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1. Introduction

The main task of radiation oncology is planning and delivery of
high precision radiotherapy to cancer patients. Since radiotherapy
is relevant for more than 50% of all cancer patients, the role of
radiotherapy in cancer management is substantial. Radiotherapy
involves use of advanced technology, both for imaging, planning
and delivery of treatment and follow-up, and requires labor inten-
sive procedures by highly specialized health professionals. Not all
countries have the required resources to offer proper access to
radiotherapy. The ESTRO-HERO analyses showed that the optimal
radiotherapy utilization benchmark is not met in the vast majority
of countries, not even the most affluent and well-served countries.
Despite improvements in equipment and staffing, there is today
still a significant underutilization of radiotherapy in most Euro-
pean countries [1–6]. Another real challenge to European radiation
oncology is the anticipated significant increase in new cancer cases
over the next years, meaning that from 2016 to 2025 a 16%
increase in the number of radiotherapy treatment courses has been
estimated with a variation across European countries from less
than 5% to more than 30% [7,8]. Within the same timeframe, cancer
management will move towards more personalized, tailored and
integrated care, centered around the needs of the patient and not
of the system. These simultaneous trends will together put radia-
tion oncology under pressure, but also offers a unique case for
automation and use of artificial intelligence (AI) to alleviate and
optimize workflow and quality of care. In this commentary, we will
briefly outline the AI applications in radiotherapy planning, deliv-
ery and quality assurance, and give our perspective on how this
will change the roles of the professions involved.
2. Overview of AI applications in radiation oncology

Artificial intelligence is a broad term covering the simulation of
human intelligence or problem solving capabilities using comput-
ers/machines. In a more narrow sense, the term is often used to
cover use of machine learning methods in which the computer
automatically learns from data (and experience), identifying
underlying patterns in complex systems, to perform predictions.
Deep learning is a subcategory of machine learning mimicking
how the human brain works by feeding information through mul-
tiple processing layers. There are numerous ways to utilize artifi-
cial intelligence in radiation oncology throughout the treatment
chain, especially in image analysis, risk modelling, treatment plan-
ning, and quality assurance. In the following, we will go briefly
through the most predominant applications of AI in RO, their place
in the treatment chain, and their status of implementation. We will
not go into detail regarding the relevant type of artificial intelli-
gence, however in most cases some level of machine learning is
used. While deep learning appears promising for several applica-
tions [9], it is still in an early stage of maturation. The use of arti-
ficial intelligence in different aspects of radiation oncology affects
workflow in different ways, and we will discuss this in the follow-
ing section.

2.1. Image reconstruction

When medical images (CT, PET, MR, SPECT etc.) are acquired,
the first step is the so-called reconstruction process which involves
mathematical transformation of the detected signal into visual
images. The image quality can be highly dependent on the algo-
rithm used for reconstruction, and some features are hard to
resolve (such as metal artifacts in CT scans). Use of machine learn-
ing methods to assist or replace traditional reconstruction methods
have been shown to reduce artifacts and potentially increase qual-
ity and consistency of reconstruction [10,11].

2.2. Image registration

Often several imaging modalities are used for segmentation of
structures prior to treatment planning, in particular PET, CT and
MR (various sequences). These images then need to be co-regis-
tered in order to achieve optimal quality of segmentation. In addi-
tion, several images may be required longitudinally during
treatment (for instance in-room cone-beam CT images or MR
images). More advanced registration of these images with the
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original planning image will require deformable image registra-
tion, which is not a trivial task [12]. For such registration tasks,
deep learning methods are being developed which can perform
rigid and deformable co-registration of images automatically and
fast, for instance based on an unsupervised training model as
investigated in [13].

2.3. Image segmentation

One of the most time-consuming tasks in pre-treatment prepa-
ration is the segmentation of structures, including organs at risk
and target delineation. In addition to being time consuming, this
step involves large intra- and inter-observer variations, leading to
suboptimal dose distributions [14]. Automation of segmentation
and delineation has been extensively investigated, especially for
organs at risk, using both atlas-based and machine learning meth-
ods [15,16]. Auto-segmentation of organs at risk has been shown to
reduce the workload, and potentially increase consistency in sev-
eral clinical sites, while there are yet no clear results for automa-
tion of target delineation.

2.4. Image analysis

The introduction of advanced computerized image processing
has opened a new potential for identification of image features
not quantifiable by visual inspection. Such features relate to 2D
or 3D spatial dispersion of gray scale values and can for instance
include pixel intensity histograms and gray scale run lengths.
The field coined radiomics encompasses investigations of quantifi-
cation of such features in images (imaging biomarkers) and their
correlation with treatment outcome. The analyses are based on
machine learning techniques, where patterns are mapped between
up to thousands of such features and various outcome measures in
retrospective patient cohorts, for identification of potential predic-
tive power of images acquired before or during treatment [17].

2.5. Risk modelling and profiling

With the vast amount of digital patient data becoming available
(including images), advanced pattern finding by use of artificial
intelligence may reveal correlations between clinical outcome
and various risk factors and/or biomarkers. This again can serve
to strengthen outcome modelling, and provide potential for new
patient stratification regimes for treatment personalization
[18,19]. Such new schemes need to be tested in new prospective
clinical trials, and successful trials will increase the number of
available treatment options including the requirement for data
acquisition and analysis for the individual patient in the diagnostic
and preparatory phases.

2.6. Treatment planning

Optimization of radiation dose distribution is a highly iterative
process which entails a large degree of user interaction. The chal-
lenge is to balance limitation of doses to organs at risk with achiev-
ing adequate coverage of targets, which often involves making
several trade-offs and compromises of various parameters, in turn
making the process complex and difficult to overview – as well as
time consuming - for the individual planner. Use of automating
techniques for treatment planning has been introduced in the last
5+ years, showing high potential for improving both efficiency and
quality of treatment plans [20,21]. The field is still in development
as reviewed recently in [22]. As daily plan adaptation becomes the
next step in development of high-precision radiotherapy, the speed
of treatment planning becomes important for achieving a viable
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workflow thus emphasizing even more the relevance of automated
planning [23]. This is already a reality in newer applications
including both integrated MR treatment units (MRIdian, ViewRay
Inc and Unity, Elekta AB) and cone-beam CT based online adaptive
systems (ETHOS, Varian Medical Systems, Inc).

2.7. Quality assurance

One of the basic rationales for physicists in radiation oncology
has traditionally been to perform quality assurance of both hard-
and software in the clinic, including basic dosimetry, machine per-
formance/constancy, and patient specific dose measurements.
These are tasks that are primarily carried out after-hours on a reg-
ular schedule, often with a short deadline for clinical acceptance,
and involving a large amount of data analysis. Automation and
data mining can be used to optimize quality assurance schedules,
and to auto-detect and identify errors/deviations. Upcoming error
modes or machine breakdown may potentially even be predicted
based on pattern recognition in retrospective measurements [24],
and machine log files can be analyzed for detection of errors during
delivery, such as MLC leaf positioning [25].

3. Effects of AI on clinical practice

Based on the summaries above, we can broadly divide applica-
tions into two categories – those aimed primarily at automation
and those exploring data mining. The categories are not mutually
exclusive, but the categorization serves to qualify their effect on
future practices and developments.

Applications primarily aimed at automation will have a direct
impact on workflow in the clinic, and on the tasks performed by
professionals. A good example of this is use of auto-segmentation
tools for organs at risk in CT scans (or other imaging modalities).
This was previously a tedious and time-consuming manual task
performed by various professionals depending on local standards
and difficulty (clinicians, physicists or radiographers). Automatic
tools are now available to a large extent, reducing the time spent
by humans on the delineation step of the treatment preparation
process. As more and more organs at risk are being considered in
treatment planning (due to increasing quality of imaging and pre-
cision of treatment), this automation contributes to avoid an other-
wise increasing bottleneck in the workflow, releasing valuable
time for other tasks requiring human interaction. These tasks
may include those not yet automated, those not automatable,
and not least new tasks arising from the wealth of opportunities
provided by data mining (see below). The category of automation
applications include image reconstruction, registration and seg-
mentation, treatment planning, and QA error identification. In
addition to assisting in workflow, automation of these processes
can improve consistency and quality of difficult tasks, such as
image registration, and thereby reduce uncertainties in the treat-
ment chain.

Data mining applications, on the other hand, aim to provide
new insights based on pattern recognition in large databases. This
may not immediately affect workflow in the clinic but may pro-
duce development of new treatment options brought into clinical
protocols and trials. An example of this is radiomics studies map-
ping correlation of advanced image features in scans with outcome
measures after radiotherapy. The results of these studies may indi-
cate new treatment options – such as new patient stratification or
altered fractionation schedules – to be tested in clinical trials and
eventually implemented in new clinical protocols. The research
and developmental work involved in such data mining studies
require participation of professionals at all levels. Due to the
increasing availability of digital data – images, electronic patient
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journals and digital registers - the opportunity and relevance of
data mining studies is increasing, and the workload involved in
such studies is in turn also increasing. This involves new tasks
not traditionally part of radiotherapy treatment chain, in particular
in relation to data science.
4. Will AI replace professionals in radiation oncology?

There is no simple answer to the question how AI will affect
professionals in radiation oncology. However, it is clear that
automation will replace many manual tasks performed today.
Examples are many: delineation of organs at risk and even target
volumes, manual treatment planning, verification of treatment
position and delivery of treatment. These are all procedures that,
when replaced by AI, will increase efficiency and reduce the time
spent on planning and treatment. The arrival of new commercial
software products [26] already indicate that automation of work-
flow is something we will face in the very near future.

On the other hand, automation of workflowwill not just remove
tasks but also create new opportunities [27] – for all professionals
in radiotherapy, medical doctors, medical physicists, radiation
therapists, radiographers. Hence the role of the professionals will
drift from a weight on performance of manual tasks to more
weight on development, individualization and evaluation of radia-
tion treatment.

For the radiation oncologist (and partly the radiologist) organ at
risk (OAR) delineation has already partly been taken over by radi-
ation therapists, if not being segmented using algorithms [28].
Very likely the future will also bring automated segmentation of
target volumes. Radiation oncology will for the medical doctor
change from a technical to a much more clinical and holistic spe-
cialty allowing to focus more on the patient and the entire clinical
care. Radiation oncologists must therefore position themselves as
responsible medical doctors, being involved in the entire care path,
including handling of side effects, palliative care and clinical and
translational research. Radiation oncology professionals must
redefine their professional role and become actively integrated in
patient-centered, multidisciplinary health care. Otherwise, the
medical specialty will become ‘task-shifted’ and superfluous.

For the medical physicist and RTTs treatment planning is a large
parts of the clinical work. Treatment planning will soon face a shift
in task-roles as automated planning becomes superior and less
time consuming compared to manual planning [20]. The potentials
are enormous, and successful implementation of AI will be neces-
sary for wide-spread implementation of ‘‘plan-of-the-day” evalua-
tions for most patients as well as for more precise treatment (like
protons and MR-Linear accelerators). It is very likely that develop-
ment of more specialized and patient individualized treatments
will be the focus for medical physicists whereas more simple plans
like volumetric arc therapy (VMAT) will be fully automated.

Quality assurance, which makes up a basic part of the medical
physicists role will also be affected by automation possibilities as
described above, however the procedure of actually performing
the physical dosimetric measurements will inevitably remain a
manual task to some extent.

Likewise, classical radiation therapist roles like OAR delineation,
treatment positioning and verification will be replaced by AI and
tasks will shift to e.g. treatment planning. Already now some insti-
tutions subspecialize radiation therapists to perform specific treat-
ment plans like palliation or breast irradiation. Although not yet
proven to be more efficient and of higher quality.

These changes in work procedures will not just benefit high
income countries but also countries with less developed infrastruc-
ture and lack of specialized staff. AI is a very attractive way to close
the gap in the need for radiotherapy across the world [29,30].
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One of the immediate challenges that we face is to educate the
health care professionals in aspects of safe implementation of AI
tools, defining QA, commissioning standards for AI tools, and
how to use AI technologies prudently. These are tasks that cannot
be left to the industry. Scientific organizations like ESTRO and
ASTRO have a huge responsibility to secure a scientifically sound
dissemination of knowledge in the field. ESTRO and the ESTRO
School have taken these initiatives and educational offers will be
available as scientific meetings, courses and workshops in the
years to come.

In conclusion, the increasing future demands for individualized
high tech radiotherapy to a growing number of cancer patients will
require that the radiation oncology profession must utilize
automation and AI to secure that our professional resources and
roles can be aligned with the needs of the emerging patient-cen-
tered, multidisciplinary health care.
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