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Abstract
Forensic age estimation generally involves considerable amounts of uncertainty. Forensic age indicators such as teeth or
skeleton images predict age only approximately, and this is likely to remain true even for future forensic age indicators.
Thus, forensic age assessment should aim to make the best possible decisions under uncertainty. In this paper, we apply
mathematical theory to make statistically optimal decisions to age assessment. Such an application is fairly straightforward
assuming there is a standardized procedure for obtaining age indicator information from individuals, assuming we have data
from the application of this procedure to a group of persons with known ages, and assuming the starting point for each
individual is a probability distribution describing prior knowledge about the persons age. The main problem is then to obtain
such a prior. Our analysis indicates that individual priors rather than a common prior for all persons may be necessary.
We suggest that caseworkers, based on individual case information, may select a prior from a menu of priors. We show
how information may then be collected over time to gradually increase the robustness of the decision procedure. We also
show how replacing individual prior distributions for age with individual prior odds for being above an age limit cannot be
recommended as a general method. Our theoretical framework is applied to data where the maturity of the distal femur and
the third molar is observed using MRI. As part of this analysis we observe a weak positive conditional correlation between
maturity of the two body parts.

Keywords Age assessment · Third molar · Femur · Knee · Bayesian

Introduction

Physiological processes, like the growth of bones and teeth,
can usually be described in developmental stages that occur
in predictable sequences. By studying the prevalence of
different stages in subjects of various ages, the stages can
be correlated with chronological age. If the studies are large
enough and performed on representative populations, such
developmental stages can then be used as age indicators in
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order to predict a person’s chronological age in a medical
age assessment [1].

Radiological methods are commonly used to observe
age indicators, but there is no consensus between different
countries on which techniques to use. In Europe, the most
commonly used methods are x-ray of hand, teeth and
clavicle [2]. The choice of method is of course a crucial part
of an age assessment. If you, for example, want to assess
whether a person is above or below the age of 18, it is
not helpful to use an age indicator that normally is fully
developed at that age. Instead, you need an age indicator that
is still under development at whatever age limit you want
to assess, so that you can separate those that are below and
above that age, respectively.

However important the choice of method is, the statistical
analysis of the results as well as the presentation of the
conclusions is also fundamental parts of an age assessment.
If you choose good techniques but make a poor analysis and
presentation, there is a risk that the overall assessment will
be inadequate. The combination of radiological methods,
statistical analysis, and presentation of the results will be
referred to as an age assessment model.
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An important age limit in many countries is the age of
18. Whether a person is below or above this age limit often
has implications on how an asylum seeker will be handled
or a convicted criminal will be sentenced. In addition to
different countries using different methods, the way the age
indicators are interpreted also differs. In Norway’s model
for example, the results from x-ray of the third molar and
the hand are combined to get a more precise estimate than
by using the two methods on their own [3].

The Study Group on Forensic Age Diagnostics (Arbeits-
gemeinschaft für Forensische Altersdiagnostik; AGFAD)
recommends the use of three methods: x-ray of hand, x-ray
of teeth, and if the hand skeletal development is complete,
an additional x-ray or CT of the clavicles. If one needs
the highest standard of proof, the concept of minimum age
should be applied [4]. This is a conservative way of inter-
preting the results, giving the benefit of the doubt to younger
people.

Given a set of age assessment indicators, there is a need
to find an optimal age assessment model, so that an optimal
decision procedure can be produced when using these
indicators. In many parts of forensic science, a Bayesian
paradigm has been adopted, see, e.g., [5]. An example
from age assessment is [6]. In this paper we explore some
consequences of applying Bayesian decision theory to age
assessment in general. We describe a general framework,
and conclude that formulation of prior knowledge about the
age of each individual is key. We then discuss how this
can be done in practice, as part of a practical functioning
system for age assessment. One possibility is using a menu
of priors, where case workers can select a prior based
on the case context. We show how such a system could
be sequentially updated with previous cases to become
increasingly optimal. On the other hand, we also show how
using prior odds instead of prior distributions for ages will
result in clear suboptimalities.

We illustrate our computations using a dataset where
the maturity of the distal femur and the third molar is
observed using MRI. Some study subjects or cohorts have
been previously reported in [7–9].

Materials and methods

Data

A total of 542 German male and female volunteers aged
12 to 24 years were prospectively examined from May
2013 to March 2015 at the Department for Clinical
Radiology of the University Hospital of Münster, Germany.
The study received a positive vote by the relevant ethics
committee (reference number: 2013-062-f-S). After being
duly informed, all study participants gave their written

consent to take part in the study. For minors, the written
consent of the parents was also obtained.

Examinations were performed on a Philips 3.0 T Achieva
(gradient amplitude 80 mT/m, Philips Medical Systems,
Netherlands). With regard to the knee examination, the
primary region of interest was the left knee joint with the
possibility of switching to the right knee joint in case of
unilateral exclusion criteria (i.e., trauma or implant). The
teeth MRI examination was primarily made on the third
molar of the left lower quadrant. For study participants
whose medical case history indicated that their left lower
third molar had been extracted, the third molar of the right
lower quadrant was examined.

Knee images were acquired with a T1-weighted turbo
spin echo (TSE) sequence in coronal orientation (TR 633
ms; TE 20 ms; flip angle 90; duration 3:51 min; measured
voxel size 0.6 × 0.77 × 3 mm; reconstructed voxel size
0.31×0.31×3 mm). The development stages were classified
according to Schmeling et al. [10] with the addition of the
substages according to Kellinghaus et al. [11].

Teeth images were acquired with the high-resolution
surface coil SENSE-NV 16 and MRI scans were performed
utilizing a T2 turbo spin echo (TSE) sequence (TSE factor =
13; TR = 2800 ms; TE = 80; flip angle = 90; sense =
1.5; NSA = 6; scan duration = 5:36 min; measured voxel
size = 0.50 × 0.65 × 2.00 mm; reconstructed voxel size =
0.19 × 0.19 × 2.00 mm). The mineralization stages of the
third molars were assessed according to Demirjian et al.
[12].

Knee images were assessed by an examiner with
experience in musculoskeletal MRI diagnostics and teeth
images were assessed by a dentist experienced in third

Table 1 The number of individuals with each type of observation in
our dataset

Females A B C D E F G H Sum

2c 0 0 6 11 10 2 0 0 29

3a 0 0 4 8 5 4 0 0 21

3b 0 0 1 1 6 1 0 0 9

3c 0 0 4 3 8 5 0 1 21

4 0 0 1 9 20 40 85 28 183

Sum 0 0 16 32 49 52 85 29 263

Males

2c 1 4 17 26 20 6 0 0 74

3a 0 0 1 6 8 9 2 0 26

3b 0 0 0 0 0 0 0 1 1

3c 0 0 0 0 4 13 7 2 26

4 0 0 0 0 4 13 72 63 152

Sum 1 4 18 32 36 41 81 66 279

The columns indicate the molar maturity levels A–H and the rows
indicate the knee maturity levels observed in these data: 2c–4
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molar mineralization assessment. For both knee and teeth
images, subsets were used to assess inter- and intraobserver
agreement. An overview of the data is given in Table 1. For
more details, see [7] and [8].

Decision theory for forensic age assessment

We will apply mathematical decision theory to the problem
of making optimal decisions about the age of a person
when the decision is based on a forensic age assessment
report, while all other information about the age is collected
into an individual prior represented as a probability density
p(x) on the true age x. We will assume there is a finite
list r1, r2, . . . , rK of possible age assessment reports. Thus,
given p(x), a decision rule assigns to each of these reports
a decision of whether the person is above some age limit; in
this paper 18 years.

The probability of obtaining report rk will of course
depend on the age x of a person, but it may also depend
on a number of other covariates. If these covariates are
easily observable, such as gender, one should include them
in the model. For any true age x and covariate z, and for
k = 1, . . . , K , we assume there is a probability fk(x, z)

that the report will be rk . Thus, we have
∑K

k=1 fk(x, z) = 1
for all fixed x and z. In “Models for age assessment report
probabilities,” we look at how we can estimate such
functions from data.

To differentiate between good and bad decisions, we
introduce benefits and expenses related to correct and
incorrect decisions. Let b(x) be the benefit of making the
correct decision for a person of age x, and let e(x) denote the
expense of making the wrong decision. Thus, for example,
if x < 18, e(x) is the expense of deciding that a person of
age x is above 18, while b(x) is the benefit of deciding that
the person is below 18. We can now formulate the expected
benefits of a classification: For report rk , if we classify as a
child, the expected net benefit is

∫ 18

0
p(x)fk(x, z)b(x) dx −

∫ ∞

18
p(x)fk(x, z)e(x) dx

while if we classify as an adult, the expected net benefit is

∫ ∞

18
p(x)fk(x, z)b(x) dx −

∫ 18

0
p(x)fk(x, z)e(x) dx.

We should classify as an adult if and only if the expected
net benefit of classifying as an adult is greater than the
expected net benefit of classifying as a child, i.e., if

∫ ∞

18
p(x)fk(x, z)(b(x) + e(x)) dx

>

∫ 18

0
p(x)fk(x, z)(b(x) + e(x)) dx.

We see that we can subsume the benefits of making
a correct decision into the expenses of making an
incorrect decision. Defining an overall cost function for
misclassification c(x) = b(x) + e(x) we get that the
condition for classifying as adult becomes

∫ ∞

18
p(x)fk(x, z)c(x) dx >

∫ 18

0
p(x)fk(x, z)c(x) dx.

The cost function may depend on x in any way, but its
most important feature is generally to compare the cost of
classifying a child as adult to the cost of classifying an adult
as a child. Let us write

c(x) =
{

Bc0(x) if x < 18
c0(x) if x ≥ 18

where B is a constant. If c0(x) is symmetric around x = 18
then B represents the quotient of the cost of classifying a
child as an adult divided by the cost of classifying an adult
as a child. We get that we should classify as an adult if and
only if

∫ ∞
18 p(x)fk(x, z)c0(x) dx

∫ 18
0 p(x)fk(x, z)c0(x) dx

> B. (1)

The value of B and the cost function

To use Eq. 1 a value for B must be established. As
mentioned, the value of B should represent the “cost” of
classifying a child as an adult divided by the “cost” of
classifying an adult as a child. Here, “cost” refers to all
kinds of costs, both for the individual and for society, and
including both monetary and ethical “costs.” Of course, the
latter can be very difficult to put a number on.

In several guidelines [2, 4] concerning age assessment it
is explicitly stated that it is more important to avoid errors
where children are assessed as adults than to avoid errors
where adults are assessed as children. This corresponds to
B being above 1. In criminal justice, the principle is often
stated that it is more important to avoid convicting innocents
than to convict those that are guilty. According to the
eighteenth century English jurist William Blackstone, “It is
better that ten guilty persons escape than that one innocent
suffer.” [13]. Transferring this to our context, it would
correspond to a B value of 10 or more. Fundamentally,
choosing a number B is an ethical decision, well beyond the
scope of this paper. We will simply assume that reasonable
values for B lie between 1 and 10, and use this to guide our
illustrations.

In most of what follows, we will assume that c0(x) does
not depend on x. In “Robustness of results,” we look at some
consequences of another choice for this function.
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Models for age assessment report probabilities

We now describe a method for obtaining from data
functions fk(x, z) representing the probability for report
rk for a person of age x and gender z. Our example data
contains measurements of knee and teeth maturity for each
individual. However, the formulas below can fairly easily be
adapted to situations where a different pair of age indicators
is observed, or indeed to situations where any number of age
indicators are used.

To motivate our model, we imagine that, in addition to
chronological age, any person also has a knee age and a
tooth age. Knee age is modelled as chronological age plus a
person-specific random variable with expectation zero, and
should reflect how well developed the knee is for the person
relative to their age. The knee age is not directly observed,
instead, one observes if it has passed certain threshold
values a1, a2, a3, a4. Specifically, if the knee age is below
a1 one observes the knee development stage 2c. If it is
between a1 and a2, one observes stage 3a, etc. Covariation
between the development of knees and teeth is modelled as
a covariance between the random variables used to obtain
the knee and tooth ages from the chronological age.

Let us first consider only the knee age, and let us use
a model where the random variable is normally distributed
with a fixed variance σ 2

k . Mathematically, if the pair (x, y1)

represents the chronological age and the knee age indicator
for a person (coded as an integer 0 ≤ j ≤ 4), we model

y1 = maxj∈{0,...,4}
{
j : aj < x + u1

}

where u1 ∼ Normal(0, σ 2
k ) and we define a0 = −∞. Using

flat priors on a1, . . . , a4 and the standard improper prior for
σ 2

k that is proportional to 1/σ 2
k we can use a sample of data

values (x, y1) and, for example, Gibbs sampling to obtain
posterior values for the model parameters.

To understand results from such a method, one may
consider Figs. 2 and 3, which illustrate results when the
method is applied to the females of our data set and
the observations of their knee maturity. In Fig. 3, each
curve shows the probability at a given chronological age of
observing a specific age indicator (for example, stage 3c)
or something less mature. In Fig. 2 each curve shows the
probability of observing each specific age indicator. Note
how the age at which the curves in Fig. 3 pass the value
0.5 correspond to the cutoff values a1, . . . , a4. The model
is identical to the one used in [14] except that the model
above does not include the possibility of missing data. The
model is also similar to other models used in the literature
where the populations of persons having a maturity stage are
modelled as normally distributed. Note how the formulation
above solves the problem of observations for the initial and
final stages not being normally distributed.

When both a knee indicator y1 and a tooth indicator y2 is
observed for each person (with the tooth maturity levels A
through H represented as integers 0 through 7) we use the
model

y1 = maxj∈{0,...,4}
{
j : aj < x + u1

}
(2)

y2 = maxj∈{0,...,7}
{
j : bj < x + u2

}
(3)

where (u1, u2) ∼ Normal2(0, �) so that the pair has a
bivariate normal distribution, and use a standard improper
prior proportional to |�|−1 on the covariance matrix �.

Individual age priors

The remaining part of Eq. 1 to be discussed is the individual
age prior p(x). The purpose of establishing individual priors
is to be able to mathematically combine the information
from a forensic age assessment with some of the other
individual information regarding age that in practice is
available in every case. Guidelines [2] for forensic age
determination generally stress that all persons have the
right to an individual assessment. If medical age assessment
data always had strong evidential weight, the individual
assessment could be limited to such data. Unfortunately,
the evidential weight from medical age assessment data is
often limited. Indeed, as we will see in “Using priors from
a list of priors,” the optimal decision may often differ when
switching from one reasonable age prior to another. In other
words, in order to make good and fair decisions, we need
to find practical ways to represent the “other information”
mentioned above in terms of age priors.

Below, we discuss two options. First, we discuss how
case workers might use case data to select an age prior from
a menu of priors. We also discuss using prior odds for the
age being above or below the cutoff.

A menu of priors

We propose to divide individuals into groups based on
why a forensic age assessment is performed for them,
and circumstances in their background. For example, for
refugees, the groups may be based on the country of origin.
Differences in priors chosen for different groups may then
be motivated by previous experience with age assessment of
persons in this group. In “Using priors from a list of priors,”
we exemplify how one might use 12 different priors for 12
different groups.

The prior may if necessary be adjusted based on
individual circumstances. For example, there may be
documented observations of medical, psycho-social, or
other types of maturity not conforming to the standards used
in the age assessment reports. Although challenging to do in
a fair and structured manner, such information could result
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in specific changes to the individual prior. There might also
be case circumstances leading to well documented upper or
lower bounds on the age, which could then be included in
the prior.

Using experience to improve decisions

Assigning different priors to persons in different groups
must somehow be done based on differences in experiences
with these groups. Indeed, as more persons are assessed,
accumulated information may be used to improve the priors
in a precise manner, as explained below.

Assume N individuals in a group with fixed covariate
z have been assessed, resulting in reports R1, . . . , RN ,
respectively. Let q1, . . . , qQ be a set of reasonable possible
priors for the group. We would like to estimate from the
reports positive weights γ1, . . . , γQ, summing to 1, so that
∑Q

j=1 γjqj (x) is a good prior for the group. In fact, if such
a weighted sum was the true age distribution, the data would
be multinomially distributed with probability

pk =
∫ ∞

0
fk(x, z)

Q∑

j=1

γjqj (x) dx

=
Q∑

j=1

γj

∫ ∞

0
fk(x, z)qj (x) dx (4)

for each of the K possible reports. Thus, the observed
data yields a likelihood on the set of possible γ vectors.
Using a flat prior, we may compute, for example, the
expected posterior value for γ , using, for example, MCMC
simulation.

In “Using prior odds instead of prior densities,” we
explore the practicality of this approach in a simulation
study: For a hypothetical group of persons with true age
distribution π(x), we simulate the ages of N persons. Using
the functions fk(x, z) for males from “The probability of
obtaining a report as a function of chronological age” to
simulate observations for each individual, we get a set of N

simulated reports. We then use the procedure above, letting
q1, . . . , qQ be the priors of Table 3. This leads to a specific
mixture, which we can then compare with the original true
age distribution π(x).

Using prior odds

Above, we have discussed how to obtain individual prior
distributions p(x). Some disadvantages of the approach of
“A menu of priors” are that a rather ad-hoc list of priors
has to be assembled by somebody, and that the connection
between case information and these probability densities
may not be transparent for case workers.

A slightly easier concept than prior probability densities
for ages is the concept of prior odds. One then considers
the prior probability that the person is above 18 divided by
the prior probability that the person is below 18. As this
is a single number, it may be easier for case workers to
understand and develop experience with. We discuss below
how to make optimal decisions if prior odds are selected for
each individual, while other features of the prior distribution
p(x) are standardized to be equal for all individuals.

For any prior p(x) we can write

p(x)=Pr(x <18)p(x | x <18) + Pr(x ≥18)p(x | x ≥18)

where, for example, Pr(x < 18) is the probability that the
age is less than 18 and p(x | x < 18) is the conditional
probability density of ages given that the age is less than 18.
Replacing p(x) with this expression in Eq. 1 we get that we
should classify as adult if and only if

Pr(x ≥ 18)

Pr(x < 18)
·
∫ ∞

18 fk(x, z)p(x | x ≥ 18)c0(x) dx
∫ 18

0 fk(x, z)p(x | x < 18)c0(x) dx
> B. (5)

Equation 5 can be interpreted as follows: The left-
hand side represents the strength of the total evidence
for adulthood. To make the decision for adulthood, this
value needs to exceed B, which represents how serious we
look at misclassifications of children as adults compared
to misclassifications of adults as children. The strength of
the total evidence for adulthood is separated into the prior
odds of adulthood, represented by the first factor, and a
factor that is connected to the evidence from the forensic
assessment. If the prior odds for adulthood is high, less
strong evidence from the forensic assessment is needed to
reach the threshold B in order to make the decision for
adulthood, and vice versa.

The second term of Eq. 5 also depends on p(x), in the
form of the conditional densities p(x | x ≥ 18) and
p(x | x < 18). Is this dependency in practice small or large?
In other words, if we make the approximation that we use
the same standard conditional densities p(x | x ≥ 18) and
p(x | x < 18) for all persons, while using individual prior
odds, will this approximation influence optimal decisions to
an acceptably small extent? This is the question we explore
in “Using prior odds instead of prior densities.”

Results

Results are divided into five sections. In “The probability of
obtaining a report as a function of chronological age,” we
present the results when applying the methods of “Models
for age assessment report probabilities” to our dataset,
including the estimation of the functions fk(x, z) relating
chronological age x and gender z to the probability of
obtaining a report type rk . Some interesting features of
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these results are that they contain information about the
correlation between tooth and knee development, and about
consequences of using MRI for tooth maturity assessment.

In “Using priors from a list of priors,” we exemplify
results when using a menu of age priors as suggested in “A
menu of priors,” and indicate how such a menu can be used
in practical decision making. In “Using a menu of priors
together with previous results,” we use the ideas of “Using
experience to improve decisions” to exemplify how a system
using a menu of age priors can be robustified with use.

“Using prior odds instead of prior densities” presents
results when using the idea from “Using prior odds” with
individual prior odds instead of individual priors. The final
“Robustness of results” looks at the robustness of our con-
clusions relative to some of the assumptions we have used.

The probability of obtaining a report as a function
of chronological age

The model of “Models for age assessment report probabi-
lities” was applied separately to the male and female data
presented in “Data.” The first two tables in Table 2 list the
expected values for a1, . . . , a4 and b1, . . . , b7 in our model,
corresponding to the ages at which 50% of persons reach a
given maturity level. We also list 95% credibility intervals.
Note that these are the uncertainty intervals for the threshold
values due to limited amounts of data.

Regarding the final stages, i.e., knee stage 4 and tooth
stage H, the median ages of attainment have previously been
estimated in other studies, see, e.g., [14]. For the knee, an
age of 18.5 years was estimated from a study conducted
by the Swedish National Board of Health and Welfare [15].
This is similar to the age found in the present data set.
The tooth stage of H, however, is attained at a significantly
higher age in the present study compared to previous ones
[16–18]. An important difference between these studies and
the present one is that they used conventional x-ray while
our data comes from MRI examinations. A previous study
comparing dental staging with x-ray and MRI, respectively,
did not find any statistically significant difference between
the methods [19]. Therefore, the results found in our data
are somewhat surprising.

The observed discrepancy between the results in Table 2
and the results in other studies is not in itself a problem
for age assessment, as long as one follows the procedure
recommended in this paper, where assessment decisions are
based on data obtained with exactly the same measurement
procedure as the one used on those for which decisions shall
be made. But it underscores the danger of using decision
procedures based on results from studies that use different
observational procedures of the same age indicator.

Our model also gives us posterior information about
the variation of “tooth age” and “knee age” relative to
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chronological age, using the concepts from “Models for age
assessment report probabilities.” For example, considering
knees of males, there is for each male a time point when
the knee development goes from one stage to the next. Of
course this time point varies between males, and our model
indicates that a time interval of length 1.5 years covers 95%
of all such transition time points. The last part of Table 2
lists the results for both genders and both indicator types,
together with the uncertainty in the results due to limited
data. Note that it is an assumption of our model that the
lengths of these intervals are the same for all transitions for
a given gender and body part.

Finally, our model gives an indication of the correlation
between the difference between “tooth age” and chrono-
logical age, and the difference between “knee age” and the
chronological age. This can be interpreted as the correlation
between tooth and knee development. Note that we are here
talking about the correlation conditional on age: Obviously,
observing a later knee stage for a person increases the prob-
ability of observing a later tooth stage for that person, and
vice versa. In contrast, conditional correlation addresses the
following question: For persons at a specific chronological
age, will those who have a late knee stage for their age also
tend to have a late tooth stage for their age?

The expected posterior conditional correlation between
tooth age and knee age for males is 0.1, with a 95%
credibility interval (−0.06, 0.25), so that there is an 88%
posterior probability that the correlation is positive. Figure 1
shows the posterior distribution of the correlation. This
result is not strong enough to prove that there is a positive
conditional correlation, but it points in that direction.
However, the correlation seems to be weak, so using models
without conditional correlation may be acceptable as an
approximation.

In this paper, the main purpose of the data analysis is
to derive functions fk(x, z) which can be part of an age
assessment procedure. As we use 5 possible knee stages
and 8 possible tooth stages, we have a set of 40 possible
reports. For each such report, and for each gender, our
model produces a function of x which for each age x

gives the probability that a person of the given gender
has the corresponding combination of maturity stages.
Figure 2 illustrates what such curves look like. Here, we
have summed over the probabilities for the tooth stages and
only focus on the knee stages. The results may also be
illustrated with curves indicating cumulative probabilities,
so in this case, the probability for females to have specific
knee maturity stages or something less. Figure 3 shows such
results corresponding to those of Fig. 2.

Using priors from a list of priors

Choosing specific priors that correspond to specified groups
of persons to be age assessed is a project beyond the scope
of this paper. Instead, we will simply use a rather ad-hoc
list of priors to illustrate the computational consequences of
using such a menu of priors. Specifically, the priors listed
in Table 3 are used. For each of these priors and for each of
a selection of 9 likely reports, the value of the left side of
Eq. 1 has been computed for males and listed in Table 4.

To use Table 4 in practical work, the person to be assessed
needs to be put in one of the groups corresponding to one
of the priors. A number can then be read from the table
based on the result of the forensic report for the person. If
this number is above the chosen value for B, the optimal
decision is to classify as an adult; otherwise, one should
classify as a child.

The first thing to notice from the table is that most values
are fairly low, and none are above 10. This shows that a
careful ethical consideration of the proper value of B is
unavoidable, when the forensic data is of this type. For
example, if one sets B = 10, to be “on the safe side” and
to avoid children being classified as adults, the conclusion
would be that all assessed persons should be classified as
children.

Secondly, we notice that the choice of prior generally
matters when deciding what the optimal conclusion is.
The values in each column generally vary by an order
of magnitude. For many report results the corresponding
column contains values both below and above reasonable

Fig. 1 The inferred conditional
correlation between knee and
tooth values for males
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Fig. 2 Female probabilities for
being in knee stage 2c, 3a, 3b,
3c, 4 as a function of
chronological age
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B values. Thus, the process of selecting a prior for each
individual seems unavoidable. As mentioned, the process
may be facilitated by specifying groups of persons and
connecting a prior to each group. A person to be assessed
then needs to be placed in one such group.

We may also notice that numbers generally increase from
left to right in the table. Looking at the table heading, we

see that reports indicating more mature body parts generally
give higher numbers, as expected. However, the ordering
of the reports is not perfect, and may be influenced by
the choice of prior. For example, using most priors, the
combination (4, G) can be considered more mature than the
combination (3b, H). However, for the priors p10, p11, and
p12, this ordering is reversed.

Fig. 3 Female probabilities for
reaching knee stage 3a, 3b, 3c, 4
as a function of chronological
age
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Table 3 The example priors
used Function Distribution Prior prob. for adult Mean Standard deviation

p1(x) Triangle(15, 18, 25) 0.7 19.33 2.09

p2(x) Normal(19.05, 2) 0.7 19.05 2

p3(x) Normal(18.52, 1) 0.7 18.52 1

p4(x) Triangle(13.92, 16.92, 23.92) 0.5 18.25 2.09

p5(x) Normal(18, 2) 0.5 18 2

p6(x) Normal(18, 1) 0.5 18 1

p7(x) Triangle(12.58, 15.58, 22.58) 0.3 16.91 2.09

p8(x) Normal(16.95, 2) 0.3 16.95 2

p9(x) Normal(17.48, 1) 0.3 17.48 1

p10(x) Triangle(16.27, 19.27, 26.27) 0.9 20.60 2.09

p11(x) Normal(20.56, 2) 0.9 20.56 2

p12(x) Normal(19.28, 1) 0.9 19.28 1

The three first have been chosen to have variable form and variance, while still having a 0.7 prior probability
for adulthood. All the remaining priors are translations of the first three, where the translations have been
chosen so that the prior probability for adulthood is 0.5, 0.3, and 0.9, respectively. The density p10(x)

illustrated in Fig. 4

Using a menu of priors together with previous
results

We saw in the previous section that the choice of age prior
for a person is of profound importance for the result. Thus,
it is of high importance to create a practical and fair way to
assign individual priors. We have proposed to create groups
of persons and to assign a prior to each such group. We
now show in a simulation experiment that even if the initial
assignment of a prior is imperfect, one can use assessment
results from the group to improve decisions over time.

Assume a specific group of males have a true age
density that is normally distributed with expectation 17.5

and standard deviation 1.5. This distribution is illustrated
with the full line in Fig. 4. Initially, the prior p10 from
Table 3 is used for the group. We see in Fig. 4 that the choice
of this prior is not a good one. Indeed, in Table 5 you can
compare the values for the left-hand side of Eq. 1 computed
with the true prior and the p10 prior; they may very well
result in different decisions in some cases.

The ages of 1000 persons are then simulated, using the
true age distribution, and forensic results are simulated for
each based on their ages. Using this data and the methods
of “Using experience to improve decisions,” we obtained
the weighted prior illustrated with the red dotted line in
Fig. 4. We see it follows the true prior much more closely.

Table 4 The table shows the left-hand side of Eq. 1 using the listed priors (see Table 3) and the listed forensic report results for a male

(3c, E) (3c, F) (4, E) (3c, G) (4, F) (3b, H) (4, G) (3c, H) (4, H)

p1(x) 0.09 0.15 0.17 0.25 0.27 0.45 0.47 0.87 1.74

p2(x) 0.08 0.15 0.17 0.27 0.30 0.51 0.53 1.03 2.13

p3(x) 0.26 0.37 0.41 0.56 0.59 0.88 0.90 1.44 2.41

p4(x) 0.03 0.06 0.08 0.12 0.14 0.24 0.26 0.50 1.08

p5(x) 0.04 0.08 0.10 0.16 0.18 0.30 0.33 0.63 1.28

p6(x) 0.12 0.18 0.20 0.28 0.30 0.44 0.46 0.73 1.20

p7(x) 0.02 0.04 0.04 0.07 0.09 0.15 0.18 0.36 0.82

p8(x) 0.02 0.05 0.05 0.09 0.10 0.18 0.20 0.38 0.78

p9(x) 0.05 0.08 0.09 0.13 0.14 0.21 0.23 0.36 0.60

p10(x) 0.33 0.47 0.54 0.73 0.76 1.25 1.21 2.23 4.31

p11(x) 0.18 0.31 0.36 0.55 0.59 1.05 1.04 2.13 4.62

p12(x) 0.71 0.99 1.11 1.50 1.55 2.45 2.39 4.13 7.32

The optimal classification is “adult” whenever the number is above the chosen value for B
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Fig. 4 Various prior age
distributions. The full line
indicates the true age
distribution used in the
simulation experiment. Initially,
the dotted green triangular line is
used as a prior; it is the prior p10
from the list of Table 3. Based
on the information of 1000
simulated cases in this group,
the red dotted prior is obtained,
following closely the true prior
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Indeed, the values computed with this prior in Table 5 are
much closer to the correct values obtained with the true age
distribution.

Using prior odds instead of prior densities

In “Using prior odds,” we discussed the idea of using
individual prior odds instead of using individual prior
distributions. Such a simplification has several practical
advantages. Computations for each person becomes simpler,
and it should be easier for case workers to understand and
use the concept of a prior probability for adulthood rather
than using a menu of prior densities.

However, it is clear from Table 4 that the simplification
cannot be recommended. As we can see from Table 3,
the 12 priors are organized into 4 groups of three, with
the priors in each group having the same prior odds (i.e.,
the same prior probability for adulthood). The suggested
simplification would imply that the conclusions for the three
priors and for a given report would be the same. However,
in Table 4, we see that these three numbers in many cases
are quite different, and may be on either side of a reasonable
threshold for B. So a simplification using a method based
on prior odds instead of prior densities would necessarily be
suboptimal in a considerable number of cases.

Robustness of results

So far, we have assumed that the cost function c0(x) is
constant. However, the “cost” of mis-classifying somebody
who is 17.9 years may be perceived as smaller than the
“cost” of mis-classifying somebody who is 16. This may be
represented by a varying cost function c0(x): If the cost is
only 10% then one should have c0(17.9) = 0.1 · c0(16).
Various models may be considered for c0(x). Table 6 shows
the version of Table 4 where we have used the cost function

c0(x) = |18 − x| (6)

Generally, the numbers seem to get more extreme, i.e., small
numbers get smaller and large numbers get larger. However,
the main features of the two tables are very similar.

Practical application and discussion

A medical age assessment can be reported in different ways,
for example, as the minimum age, the most probable age, or
as the probability of the person being below or above some
age limit. The last alternative may seem attractive when the
question is whether a person is a child or an adult. This
approach does however require that an assumption is made

Table 5 The table shows the left-hand side of Eq. 1 using the true age distribution in the simulation experiment, the prior p10 used for initial
computations, and the prior learned from 1000 simulated cases in the group

(3c, E) (3c, F) (4, E) (3c, G) (4, F) (3b, H) (4, G) (3c, H) (4, H)

True 0.04 0.07 0.08 0.13 0.14 0.23 0.26 0.45 0.86

Initial 0.33 0.47 0.54 0.73 0.76 1.25 1.21 2.23 4.31

Learned 0.03 0.06 0.07 0.11 0.12 0.20 0.22 0.39 0.73
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Table 6 The table is similar to Table 4, but now the cost function of Eq. 6 is used

(3c, E) (3c, F) (4, E) (3c, G) (4, F) (3b, H) (4, G) (3c, H) (4, H)

p1(x) 0.03 0.06 0.07 0.12 0.14 0.31 0.32 0.88 2.64

p2(x) 0.02 0.05 0.07 0.13 0.15 0.34 0.36 1.04 3.23

p3(x) 0.12 0.20 0.24 0.38 0.41 0.78 0.79 1.69 3.72

p4(x) 0.01 0.02 0.02 0.05 0.05 0.12 0.13 0.38 1.25

p5(x) 0.01 0.02 0.03 0.06 0.07 0.16 0.17 0.48 1.46

p6(x) 0.04 0.07 0.08 0.13 0.14 0.27 0.28 0.58 1.26

p7(x) 0.00 0.01 0.01 0.02 0.03 0.06 0.07 0.21 0.73

p8(x) 0.00 0.01 0.01 0.03 0.03 0.07 0.08 0.22 0.67

p9(x) 0.01 0.02 0.03 0.04 0.05 0.09 0.10 0.20 0.43

p10(x) 0.23 0.38 0.46 0.74 0.78 1.71 1.57 4.11 11.01

p11(x) 0.07 0.16 0.20 0.38 0.42 1.07 1.02 3.24 10.53

p12(x) 0.55 0.93 1.11 1.77 1.87 3.83 3.65 8.44 19.52

about the age distribution of the population from which the
person comes, e.g., a population of asylum seekers. The
requirement may seem counter-intuitive, since the reason
why an age assessment is performed on a population is that
their ages are unknown. Nevertheless, it is not meaningful
to speak about probabilities of being below or above an age
limit without such an assumption.

A previous study has shown that it is possible to draw
conclusions about the age distribution in a population
with unknown chronological ages, given the distribution of
their age indicators in previously performed medical age
assessments [14]. In the present study, it is shown that given
a set of age indicators, the choice of prior age distribution
may significantly influence the probability that the person
is below or above the age of 18 years. Thus, the prior
distribution must be chosen with care.

In this context, it is important to remember that an
age assessment should include all available information,
not only the medical part. One way to take non-medical
information into account could be to let it influence the
choice of the prior age distribution. Ideally, an individual
prior should be chosen based on the known information
about a specific individual. However, such a solution may
not be practically feasible due to the difficulty of the task
and the time it would take.

Another possibility would be to have a set of priors
from which one is chosen, depending on the non-medical
information in the specific case. If there, for example, is
relatively strong documentation supporting a minor age
together with supporting testimonial from teachers, a prior
in which the majority of individuals are under 18 years
could be chosen. Conversely, if there is no documentation
supporting an age below 18 together with testimonials
indicating an age above 18, a prior in which a majority are
adults could be chosen. If the non-medical information does

not point in any direction, a population with half children,
half adults might be the best choice.

The concept of prior distributions and their effect on
the probability assessment may be hard for people to
understand. Nevertheless, if such probabilities are used, this
concept is unavoidable. If there are indications that the
recipients of the medical age assessments, for example, the
migration agency or the courts, cannot evaluate them in
a correct way, it is perhaps better to use other ways of
communicating the assessments. The minimum age concept
is, for example, easier to understand, but conservative.

Decision makers may benefit from considering results
that start from chronological age and look at the probability
of having different age marker stages at that age. If a
combination of age markers is used, this can be presented
as the proportion of individuals in each age group (e.g., 17-
year-olds) that have each combination of age markers (for
example, knee stage 4 and third molar stage H). This way of
presenting the results may give recipients that are not well-
versed in statistics a better understanding of the precision of
the methods.

Conclusions

Given a set of age indicator and an assumption of prior
age distribution, we have created a theoretical framework
to make statistically optimal decisions in medical age
assessment. A prior distribution is inherently difficult to
assume since the people being assessed have unknown ages.
However, speaking about probabilities of a person being
below or above an age limit without such an assumption
is meaningless. We have shown that the choice of the
prior age distribution may significantly affect the medical
age assessment. Making sound and transparent assumptions
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about priors is therefore of great importance to the rule of
law, if such probabilities are to be used.

Regarding the data set we use, our results are consistent
with some small positive conditional correlation between
knee maturity and tooth maturity, but no firm conclusions
regarding this can be drawn from our analysis. We see that
using the present MRI technique for observation of tooth
maturity tends to result in classifications where maturity
occurs at a later age, compared to some previous studies
using x-ray observations.
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