infection of cells deficient in surface sialoglycans shows no significant difference compared to cells
expressing respective glycans. These findings redefine glycan recognition by noroviruses, challenging
present models of infection.

Keywords: norovirus P-domain; chemical shift perturbation; histo blood group antigens; sialoglycans;
protein-carbohydrate recognition

1. Introduction

Noroviruses are single-stranded (+)−RNA viruses associated with acute gastroen-
teritis in mammalian hosts. In fact, human noroviruses (HuNoV) are the leading cause
for viral gastroenteritis worldwide, with the majority of norovirus outbreaks since 2012
having been caused by genogroup II, genotype 4 (GII.4) viruses [1–3]. Histo-blood group
antigens (HBGAs) have been identified as critical structural determinants for HuNoV
infection [4–6]. The host enzyme α-1,2-fucosyltransferase (FUT2) is essential for HBGA
biosynthesis. A functional FUT2 enzyme defines the “secretor” phenotype, where HBGAs
are present on the surface of intestinal epithelial cells and become secreted. Individuals
lacking FUT2 activity are “non-secretors” and highly resistant against many HuNoV strains.
Noroviruses bind HBGA at the interface of a dimeric protruding (P)-domain of the viral
capsid protein VP1. Despite an increasing number of high-resolution crystal structures that
describe the interactions of HBGAs with HuNoV P-domains at atomic resolution, it has
remained enigmatic as to how this interaction with HBGAs promotes infection [7,8].

There are exceptions, where HBGA binding could not be determined [9], or mutations
notably modulated HBGA binding [10], or expression of FUT2 in permissive cell lines,
which is essential for HBGA biosynthesis in continuous cell lines, is not sufficient to initiate
infection [11]. Recently, a study in human intestinal enteroids clearly demonstrated the
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necessity of functional FUT2 for HuNoV infection [12]. The same study describes that a
GII.3 strain was able to replicate in secretor-negative human intestinal enteroids in the
presence of the bile acid glycochenodeoxycholic acid (GCDCA). Therefore, it is likely that
additional factors, possibly even a yet unknown proteinaceous entry receptor, as recently
identified for murine noroviruses (MNV) [13–16], contribute to HuNoV infections.

In addition to neutral HBGAs, other glycans have been shown to contribute to cali-
civirus infections. For instance, feline caliciviruses and Tulane virus were shown to require
sialic acids for binding and infection [17,18]. MNVs share many biological features with
HuNoV, such as the intestinal phenotype and fecal oral spread. However, unlike HuNoV
they can be easily studied in cell culture and in their native small animal host. It has
been shown that the interaction of MNV-1 with murine macrophages was sensitive to neu-
raminidase treatment and competition with sialic acid specific lectins [19]. Strain specific
differences in the ability to bind sialic acid and mutational analysis further suggested a
sialic acid binding site [20] in analogy to the HBGA binding sites of GII.4 P-domains of
HuNoV. However, structural data for MNV P-domain complexed with glycans are still
absent. Bona fide receptors, murine CD300lf or CD300ld, have recently been shown to be
essential and sufficient for MNV entry [15,16], and high-resolution crystal structures for
the MNV P-domain complexed with CD300lf are available [13,14].

Binding of sialoglycans to HuNoV GII.4 P-domains has been reported using different
biophysical techniques [21,22]. Using native mass spectrometry, dissociation constants
have been determined for binding of ganglioside-derived glycans to HuNoV GII.4 VA387
P-dimers [22]. Likewise, binding of 3′-sialyllactose to HuNoV GII.4 MI001 P-dimers has
been described based on native mass spectrometry, STD NMR, and SPR experiments [21].

A number of studies have addressed the specific interaction between HuNoV GII.4
P-domains (P-dimers) and HBGAs. High-resolution crystal structures have provided
a clear picture of P-dimer binding pockets for HBGAs (for a recent review see [23,24].
Consistent with these results, STD NMR experiments have demonstrated that L-fucose
is the minimal recognition element required for specific binding [25]. Binding affinities
were obtained from STD NMR titrations [21,26–28], and affinities and stoichiometries
were provided by mass spectrometry experiments [21,27,29–31], reporting dissociation
constants KD in the µM to low mM range. For the interaction of virus particles with host
cells multivalency has to be considered, eventually leading to firm attachment of viruses to
plasma membranes. This subject has been studied in detail by using total internal reflection
(TIRF) microscopy [32] and quartz microbalance dissipation monitoring [33]. Notably, it
has been recognized that different spatial presentation of HBGAs as in type-1 vs. type-2
glycosphingolipids embedded in phospholipid membranes significantly modulates binding
avidity [34]. Clearly, presentation of glycans in membranes adds an additional layer of
complexity and is relevant for biological function.

Apart from that, it is still important to have access to reliable quantitative glycan
binding data. Recent research [35] suggests that existing reports are inconsistent, calling
for a systematic reevaluation. Therefore, we set out to collect a comprehensive dataset for
binding of glycans to human and murine norovirus capsid proteins based on protein- as
well as ligand-based NMR studies.

2. Materials and Methods
2.1. Protein Biosynthesis and Purification

Recombinant P-domain proteins from GII.4 NoV strains Saga 2006 (GenBank ID:
AB447457, aa 225–530), MI001 (KC631814, aa 225–530), and VA387 (AY038600, aa 225–529)
were synthesized recombinantly and purified as described previously [35,36]. Due to the
purification strategy, the amino acids GPGS were added N-terminally of the native VP1
sequence to yield an enzymatic cleavage site. [U-2H,15N]-labeled protein samples were
denatured and refolded to complete the HD back-exchange after expression in deuterated
minimal media. Protein species with different deamidation status of N373 were separated
using cation exchange chromatography (IEX) with a 6 mL Resource S column (GE Health-
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care, Chicago, IL, USA). Samples were applied onto the column in 20 mM sodium acetate
buffer (pH 4.9) and eluted with a linear salt gradient up to 500 mM NaCl. Deamidation
kinetics of P-domains from strains Saga 2006 and MI001 were obtained by incubation of
protein aliquots (1.5 and 0.6 mg mL−1, respectively) in 75 mM sodium phosphate buffer,
100 mM NaCl (pH 7.3) at 298 K. Samples were subjected to IEX separation at selected
time point and peaks in the UV chromatogram at 214 nm were integrated using Unicorn 7
software (GE Healthcare, Chicago, IL, USA). The decay in N/N dimers was fitted to an
exponential decay model and used to derive N373 half-life times. Stability of the N373D
Saga 2006 P-domain was assessed by incubation of purified protein aliquots with a concen-
tration of 1.3 mg mL−1 in 75 mM sodium phosphate buffer, 100 mM NaCl (pH 7.3) for 382 h
at 298 K and subsequent IEX analysis. Synthesis and purification of MNV P-domains from
strains MNV07 (AET79296, aa 228–530, N-terminal addition of GPGS peptide) and CW1
(DQ285629, aa 228–530, N-terminal addition of GP peptide) followed the same strategy
as for GII.4 P-domains with the only difference being the running buffer used in the final
size exclusion chromatography step (20 mM sodium acetate, 100 mM NaCl, pH 5.3). GII.10
Vietnam 026 VLPs (GenBank ID: AF504671) [37] were a gift from Dr. Grant Hansman
(University of Heidelberg and the DKFZ, Heidelberg, Germany).

2.2. Enzymatic Synthesis of Blood Group B-Trisaccharide (3)

Human Galactosyltransferase B (GTB) was overexpressed from E. coli as previously
reported [38] using an optimized purification protocol [39]. Briefly, GTB was eluted from
the UDP-affinity column with a 10 mM EDTA solution. Fractions showing UV activity
(280 nm) were pooled and dialyzed against 2 L of 50 mM MOPS pH 6.8, 1 mM DTT, 5 mM
MgCl2 and 100 mM NaCl at room temperature. GTB was stored at 1.2 mg/mL protein
concentration at 4 ◦C for no longer than two months. GTB enzymatic activity was measured
using radiolabeled uridine-diphospho-α-D-[U-14C]-Galactose lithium salt in 70% ethanol
prior to the synthetic reaction [40], showing specific activity of 10 U/mg. For the enzymatic
synthesis of 3, the following reactants were mixed in this precise order: H-disaccharide 1
(10.5 mg, 30 µmol, 1.00 equiv.) was dissolved in 15 mL of 50 mM Bis-Tris buffer pH 6.85
at 37 ◦C, into which UDP-Galactose (25.48 mg, 45 µmol, 1.50 equiv.), BSA (0.15 mL of a
stock solution containing 100 mg/mL BSA in 100 mM Bis-Tris buffer pH 6.85 at 37 ◦C, final
conc.: 1 mg/mL), 17 U/mL CIAP (10,000 U/mL), GTB (0.255 mL of GTB stock solution
containing 10 U/mL and 1.2 mg/mL; 170 mU/mL final GTB conc.) and MnCl2 (0.31 mL
of a stock solution containing 1 M MnCl2, 20 mM final conc.,) were added. The pH of
the reaction at the starting point was measured with an electrode (6.85 at 37◦), and the
reaction mixture was incubated at 37 ◦C under shaking (150 rpm) for 3–7 days. To avoid
enzymatic inhibition, the pH was daily readjusted to pH > 6.7 (37 ◦C) by the addition of
a solution containing 500 mM Bis-Tris pH 6.85 (37 ◦C). After the first 48 h, the reaction
was supplemented with extra UDP-Galactose (8.5 mg, 15 µmol, 0.50 equiv.) and GTB
(100 mU/mL). Formation of 3 was monitored by TLC (DCM:MeOH 6.5:3.5, Rf = 0.12 in
DCM:MeOH 6.5:3.5). When no more H-disaccharide 1 was observed and the pH remained
constant for 24 h, the reaction was quenched by the addition of 20 mM EDTA. Crude was
lyophilized, dissolved in 4 mL MP-H2O and purified by size exclusion chromatography
(Bio-Gel® P2, BioRad, Hercules, CA, USA) in MP-H2O (column diameter 2 cm, length
100 cm, retention time ~120 min, flow 0.5 mL/min). Fractions containing 1 were pooled
together, lyophilized, dissolved in 2 mL MP-H2O and purified by RP-HPLC (20 min MP-
H2O with 0.01% TFA, then gradient to MP-H2O:MeOH 4:1 with 0.01% TFA in 60 min,
retention time ~21 min, flow 9 mL/min). In both purification steps, the carbohydrate was
detected by TLC. After lyophilization, B-trisaccharide 3 (10.01 mg, 19.5 µmol, 65%) was
obtained as a white solid.

M.p. = 204–206 C◦.—[α]D
21 = +97.69 (13.09 mg/mL, H2O).—IR (KBr) 3328, 2918,

2115, 1673, 1337 cm−1.—1H-NMR (500 MHz, D2O) δ 5.69 (d, J = 4.2 Hz, 1H, HGal1-1), 5.20
(d, J = 3.5 Hz, 1H, HGal2-1), 5.13 (d, J = 3.7 Hz, 1H, HFuc-1), 4.33–4.30 (m, 2H, HGal2-5,
HGal1-4), 4.18–4.13 (m, 2H, HFuc-5, HGal1-2), 4.10–4.06 (m, 2H, HGal1-5, HGal1-3), 3.96–3.73
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(m, 10H, HGal2-6a&b, HGal1-6a&b, HFuc-2, HFuc-4, HGal2-2, HFuc-3, HGal2-3, HGal2-4), 1.26
(d, J = 6.5 Hz, 3H, CH3Fuc).—13C NMR (125 MHz, D2O) δ 103.4, 96.1, 91.2, 75.5, 75.2,
74.6, 74.4, 73.8, 72.2, 72.2, 72.2, 71.0, 70.6, 70.5, 67.2, 64.2, 64.1, 18.3.—Anal. calc. for:
C18H31N3O14: C, 42.11; H, 6.09; N, 8.18. Found: C, 43.01; H, 6.08; N, 8.29.

2.3. NMR Spectroscopy

NMR samples were prepared in 3 mm NMR tubes with a volume of 160 µL. NMR
experiments with [U-2H,15N]-labeled proteins were acquired with samples containing 10%
D2O. Samples with human NoV P-domains contained 200 µM 2,2-dimethyl-2-silapentane-
5-sulfonate-d6 (DSS-d6, Sigma-Aldrich) and 300 µM imidazole (Roth) to monitor the
sample pH [41]. MNV P-domain samples contained 500 µM DSS-d6. GII.10 Vietnam026
VLP samples were prepared in PBS buffer (pH* 7.20) containing 8% D2O and 100 µM
DSS-d6. Protein concentrations and sample buffers are compiled in the figure and table
legends of the respective datasets or in Table S1. Carbohydrates were obtained from
sources given in Table S2. Assignment of resonances from α-azido B-trisaccharide 3 and
experimental conditions of respective NMR experiments for assignment are given in
Tables S3 and S4, respectively.

Unless stated otherwise, NMR spectra were acquired at 298 K on a Bruker Avance
III 500 MHz spectrometer with TCI cryo probe. For acquisition and processing of NMR
spectra TopSpin v3.6 (Bruker, Billerica, MA, USA) was used. Protein signal positions
and intensities were extracted with CcpNmr Analysis v2.4.2 [42]. 1H,15 N TROSY HSQC
spectra were acquired with 128 ms acquisition time and a spectral window of 16 ppm in
the direct dimension. In the indirect dimension, the spectral window was set to 35 ppm
with 430 increments for human NoV P-domains and 256 increments for MNV P-domains.
The relaxation delay was 1.5 s. The number of scans was chosen according to the protein
concentration of the sample, ranging from 8 to 48 corresponding to measurement times of
1.6 to 6 h. Potential ligand molecules were titrated from highly concentrated, pH-adjusted
stock solutions in the same buffer as the NMR sample to minimize dilution effects and
pH-artifacts. Titrations of GII.4 NoV P-domains with HBGAs were used to obtain Euclidean
Chemical Shift Perturbations (CSPs) ∆ν according to Equation (1).

∆νeucl =
√

∆ν2
H + ∆ν2

N (1)

where ∆νH and ∆νN are CSPs in the respective dimensions in units of Hz. The observed
∆νobs at a given total ligand concentration Lt are linked to the dissociation constant KD via
Equation (2) [43].

∆νobs = ∆νmax
(Pt + Lt + KD)−

√
(Pt + Lt + KD)

2 − 4PtLt

2Pt
(2)

where ∆νmax is the maximum CSP at ligand saturation for each signal, and Pt is the total
monomeric protein concentration. Titration curves for global non-linear least squares fitting
were selected according to the magnitude of the CSP at the highest ligand concentration:
CSPs larger than the sum of the mean of all CSPs and two standard deviations were
used to derive a KD value. Global fitting of significant CSP data was performed using in-
house Python scripts, fit parameter errors were estimated using a bootstrapping approach
with 1000 iterations. The titration of CaCl2 to MNV CW1 P-domains with an unknown
amount of Ca2+ originating from the GCDCA stock solution (Sigma-Aldrich, St. Louis, MO,
USA) was analyzed as follows. The initial Ca2+ concentration was estimated based on the
minimum of squared residuals when varying c(Ca2+) between 0 and 1 mM before fitting
binding isotherms. Finally, for global fitting of Equation (2) to the CSP data this initial Ca2+

concentration was added to the amount of CaCl2 titrated.
STD NMR spectra [44] of ligands binding to P-domains were acquired with relaxation

delays of 5 s. Detailed sample conditions are compiled in Table S1 of the supplementary in-
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formation. The number of scans and the resulting experiment time were as follows: 1712
(7 h) for the experiment with the MNV07 strain and 3′SL at 277K, and 3584–4000 (14–16 h)
for the remaining STD experiments as described in 3.2 of this manuscript. On-resonance
frequencies and saturation pulse strengths were optimized for each individual sample in
negative-control experiments without protein and were between −2 and −4 ppm. Off-
resonance frequencies were set at 200 ppm. Saturation times were 2 s using a cascade
of 50 ms Gaussian pulses with flip angles between 639◦ and 674◦. STD NMR spectra of
compound 13 were measured on a 600 MHz Bruker Avance III HD NMR spectrometer
with an Ascend magnet and a TCI cryo probe using a flip angle of 905◦. STD NMR experi-
ments with GII.10 Vietnam 026 VLPs were acquired on a 600 MHz Bruker Avance III HD
NMR spectrometer with an Ascend magnet and a TXI room temperature probe with the
temperature set at 277 K and a relaxation delay of 20 s. On- and off-resonance frequencies
were −4 and 200 ppm, respectively. B-trisaccharide was titrated from 1 mM to 50 mM
final concentration. The number of scans ranged from 1200 to 200 (13–2 h). A 2 s pulse
cascade of 50 ms Gaussian pulses was used for saturation of protein resonances and a
20 ms spin-lock filter was used for suppression of protein signals. For the Gaussian pulses
the power level was set at 40 dB, corresponding to a flip angle of 675.5◦.

STD amplification factors (STD AF) for selected signals were calculated according
to Equation (3) with Ioff and Ion being the signal intensities in the respective off- and
on-resonance experiments:

STD AF =
Io f f − Ion

Io f f
· Lt

Pt
(3)

2.4. Cell Culture

Murine microglia cells (BV-2) were maintained in DMEM-10 (Dulbecco’s Modified
Eagle Medium (Thermo Scientific, Waltham, MA, USA), supplemented with 10% fetal calve
serum (C-C-Pro)) with standard additives (2mM L-glutamine (Biozym, Hessisch Oldendorf,
Germany), 100 µM non-essential amino acids (Biozym), and 100 units/mL penicillin and
streptomycin (Biozym)). Pro5 and Lec2 cells were passaged in αMEM5 medium (Modified
Eagle Medium α (Thermo Scientific), supplemented with 5% fetal calve serum (C-C-Pro)
and standard additives as above.

2.5. MNV Cultivation and Titration

MNV-1 (Isolate CW3, passage 6) was cultivated in BV-2 cells in complete DMEM-10
medium and tissue culture infectious dose (TCID)50 was determined by end-point dilution
in BV-2 cells as described [45].

2.6. Production of Lentiviral Vectors and Transduction of CHO Derived Cell Lines

Recombinant lentiviruses for mCD300LF transduction were produced based on the
original protocol [46]. Briefly, the gene of interest expressing construct pWPI mscmCD300LF

was generated, cloning the murine CD300lf cDNA (Genbank NM_001169153.1, GeneScript)
with a C-terminal FLAG-tag between SbfI and MluI restriction sites of pWPI msc GUN
(generously provided by Thomas Pietschmann, Twincore, Germany). The recombinant
lentivirus was generated transfecting 3 × 106 HEK293T cells with 6 µg pWPI mscmCD300LF,
3 µg of the gag/pol packaging vector pCMV∆R8.91 [46], and 1.5 µg of the envelope
vector pMD.GVSV-G expressing the vesicular stomatitis virus glycoprotein [47], using
polyethylenimine (PEI) as a transfection reagent according to the manufacturer’s proto-
col (Polysciences, Inc., Warrington, Philadelphia, PA, USA). At 72 h post-transfection,
viral supernatants were harvested and filtered (0,45 µm pore-size) to remove aggregates.
Transduction of Pro5 and Lec2 cell lines, generously provided by Niklas Arnberg, Umeå
University, Sweden, [48] was performed in a 6-well plate incubating confluent Pro5 or
Lec2 cells with 1 mL of lentivirus supernatant for 6 to 8 h in the presence of 5 µg/mL
polybrene followed by 2 weeks of geneticin (G418) selection. Stable expression of the
receptor in Pro5mCD300LF and Lec2mCD300LF cell lines was verified susceptibility to MNV-1
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infection. MNV-1 titers yielded up to 2 × 108 TCID50 per ml, which is comparable to
naturally susceptible cell lines.

3. Results

A number of glycans were selected as ligands to probe binding to human and murine
norovirus capsid proteins. The glycans in Scheme 1 represent key structural motifs of HB-
GAs, and sialoglycans. We also included the Galili epitope [49,50] 11, not present in humans,
as well as the Forssman antigen [51] 13 as negative controls that should bind neither to
human nor to murine noroviruses [50]. Protein-based chemical shift perturbation (CSP)
NMR binding experiments are known to provide unambiguous and highly accurate binding
affinities for ligand molecules such as glycans binding to proteins under near-physiological
conditions [43]. However, the need to label the proteins with stable isotopes often discour-
ages the use of this method, when proteins are larger than 20 to 30 kDa. Proteins of the
size of the P-dimers studied here, with molecular weights around 70 kDa, are considered a
challenge. Fortunately, we succeeded in providing high-yield expression protocols for stable
isotope labeled HuNoV P-domains before [35,36,52], and recently we established such a
protocol also for MNV P-domains (see accompanying paper). For the present study we
employed recombinantly expressed and uniformly 2H,15N-labeled P-domains of selected
VP1 capsid proteins. All analyzed P-domains formed dimers (P-dimers) and all HuNoV
P-dimers showed the previously reported HBGA binding specificities. To systematically
study binding of HBGAs and sialoglycans, we chose P-dimers of previously studied human
GII.4 strains, Saga and MI001. For the GII.4 strain VA387, which has been reported to bind
sialoglycans [22], only binding of sialoglycans was cross-examined. To study potential
MNV-glycan interactions, we selected the MNV-1 CW1 strain, for which infectiousness has
previously been shown to depend on sialic acid [19], and an MNV strain isolated in 2007
(MNV07). CSP NMR experiments were complemented by saturation transfer difference
(STD) NMR [44] experiments using unlabeled recombinant P-dimers and human GII.10
Vietnam 026 virus-like particles (VLPs).

1 
 

 
Scheme 1. Oligosaccharides used in this study. 1 and 12: blood group H-disaccharide; 2: blood group A trisaccharide; 3:
blood group B trisaccharide (azido group at the anomeric position); 4: blood group B tetrasaccharide (reducing form); 5:
methyl glycoside of N-acetyl α-D-neuraminic acid (sialic acid); 6: 3′-sialyllactose (3′SL, glycan part of GM3 ganglioside); 7:
glycan part of GD1a ganglioside; 8: methyl α-L-fucopyranoside; 9: D-galactose; 10: N-acetyl D-galactosamine; 11: Galili
epitope; 13: Forssman antigen; 14: glycan part of GM1a ganglioside.
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3.1. Chemical Shift Perturbation (CSP) NMR Experiments Provide Accurate Dissociation
Constants for HBGAs Binding to Human GII.4 SAGA and MI001 P-Dimers

We employed TROSY HSQC based CSP NMR experiments to study binding of HB-
GAs to uniformly 2H,15N-labeled P-dimers. For GII.4 Saga P-dimers an almost complete
backbone assignment is available [35]. As the HuNoV P-dimers studied here share more
than 90% sequence identity one may expect assignments to be transferrable from TROSY
HSQC spectra of Saga P-dimers. In fact, the overall cross-peak patterns are rather similar.
However, assignment transfer is straightforward only in less crowded spectral regions
(cf. Figure S1). For the measurement of binding affinities of HBGAs an assignment is
not necessary.

From our previous study, we learned that highly specific spontaneous deamidation
of the asparagine residue N373 of Saga P-dimers leads to the formation of an iso-aspartate
residue in that position (iD373), essentially switching off HBGA binding [35]. Therefore,
prior to CSP titrations we checked the deamidation rate of MI001 P-dimers using ion-
exchange chromatography, showing that the half-lives at room temperature are essentially
identical to the ones of Saga P-dimers [35] (cf. Figure S2). This is important because the
duration of CSP titration experiments is in the range of several hours, and the amount
of deamidated protein has to be kept at a minimum during that time period. Therefore,
to analyze binding of HBGAs to non-deamidated GII.4 Saga and MI001 P-dimers (N/N
P-dimers; both monomers carry N in position 373), freshly prepared protein samples were
purified by ion-exchange chromatography and immediately subjected to CSP titration
experiments (Figure 1). Monitoring CSPs for purified fully deamidated samples of Saga
P-dimers (iD/iD P-dimers; both monomers carry iD in position 373) was not time-critical
since these samples were stable and did not change over time. Dissociation constants in the
low mM range were determined for binding of blood group H-disaccharide, A-trisaccharide,
B-trisaccharide, and B-tetrasaccharide to N/N Saga P-dimers, and to N/N MI001 P-dimers.
For iD/iD P-dimers dissociation constants could only be estimated since binding was
extremely weak, in the high mM range. All data are compiled in Table 1, and representative
CSP titration curves are shown in Figure 1c,d.

Table 1. Dissociation constants KD for binding of HBGAs to NoV P-domains and VLPs. Rows 1 to 7:
KD values from CSP NMR titrations of P-dimers (cf. Figure 1 for corresponding titration curves;
the titration curve for A-Tri 2 is found in the supporting information. Figure S6). NMR samples
were prepared in 75 mM sodium phosphate, 100 mM NaCl (pH 7.3). Protein concentrations were
230–300 µM for Saga N/N P-domains, 210 µM for Saga iD/iD P-domains, 240 µM for Saga N373D,
and 220 µM for MI001. Rows 8 and 9: KD values from STD NMR experiments acquired at 277 K
for VLPs.

NoV Strain Ligand KD/mM

GII.4 Saga (N/N) H-Dis 1 30.0 ± 1
GII.4 Saga (N/N) A-Tri 2 4.3 ± 0.4
GII.4 Saga (N/N) B-Tri 3 6.7 ± 0.4
GII.4 Saga (N/N) B-Tetra 4 12.0 ± 1
GII.4 Saga (iD/iD) B-Tri 3 ca. 60
GII.4 Saga (N373D) B-Tri 3 2.4 ± 0.1
GII.4 MI001 (N/N) B-Tri 3 4.3 ± 0.4

GII.10 Vietnam 026 VLPs B-Tri 3 7.9 ± 0.7
GII.10 Vietnam 026 VLPs (with saturating amounts of GCDCA [a]) B-Tri 3 9.0 ± 1

[a] Glycochenodeoxycholic acid.

We prepared the N373D mutant of the GII.4 Saga P-domain, with the advantage that
no spontaneous deamidation is possible in this position. At room temperature N373D
P-dimers are stable for at least several weeks as shown by ion exchange chromatogra-
phy (Figure S3), and as qualitatively supported by monitoring 1H,15N TROSY HSQC
spectra of uniformly 2H,15N-labeled P-dimers over time. The dissociation constant for
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B-Tri 3 (Figure 1d and Table 1) is slightly smaller than in the case of N/N Saga P-dimers
(2.4 vs. 6.7 mM, respectively).
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Figure 1. (a) 1H,15N TROSY HSQC spectra of [U-2H,15N]-labeled GII.4 Saga P-dimers in the absence and presence of
B-trisaccharide 3. The insert is highlighting CSPs due to binding of 3. (b) HBGA binding pocket of GII.4 Saga P-dimers
(pdb 4 × 06) highlighting the close proximity between the L-fucose residue and R345 causing the strong CSP shown in
(a). (c) CSP titration curves for H-disaccharide 1, B-trisaccharide 3, and B-tetrasaccharide 4 (from left to right). (d) CSP
titration curves for B-trisaccharide 3 binding to the N373D mutant of GII.4 Saga P-dimers, to MI001 P-dimers, and to fully
deamidated GII.4 Saga P-dimers (from left to right).

In previous studies we had observed discontinuities in STD NMR titration curves,
which we erroneously assigned to cooperative HBGA binding [21,26,27]. In the light
of our more recent studies [35] and the data collected here it is clear that there is no
cooperativity associated with HBGA binding to P-dimers or VLPs. The reason for the
observed discontinuities must be due to other causes. Therefore, we reevaluated our old
STD NMR titration datasets [26,27] by simply ignoring the discontinuities in the binding
isotherms and applying a simple one-site binding model instead (cf. Figure S4). The
dissociation constants obtained from this analysis are shown in Table S5 The dissociation
constants for a H-disaccharide and for a B-trisaccharide derivative (entries 7 and 8 in
Table S5) match the results for H-Dis 1 and B-Tri 3 from CSP NMR titrations (Table 1) quite
well. In the course of these reevaluations we also performed an additional experiment to
elucidate potential crosstalk [53] between binding of glycochenodeoxycholic acid (GCDCA)
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and binding of B-Tri 3 to GII.10 Vietnam 026 VLPs. We obtained corresponding STD NMR
titration curves in the absence and in the presence of saturating amounts of GCDCA [36],
showing that GCDCA has no influence on the dissociation constant KD of B-Tri 3 (Figure 2
and Table 1).
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Figure 2. (a) STD NMR experiments for a sample of GII.10 Vietnam 026 VLPs (0.87 mg/mL) and 2 mM B-trisaccharide
3 in the absence and presence of saturating amounts of GCDCA (1 mM). For water suppression an excitation sculpting
sequence [54] was used. The signals of the anomeric protons of β-D-galactose (Gal1) and α-L-fucose (Fuc) are hidden by the
water signal (suppressed). The arrows denote the signals of the anomeric proton of the α-D-galactose residue (Gal2) and of
the C6-methyl group of the α-L-fucose residue (Fuc) of 3. The STD intensities of these signals were used for the determination
of dissociation constants from STD NMR titration experiments. (b) Binding isotherms for H1 of Gal2 and the C6-methyl
group of Fuc of 3 in the absence (left) and in the presence of GCDCA (right). Samples contained 0.95 mg/mL or 0.87 mg/mL
GII.4 Vietnam 026 VLPs according to the absence or presence of GCDCA, respectively. All samples were prepared in PBS
buffer (8% D2O) at a pH* of 7.20. NMR experiments were acquired at 600 MHz at a temperature of 277 K.

3.2. MNV P-Domains Do Not Bind to HBGAs or Other Neutral Glycans

To address the question whether MNV P-dimers bind to glycans we subjected a
variety of glycan ligands (Table 2) to protein-based as well as ligand-based NMR binding
experiments, i.e., CSP and STD NMR experiments, respectively. For CSP experiments, we
prepared samples of [U-2H,15N]-labeled samples of MNV P-domains of the strains CW1
and MNV07 as described in detail in an accompanying paper, addressing stabilization
and reorientation of MNV P-dimers in the presence of a specific bile acid, GCDCA.

Briefly, without GCDCA, MNV P-domains exist in an equilibrium of monomeric and
dimeric species. At higher concentrations above ca. 100 µM, dimers prevail. Addition of
GCDCA shifts that equilibrium completely towards the dimeric form and at the same time
causes conformational rearrangements within the P-dimers (details are found in the accom-
panying paper). For the purpose of the present study, it is sufficient to note that binding
of glycans was tested in the absence and in the presence of GCDCA. We applied a variety
of conditions (Table 2) to probe for interactions of MNV P-dimers with HBGAs or other
neutral glycans, but we could neither detect CSPs nor STD effects, demonstrating that MNV
P-dimers do not recognize HBGAs or other neutral glycans listed in Table 2 (corresponding
overlays of 1H,15N TROSY HSQC spectra of P-dimers in the absence and presence of gly-
cans as well as STD NMR spectra are compiled in the supplementary information clearly
illustrating the negative results).
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Table 2. Glycans tested negative for binding to MNV P-domain with and without GCDCA. NMR samples were prepared in
the following buffers. A: 75 mM sodium phosphate, 100 mM NaCl (pH 6), A*: A with 20 mM sodium phosphate, B: 20 mM
sodium acetate, 100 mM NaCl (pH 5.3), B*: B with sodium acetate-d3 in D2O. Additional experimental conditions such as
temperatures and protein and ligand concentrations are given in Table S1.

MNV Strain Glycan Ligand Exp [a] B [b] GCDCA EDTA Ca2+

CW1 Fuc 8 STD B - - -
CW1 H-Dis 12 CSP B + - -
CW1 A-Tri 2 STD B* + - -

MNV07 B-Tri 3 CSP B - - -
CW1 B-Tri 3 CSP B - - -

MNV07 B-Tri 3 STD B + - -
CW1 B-Tri 3 CSP B + - -
CW1 B-Tri 3 CSP B + + -
CW1 GalNAc 10 STD B* + - -
CW1 Fuc 8, Gal 9 CSP B + - -
CW1 Galili Dis 11 CSP B + - -
CW1 Forssman antigen 13 STD B* + - -

MNV07 Neu5Ac 5 STD A* - - -
CW1 Neu5Ac 5 CSP B + - -
CW1 Neu5Ac 5 CSP B + + -
CW1 Neu5Ac 5 CSP A + - +
CW1 3′SL 6 CSP B - - -

MNV07 3′SL 6 STD B + - -
CW1 3′SL 6 CSP B + - -
CW1 3′SL 6 CSP B + - +
CW1 3′SL 6 CSP B + + +
CW1 GM1a 14 CSP B + - -

MNV07 GD1a 7 CSP A* - -

[a] Type of NMR experiment performed for detection of binding. [b] Buffer used, cf. legend.

In the course of these glycan-binding studies, we noticed that MNV P-domains,
saturated with GCDCA, specifically bind Ca2+ with affinities in the µM range. We also
detected binding of Mg2+ and Mn2+ ions. Bivalent metal ion binding is illustrated in
Figure 3. If a ligand sample contains metal ion impurities CSPs can obstruct or fake ligand
binding. Therefore, it is important to either quantitatively remove bivalent metal ions prior
to chemical shift titration experiments with glycan ligands or to saturate metal ion binding
pockets. Otherwise, wrong positive results may be obtained. As an example, traces of
Mn2+ resulting from chemoenzymatic synthesis of B-Tri 3 using human blood group B
galactosyltransferase cause cross peaks in 1H,15N HSQC TROSY spectra to disappear. After
addition of EDTA the peaks recur, clearly demonstrating that the effect is not due to the
presence of B-Tri 3. (cf. Figure S5).

3.3. MNV and GII.4 P-Dimers Do Not Recognize Sialic Acid

Earlier studies with MNV showed that attachment to murine macrophages involves
sialic acid bearing glycolipids or glycoproteins. Based on mutagenesis experiments a
glycan (sialic acid) binding site has been proposed, located in the P-domain in a region
corresponding to the HBGA binding site of human GII.4 noroviruses [19,20]. To test this
hypothesis, we subjected [U-2H,15N]-labeled and unlabeled MNV P-dimers of the strains
CW1 and MNV07 to CSP and STD NMR experiments, respectively, using sialic acid and
sialic acid bearing glycans as ligands (Table 2). As GCDCA plays an important role in
stabilizing MNV P-dimers, CSP NMR experiments were performed in the absence and
in the presence of GCDCA. We also varied the pH and used varying buffer compositions
to make sure that the observations do not depend on these conditions. In fact, binding
of sialic acid glycans was not observed under any of the settings chosen. To illustrate
these negative findings, Figure 4 shows a representative STD NMR spectrum of a sample
consisting of MNV07 P-dimers in the presence of saturating amounts of GCDCA and
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2 mM 3′-sialyllactose (3′SL) as found in GM3 gangliosides. It is obvious that the only
STD signals result from GCDCA. In Figure S8, we compile more STD NMR spectra and
TROSY HSQC spectra in the absence and presence of sialoglycans to further illustrate these
negative results.
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Figure 3. (a) 1H,15N TROSY HSQC spectra of 150 µM [U-2H,15N]-labeled CW1 P-domain saturated with GCDCA (black
contours) and in the presence of 5 mM MgCl2 (blue contours) or CaCl2 (red contours). No assignment is available yet, but
the same set of signals is affected by both Mg2+ and Ca2+ indicating a shared binding pocket. (b) Effects of adding EDTA
or Ca2+ to the P-domain in the presence of saturating amounts of GCDCA. Black contours correspond to the respective
spectrum in (a). Addition of EDTA (black) shifts the resonance signal in the opposite direction as addition of Ca2+ (red)
showing that GCDCA contains a significant amount of calcium ions. Therefore, all P-domain samples having GCDCA
added also contain an undefined amount of Ca2+. (c) Euclidean CSPs can be calculated from a Ca2+ titration series with
the chemical shifts of an EDTA-treated sample taken as starting points. Due to the Ca2+ contamination the total Ca2+

concentration during the titration is not known precisely. Using the amount of added Ca2+ ions, a global least-squares
minimization of CSPs larger than two standard deviations were used to derive both, the initial Ca2+ concentration and the
dissociation constant KD. This approach yields a KD value of 138 µM. With 300 µM GCDCA, the initial Ca2+ contamination
was determined as 140 µM. Spectra were acquired in 20 mM sodium acetate, 100 mM NaCl (pH 5.3). Ca2+ was titrated to a
sample containing 250 µM P-domain.

Recent studies reported binding of sialic acid-bearing glycans to HuNoV P-dimers
of the GII.4 strains VA387 [22] and MI001 [21]. Therefore, we used [U-2H,15N]-labeled
P-dimers of VA387, MI001, and Saga to probe binding of sialoglycans using CSP NMR
experiments (Table 3, Figure 4b and Figure S7). To our surprise we did not observe effects
of binding under any of the conditions chosen, strongly suggesting that previous positive
results were due to experimental artifacts. A study using native MS confirms this conclusion
and addresses the underlying experimental problems in full detail (Charlotte Uetrecht,
personal communication, manuscript in preparation). In this context, it is interesting to
note that published MS based data were not fully consistent. Prior to the report on binding
of sialic-acid bearing glycans [22] an earlier study from the same laboratory had stated that
neither 3′-sialyllactose nor 6′-sialyllactose bind to VA387 P-dimers [31].
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Figure 4. MNV and GII.4 P-domains do not bind to sialic acid containing glycans. (a) STD NMR
spectra of MNV07 P-domains in the presence of the ligand GCDCA and 3′-sialyllactose (3′SL). There
is no saturation transfer to protons of 3′SL. Only GCDCA signals show STD effects. The sample
contained 80 µM protein in 20 mM sodium acetate buffer (pH 5.3), 250 µM GCDCA, and 2 mM
3′SL. Spectra were acquired at 298 K at 600 MHz. (b) 1H,15N TROSY HSQC spectra of 170 µM
[U-2H,15N]-labeled HuNoV GII.4 VA387 P-dimers with and without 3′SL showing no binding of
3′SL. A representative section of the spectra highlights the absence of CSPs upon 3′SL addition. The
sample was prepared in 75 mM sodium phosphate buffer, 100 mM NaCl (pH 7.3).

Table 3. Sialylated ganglioside glycans tested negative for binding to human NoV P-domains. NMR
samples were prepared in the following buffers. A: 20 mM sodium phosphate (pH 7.4), B: 75 mM
sodium phosphate, 100mM NaCl (pH 7.3), C: 100 mM sodium acetate (pH 4.6), D: 200 mM ammonium
acetate (pH 7.3), E: 50 mM sodium phosphate, 20 mM NaCl (pH 7.4), F: B + 5 mM GCDCA, G:
20 mM sodium acetate, 100 mM NaCl (pH 5.3). Protein concentrations were 110–860 µM for Saga
N/N P-domains, 100 µM for Saga iD/iD P-domains, 80–180 µM for MI001, and 170 µM for VA387.
Carbohydrate concentrations were 5–16 mM. NMR spectra were acquired at 298 K.

HuNoV Strain Glycan Ligand Buffer

GII.4 Saga (N/N) Neu5Ac 5 A
3′SL 6 B
3′SL 6 C
3′SL 6 D

GII.4 Saga (iD/iD) 3′SL 6 B
GII.4 MI001 (N/N) Neu5Ac 5 B

3′SL 6 E
GII.4 VA387 (N/N) 3′SL 6 B

3′SL 6 F
3′SL 6 G

3.4. Sialic Acid on CHO Derived Cells Expressing the MNV-1 Entry Receptor Does Not
Contribute to Infection

In order to determine the effect of MNV-1 infection, susceptible cell lines lacking sialic
acid on their cell surface were infected with MNV-1 (Figure 5). For this, a parental CHO
derived cell line (Pro5) and a recombinant Pro5 mutant (Lec2), deficient in transporting
CMP-sialic acid into the Golgi compartment [48], were transduced to stably express the
MNV-1 entry receptor mCD300LF. The parental Pro5 mCD300LF and recombinant Lec2
mCD300LF cells support MNV infection similarly to naturally susceptible murine monocyte
derived cell lines. The absence of sialic acid from the cell surface of Lec2mCD300LF cells
as described previously [48] was monitored by FITC-conjugated wheat-germ agglutinin
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staining. Binding was determined inoculating Pro5mCD and Lec2mCD with MNV-1 with
an MOI of 5 for 1 h on ice removing the inoculum and determining the TCID50 of virions
bound the cells. Infection was determined by inoculating respective cells with MNV-1 with
an MOI of 0.05 for 1 h on ice removing the inoculum and determining infection between 0
and 72 h post infection by end-point dilution. No significant differences were observed
at any analyzed timepoint, suggesting that cell surface sialic acids do not contribute to
MNV-1 infection in this system.
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and recombinant Lec2 cells deficient in CMP-sialic acid transport into the Golgi were transduced with the MNV entry
receptor mCD300LF to make them susceptible to MNV infection. (a) The transduced cells were inoculated with MNV-1
(CW3) at MOI 5 on ice, the inoculum was removed, and cells were immediately lysed, and viral titers were determined by
end-point titration. (b) The transduced cells were infected with MNV-1 (CW3) at MOI 0.05, the inoculum was removed, and
cells were incubated between 0 and 72 h. Viral titers were determined by end-point titration. Infections were performed in
duplicate in the three independent experiments (n = 3). Error bars represent the standard error of the mean (SEM). (c) Sialic
acid surface exposition was determined by immunohistochemistry using FITC-conjugated wheat-germ agglutinin.

3.5. Glycan Binding to HuNoV P-Domains Has No Equivalent in MNV P-Dimers

Binding of HBGAs to HuNoV P-domains is well documented by a number of crystal-
lographic studies, by NMR experiments, by mass spectrometry, and by other biophysical
techniques, providing a molecular basis for potential explanations of the importance of
HBGAs for infection with HuNoVs. However, a convincing molecular model describing a
mechanism of how exactly HBGAs promote infection [7,8,33,55,56] in analogy to, e.g., pro-
totypic SV40-ganglioside interactions [57–59] is still missing. In this context, it is very likely
that additional factors including possibly even a proteinaceous receptor as recently identi-
fied for MNV [15,16] contribute to HuNoV. Evaluation of studies addressing MNV/glycan
or HuNoV/glycan interactions in combination with recent observations in our laboratory
raises concerns about the validity of current data interpretation. One inconsistency emerges
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with respect to the order of magnitude of HBGA/HuNoV P-domain interactions, which had
been described as ranging from low µM to low mM dissociation constants. However, recent
CSP NMR experiments [35] suggest real affinities may be up to an order of magnitude
weaker. The absence of any structural data for norovirus P-domains complexed with sialic
acid or sialoglycans represents another mystery, given that a number of studies imply
binding to P-domains of MNV as well as of HuNoV. To resolve these conflicts, we examined
representative P-domain/glycan interactions employing CSP and STD NMR experiments.
CSP NMR experiments represent a highly sensitive tool for probing binding of ligands to
target proteins under near-physiological conditions [43] and deliver a wealth of information
ranging from binding topologies to allosteric networks to dissociation constants. Chemical
shifts of backbone HN resonances reflect even subtle changes in the protein’s environment
such as small changes in pH or buffer composition, giving rise to noticeable CSPs. Even
very low-affinity binding can be sensed as reflected by the observation of quantifiable CSPs
upon binding of B-Tri 3 to fully deamidated Saga P-dimers (cf. Figure 1d). Therefore, if
addition of a ligand molecule to a target protein does not induce measurable CSPs it must
be concluded that there is no interaction between that protein and the ligand.

In the case of GII.4 Saga P-dimers, we accomplished an almost complete backbone
assignment, allowing identification of ligand binding topologies and affinities based on
specific CSPs [35,36]. For the other GII.4 P-dimers used in this study no exhaustive
assignment is available yet, but some backbone HN resonances could be identified by
comparing to the almost sequence-identical Saga strain (Figure S1). For MNV P-domains
the situation is more complicated since monomers and dimers are present in solution, and
only addition of GCDCA triggers the formation of stable dimers (see the accompanying
paper), likely different from the dimers in the absence of GCDCA. Since no CSPs were
observed in any of the TROSY HSQC spectra assignments were unnecessary at this point.

4. Discussion and Conclusions

Our results indicate that some of the previous hypotheses regarding glycan recognition
by noroviruses need to be revised, as will be briefly discussed in the following.

First, previously reported affinities of HBGAs binding to GII.4 P-dimers are up to an
order of magnitude too large (Table 1). A follow up study in our laboratory systemati-
cally addressed the binding of HBGAs and other glycans to GII.4 P-dimers, significantly
extending the current dataset [60]. In preceding NMR-based studies, we observed discon-
tinuities in STD NMR titration curves leading to the hypothesis of cooperative binding
and yielding apparent dissociation constants in the low µM range [21,26,27]. In light of
our new systematic NMR binding studies, this hypothesis can no longer be maintained.
Reevaluation of our old STD NMR titration data, ignoring the steps and assuming a simple
one-site binding model, leads to very similar dissociation constants compared to the CSP-
derived data presented here. In another previous STD NMR-based study, sub millimolar
dissociation constants had been reported for the binding of L-fucose and citrate to GII.10
P-dimers [28]. The reason simply is that in this case, titrations were stopped at ligand
concentrations corresponding to the first “step” in the STD NMR titration curve, that
can easily be mistaken as the saturation of binding. Although we have not yet resolved
the precise origin of the STD NMR titration curve discontinuities, it appears that bulk
effects perhaps involving ligand-ligand interactions are responsible. This is substantiated
by the observation that the discontinuities strongly depend on pH and almost disappear
under certain conditions, e.g., using BisTris buffer at slightly acidic pH [27]. In the case
of MS-derived dissociation constants [29–31] there seems to be a fundamental problem
due to specific structural features of P-domains. Recent systematic MS studies [61] suggest
that the high content of β-sheet regions in P-dimers allows for intercalation of glycans in
the gas phase, making elimination of unspecific binding very difficult and leading to false
positive detection of binding.

Second, neither HuNoV GII.4 or GII.10 P-domains nor MNV P-domains recognize
the analyzed sialylated glycans (cf. Tables 2 and 3). These observations are supported by
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previous findings showing that the sialic residue of sialyl Lewisx is not involved in binding
to GII.4 VLPs [25] or to GII.9 P-domains [62]. Therefore, it must be concluded that previous
MS-based data on binding of ganglioside derived glycans to GII.4 VA387 P-domains [22]
are due to the formation of artificial associates of sialoglycans and P-domains in the gas
phase after Coulomb explosion [61]. Our NMR experiments unambiguously show that
sialic acid or sialic bearing glycans neither bind to VA387 P-dimers nor to other P-domains
of GII.4 strains tested here (Table 3). This is in accordance with available biological data
providing no hint that sialoglycans promote HuNoV infection. On the other hand, it has
been shown that sialyl lacto-N-tetraose bearing neoglycoproteins inhibit binding of GII.3
(Chron1) and GII.4 (Dijon) VLPs to HBGA-containing human saliva [63], suggesting that
intact capsids may exploit more complex mechanisms for glycan recognition than isolated
P-dimers. It remains an open and interesting question how such mechanisms are put
into effect.

For MNV, biological evidence implies the involvement of sialoglycans in MNV-1 in-
fection [19,20,64]. At first glance, this cannot be reconciled with the observations presented
here. Although it was shown in the past by competition experiments that the MNV-1
P-domain resembles the biologically active form [65], this may not apply to possible sialic
acid binding sites. Available crystal structures of the MNV-1 P-domain describe an open
(PDB: 3LQ6) and a closed conformation (PDB: 6C6Q, 6E47) with significant structural
differences in the A’B’-loop and the C’D’-loop. Ligands such as bile acids and bivalent
cations contribute to these structural differences. Here, binding to sialoglycans was neither
affected by the presence of bile acid nor by bivalent cations; however, the involvement of
as yet unknown co-factors for sialoglycan binding cannot be ruled out. Our cell culture
experiments performed here with a novel cell line artificially expressing the entry receptor
mCD300LF and devoid of surface sialoglycans further suggest that sialoglycans do not
play a major role in MNV-1 binding and infection. This is supported by strain-specific
differences in the sensitivity to neuraminidase treatment as shown previously.

Third, MNV P-domains neither bind to HBGAs nor to other glycans studied here
(Table 2). Taken together, our data suggest that glycan recognition through P-domains is a
distinct feature of HuNoV and absent for MNV.

To conclude, our results essentially redefine the glycan recognition code for norovirus
P-dimers and prompt for new experiments on the biological side, eventually decrypting
hitherto unknown mechanism of how glycans modulate norovirus infection.
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