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Cancer is considered one of the most predominant diseases in the world and one of the
principal causes of mortality per year. The cellular and molecular mechanisms involved
in the development and establishment of solid tumors can be defined as tumorigenesis.
Recent technological advances in the 3D cell culture field have enabled the recapitulation
of tumorigenesis in vitro, including the complexity of stromal microenvironment. The
establishment of these 3D solid tumor models has a crucial role in personalized medicine
and drug discovery. Recently, spheroids and organoids are being largely explored as
3D solid tumor models for recreating tumorigenesis in vitro. In spheroids, the solid
tumor can be recreated from cancer cells, cancer stem cells, stromal and immune
cell lineages. Organoids must be derived from tumor biopsies, including cancer and
cancer stem cells. Both models are considered as a suitable model for drug assessment
and high-throughput screening. The main advantages of 3D bioprinting are its ability to
engineer complex and controllable 3D tissue models in a higher resolution. Although 3D
bioprinting represents a promising technology, main challenges need to be addressed
to improve the results in cancer research. The aim of this review is to explore (1)
the principal cell components and extracellular matrix composition of solid tumor
microenvironment; (2) the recapitulation of tumorigenesis in vitro using spheroids and
organoids as 3D culture models; and (3) the opportunities, challenges, and applications
of 3D bioprinting in this area.

Keywords: tumor microenvironment, tumorigenesis, 3D cell culture, spheroids, organoids, drug assessment,
high-throughput screening, 3D bioprinting

INTRODUCTION

Cancer remains one of the most predominant diseases in the world in the 21st century, affecting
millions of patients per year (Roy and Saikia, 2016). Rather than responding appropriately to signals
that maintain cell behavior, cancer cells grow and proliferate without control, invading normal
tissues and organs, and eventually spreading throughout the organism (Chambers et al., 2002).
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The cellular and molecular mechanisms involved in the
development and establishment of solid tumors is known as
tumorigenesis. It is widely accepted that tumorigenesis is a
multistep process, depending on a sequential accumulation of
mutations of tissue cells (Ashkenazi et al., 2008). The tumor
microenvironment is composed of non-cancerous cells with
functions in all stages of tumorigenesis by both stimulating
and/or facilitating abnormal cell proliferation (Arneth, 2019).

In recent years, literature has advanced in the better
understanding of tumor microenvironment (DeBerardinis,
2020). The non-cancerous cell types include fibroblasts,
endothelial cells, and immune cells (Casey et al., 2015; Jarosz-Biej
et al., 2019). In addition, depending on the type of tumor, organ-
specific interstitial cells are also present. According to previous
descriptions, these cells are denominated as “tumor stroma”
and, together with the extracellular matrix (ECM), oxygen
levels and pH, constitute the tumor microenvironment (Briest
et al., 2012; Hirata and Sahai, 2017). This complex interaction
between tumor and non-tumor cells leads to an altered
metabolism and ECM production. The better understanding
of tumor microenvironment is a key challenge to address,
contributing to the development of new drugs and treatments
(Valkenburg et al., 2018).

In this context, 3D cell culture has gained space in
literature due to its advantages compared with “classical”
2D cell culture. 3D cell culture can recreate a sort of tissue
microenvironment, providing more accurate data about cell-
to-cell interactions, cell-to-extracellular matrix interactions,
tumorigenesis, drug discovery, gene expression, metabolic
profiling, and protein profiling of the cells. 3D cell culture, such
as spheroids and organoids, has the potential to provide
alternative models to study tumor microenvironments
(Nath and Devi, 2016; Jensen and Teng, 2020). In tumor
biology, spheroids are represented by cancer cell lineages
self-assembled in rounded shape and organoids by cells
derived from tumor biopsies, including cancer stem cells,
self-assembled in amorphous shape. Furthermore, cell culture
platforms of tumor spheroids and organoids start to be
adapted as a model for drug assessment and high-throughput
screening (HTS) (Kondo et al., 2019; Heredia-Soto et al., 2020;
Renner et al., 2020).

3D bioprinting is a promising emergent bottom–up
technology to develop complex tissue models in vitro. 3D
bioprinting is a form of additive manufacturing, where cells,
biomaterials, and soluble factors can be assembled layer by
layer (Mandrycky et al., 2016). From 3D bioprinting, it is
possible to hierarchically organize tissues, as they are found
in vivo, and faithfully recapitulate their morphology as well as
functional aspects (Datta et al., 2018). Although 3D bioprinting
represents a promising technology, main challenges still
remain such as the speed of bioprinters and better bioinks for
improving cell survival and function in cancer research. The
main objective of this review is to explore the cellular and
molecular composition of solid tumor microenvironment, the
recapitulation of tumorigenesis and drug assessment using
spheroids and organoids, and the opportunities and challenges
of 3D bioprinting in this field.

THE TUMOR MICROENVIRONMENT

Background
The tumor microenvironment is heterogeneous, composed
mainly of tumor cells and endogenous stromal cells (non-
cancerous) that are later recruited by the tumor itself. This
microenvironment also contains extracellular components: ECM
proteins, extracellular vesicles, cytokines, growth factors, and
hormones nourished by a vascular network. The stromal
cells are represented by endothelial cells, mesenchymal
stem/stromal cells (MSCs), fibroblasts, and macrophages
(Wu and Dai, 2017; O’Loghlen, 2018). During tumorigenesis,
tumor cells interact greatly and evolve with this surrounding
microenvironment, having profound effects on therapeutic
efficacy (Bussard et al., 2016).

All tumor microenvironment components communicate
continuously with each other mainly by (1) cell-to-cell
interactions, (2) cell-to-extracellular matrix interactions,
and (3) the network of cytokines, proteins, and chemokines that
can favor the immune system or the tumor growth. Thus, any
disruption in tumor microenvironment signaling will reflect
changes of the balance between immune system and tumor (Hui
and Chen, 2015; Merlano et al., 2019).

One of the most crucial factors for tumor microenvironment
maintenance and progression to metastasis is the vascular
network (Naumov et al., 2008; Quail and Joyce, 2013). Tumor
vasculature is characterized as being disorganized and leaky,
which is associated with altered endothelial cell adherents
junction and tight junction formations, both critical to maintain
vascular barrier functions. In addition, tumor cells induce
programmed necrosis of endothelial cells, thus, increasing
vascular leakiness and tumor cell extravasation and metastasis
(Yang and Lin, 2017).

Cell Components of Tumor
Microenvironment
In solid tumors, mesenchymal stem cells and fibroblasts, also
named as cancer-associated fibroblasts (CAFs), are the main
cellular components of the microenvironment. It is well known
that in healthy tissues, fibroblasts support tissue repair and
homeostasis; however, CAFs is a heterogeneous population that
serves a different function compared with resident fibroblasts
(Petrova et al., 2018; Ayan et al., 2020), as suggested by Sugimoto
et al. (2006) and Kobayashi et al. (2019). The principal functions
of CAFs in the tumor microenvironment are: (1) stimulate tumor
cell proliferation by growth factor secretion, (2) modify cancer
ECM, which will induce tumor progression and metastasis,
and (3) modulate the inflammatory components that facilitate
tumor initiation, progression, and metastasis (Servais and Erez,
2013; Raffaghello and Dazzi, 2015). Furthermore, CAFs support
endothelial cells to start tumor angiogenesis. Endothelial cells
offer nutritional support for tumor growth and development,
showing a key role in tumor cell protection from the immune
system (Arneth, 2019). Tumor endothelial cells are considered
one of the main targets of anti-angiogenic therapy (Hida et al.,
2013). A study published by Maishi et al. (2016) showed with
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two different tumor models that endothelial cells in the tumor
microenvironment are able to promote tumor metastasis by
direct interaction with tumor cells.

Myo-fibroblasts are specialized fibroblasts, a subpopulation
of CAFs, which express the alpha-smooth muscle actin protein
and are considered major players in the development of different
fibrotic diseases, mainly due to their capacity to remodel the
ECM (Yazdani et al., 2017; Ribatti and Tamma, 2019). In
tumors, these activated fibroblasts can enhance tumorigenesis,
angiogenesis, and metastasis by secreting growth factors and
cytokines. Besides fibroblasts and endothelial cells, MSCs are
present in the tumor microenvironment as well, interacting with
tumor cells via the secretion of growth factors or cytokines,
and by transferring mitochondria or microRNAs. Residing in
tumors, MSCs form a fibrovascular network by differentiating
into smooth muscle cells and vascular pericytes, contributing
to vascular network extension (Guo and Deng, 2018). At the
beginning of tumorigenesis, MSCs have been shown to drive
tumor cells toward an invasive, premetastatic state. However,
some studies showed that MSCs can also have an inhibitory
effect on tumor growth by reducing cytotoxicity effects,
pluripotency, and even by influencing macrophage polarization
(Ridge et al., 2017).

Pericytes are multipotent perivascular cells with an established
role in vasculature development. Studies have already shown
that these cells present immune properties and might serve as
a reservoir of MSCs to influence in the in vivo regeneration
of diverse tissues. Pericytes located in the vessels play a
significant role in the homeostasis of these vessels, and when
recruited, they change their activation stage to MSCs in order to
participate in injury events of the tissue (Meirelles et al., 2013).
In addition, pericytes are capable of realizing tumor homing
and are considered an important cell component of the tumor
microenvironment (Ribeiro and Okamoto, 2015). In cancer,
pericytes have been explored because of their capacity to stabilize
blood vessel structure and permeability. Due to this, it was
discovered that pericytes can affect tumor growth and metastasis
positively or negatively. The effects of tumor growth are related
to establishing a stable vascular network, which will ensure a
proper delivery of nutrients to allow tumor cells maintenance
and proliferation. However, these cells can prevent tumor
cell dissemination by maintaining the permeability of blood
vessels (Barrow and Colonna, 2019). Furthermore, many studies
have shown that cancer vessels are characterized by abnormal
pericyte population of cells and altered pericytes/endothelial
cell interactions, which can effectively contribute to metastasis
process and progression of cancers, especially perivascular
ones such as glomus tumor, myopericytoma, and solitary
fibrous tumor/hemangiopericytoma (Mravic et al., 2014;
Chen et al., 2016).

Another cell type whose role is largely explored in tumor
microenvironment is the adipocyte. Adipose tissue is composed
of adipocytes and non-adipocyte cells, including MSCs from
adipose tissue and macrophages. These cells release a variety
of molecules that enable them to play a paracrine effect
in pathological processes such as breast and ovarian cancer
(Robado de Lope et al., 2018).

The macrophage is the most prominent immune cell type in
the tumor microenvironment (Arneth, 2019). Macrophages have
an active role from early carcinogenesis to tumor progression and
metastasis, constituting up to 50% of a tumor mass depending
on the type of tumor. Previous studies suggest that after
infiltrating tumors, macrophages polarize to a M2 phenotype,
take on the functions of tumor growth and angiogenesis,
tissue remodeling, and suppression of antitumor immunity
(Kim and Bae, 2016). Zhang A. et al. (2017) reported that
CAFs promoted M2 polarization of macrophages in pancreatic
ductal adenocarcinoma, which enhanced tumor cell growth,
migration, and invasion.

Another immune population of cells present in the tumor
microenvironment is the natural killer cells (NK). NK cells
are large granular lymphocytes that control tumor growth
by interaction with tumor cells or because they can affect
the function of other innate and adaptative cell populations
(Melaiu et al., 2020). Interestingly, NK cells show antitumor
activity as they have the efficient and fast capacity to recognize
and kill tumor cells. This function is mediated through cell-
surface receptors, which examine tissue microenvironments for
changes in surface and secretory phenotypes, and then alerts the
immune system for the presence of infection or of a malignancy
agent. Therefore, this function is largely explored for cancer
immunotherapy treatments (Bi and Tian, 2017; Barrow and
Colonna, 2019; Zhang et al., 2020). According to Fang et al.
(2017), the main approaches used for cancer immunotherapy
with NK cells are based on the use of cytokines, as IL-2 and
isoforms, antibodies, and the adoptive transfer of ex vivo NK cells.

T cells also play important functions in the tumor
microenvironment, where it is common to find inhibitory
receptors. These can inhibit T cell metabolism and influence T
cell signaling, both directly and through release of extracellular
vesicles. When isolated from tumors, T cells generally show
signs of exhaustion and present distinct metabolic features
(Lim et al., 2020). Other immune cells that are present and
modulate the tumor microenvironment are granulocytes, such
as the mastocytes. Early mastocyte cell infiltration has been
reported in human and animal tumors, especially in malignant
melanoma, breast, and colorectal cancer (Liu et al., 2011;
Komi and Redegeld, 2020). Mastocytes have different functions
in the tumor microenvironment such as: (1) modulating
tumor biology, by influencing in cell proliferation, survival,
angiogenesis, and metastasis; and (2) establishing crosstalk
with other tumor-infiltrating cells in the microenvironment
(Aponte-López and Muñoz-Cruz, 2020).

Currently, different studies discuss the concept and functions
of cancer stem cells (CSC) in tumor microenvironments. These
cells, also called stem-like cells or tumor-initiating cells (TICs),
were first described in 1994 and are a distinct subpopulation
of tumor cells. Recently, this subpopulation of cells has been
described as having a unique ability to initiate tumor growth and
maintenance. In this context, CSC is considered an important
target for cancer immunotherapies (Nassar and Blanpain,
2016; Codd et al., 2018). The quantity of CSC in the tumor
microenvironment varies according to the tumor type. These
cells can be responsible for preserving tumor heterogeneity by

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 June 2021 | Volume 9 | Article 682498

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-682498 June 16, 2021 Time: 15:56 # 4

Kronemberger et al. Recapitulating Tumorigenesis: Opportunities and Challenges of Bioprinting

retaining self-renewal and differentiation properties. In addition,
CSC also plays a role in innate resistance to cancer therapies,
which in turn links to their persistence of the tumor in a specific
tissue, which can lead to disease recurrence and metastatic spread
(Albini et al., 2015). A study performed by Chen et al. (2014)
demonstrated that CAFs enrich CSCs through de-differentiation
process and reacquisition of stem cell-like properties in lung
cancer. Briefly, the main results showed that CAFs develop a
paracrine signaling that induce Nanog expression and promote
stemness in cancer niche. What is interesting is that it is possible
to discover new therapeutic targets to act in this paracrine
signaling of CAFs to CSCs.

The Extracellular Matrix in Tumor
Microenvironment
The ECM contains a diversity of proteins, which influence the
cell phenotype of specific tissues due to their biochemical and
biophysical properties. The principal ECM proteins secreted by
cells in the tumor microenvironment are collagen, fibronectin,
laminin, vitronectin, and tenascin (Cheng et al., 2020). It is
well known that the ECM is highly dynamic because it is
constantly being remodeled and degraded from embryogenesis
until maturity. This remodeling is crucial for tissues homeostasis;
however, dysregulation of ECM dynamics is common in the
development of diseases as cancer (Bonnans et al., 2014;
Walker et al., 2018).

In the tumor microenvironment, two main modifications
are commonly observed in the ECM: stiffness (rigidity) and
degradation. The increase in cross-linking between ECM proteins
can cause stiffness (Najafi et al., 2019). The enhancement of tumor
ECM stiffness is mainly induced by ECM deposition, remodeling
by resident fibroblasts and by the transformed epithelium. In
addition, the presence of chemokines and growth factors lead
to an inflammation state. The inflammation state induces CAFs
activation and their transdifferentiation into myofibroblasts,
causing tissue desmoplasia. Then, myofibroblasts deposit ECM
proteins, secrete growth factors, and apply contraction forces on
the tumor ECM. In the end, newly deposited ECM proteins will
generate larger and rigid fibers that turn the ECM rigid (Frantz
et al., 2010). However, the disruption in the signaling between
these ECM proteins will result in degradation, mainly caused by
the activation of metalloproteinases (MMPs) (Najafi et al., 2019).
The MMPs cleave collagen fibers of tumor ECM and reorganize
them into tube-like structures to facilitate cell migration in the
microenvironment (Malik et al., 2015).

The MMP genes were previously associated with increased
risk and evolution of breast cancer. In the study developed
by Slattery et al. (2013), the genetic variation of MMP1 (nine
SNPs), MMP2 (eight SNPs), MMP3 (four SNPs), and MMP9
(three SNPs) together with breast cancer risk was evaluated in
Hispanic and Non-Hispanic women. The results showed that
MMPs have associations with breast cancer progression and
prognosis. Overall, MMP-2 showed the strongest gene association
with breast cancer development.

Regarding ECM modifications in breast cancer, another study,
published by Boghaert et al. (2012) showed, with a 3D cell culture

model, that the regions where the tumor cells invaded the breast
tissue more was directly correlated with a higher mechanical
stress of the host epithelial tissue. The use of a 3D cell culture
model to recapitulate the breast tumor microenvironment can
then aid in the better understanding of in vivo mechanisms.

One of the first studies published correlating abnormal ECM
and the progression of cancer was performed by Neglia et al.
(1991), which investigated the risk of cancer in patients with
cystic fibrosis. The study was developed with North American
and European patients with cystic fibrosis, and the results
showed that, in fact, these patients had an increased risk
to develop digestive tract cancers. In cancer, the abnormal
ECM affects the progression of the disease by promoting
changes in host cells normal functions. In addition, ECM
anomalies are also capable of (1) deregulating the behavior
of stromal cells, (2) promoting angiogenesis and inflammation
associated with the tumor, (3) leading to the generation and
maintenance of an established tumorigenic microenvironment,
and (4) can also induce metastatic dissemination (Lu et al., 2012;
Seager et al., 2017).

Not only cancer cells but also CAFs lead the modification
and remodeling of the ECM during cancer progression. The
biochemical cross talk between the cancer cells and CAFs, and
the biomechanical changes of the ECM are major contributors
to tumor cell migration and invasion, which will influence
tumor progression to metastatic state. Additionally, growth
factors, chemokines, and metabolic changes released from
the ECM contribute to the maintenance and progression
of the tumor microenvironment (Erdogan and Webb, 2017;
Eble and Niland, 2019).

Due to the importance of ECM modification in the tumor
microenvironment, studies are being conducted in order to
develop therapeutic treatments to target the cancer ECM. Van
der Steen et al. (2017) explored the functionalization of drug-
loaded lyophilisomes (albumin-based biocapsules) loaded with
doxorubicin and functionalized with antibodies, to act in the
ECM, or stroma, of ovarian carcinomas, in order to evaluate its
potential to eliminate cancer cells. The principal results showed
that drug-loaded lyophilisomes were effective to induce cancer
cell death and can be considered as a therapeutic agent to
specifically target ECM components of the tumors. In addition,
Zhang et al. (2018) explored the use of cyclopamine, a special
inhibitor of the hedgehog-signaling pathway, which contributes
to ECM formation of pancreatic ductal adenocarcinoma, to
ameliorate solid stress and improve nanomedicine delivery to
tumor site. The principal results showed that the drug was able to
disrupt ECM in pancreatic ductal adenocarcinoma, reduced solid
stress of the tumor together with an improvement of function of
tumor vessels, which allowed a better perfusion in the tumor area.

Although the drugs discovered recently to target tumor
ECM might effectively reduce the number of cancer cells and
reduce solid stress, there are still many challenges that ECM
components in tumor microenvironment can set that could
interfere with therapeutic treatments. Briefly: (1) ECM proteins
act as a physical barrier, which makes drug delivery more
difficult, (2) ECM proteins can de-differentiate non-CSCs into
CSCs, and this can make it harder for the elimination process
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of CSCs in the microenvironment, (3) the ability of ECM to
modulate immune responses, and (4) complex nature of ECM,
with its different molecules and isoforms (Nallanthighal et al.,
2019). Therefore, the ECM in the tumor microenvironment
has a considerable impact in cancer progression and further
metastasis. Due to this, a better understanding of the interactions
between cancer cells and ECM is needed and might only be
addressed by 3D cell culture models, especially in order to have
more faith in the results of drug screening to target cancer
(Drost and Clevers, 2018).

3D MODELS RECAPITULATING THE
TUMORIGENESIS IN VITRO

Background
The tumorigenesis of cancer disease is heterogeneous in
growth rate, invasiveness, drug sensibility, and individual patient
derived characteristics (McGranahan and Swanton, 2017; Fan
et al., 2019). Therefore, the in vitro and in vivo preclinical
studies fail in emulating the microenvironment of the tumor
to predict its sensibility or its resistance to drugs, or the
metabolic and molecular pathways. This explains the low
success rate of drug acceptance for oncologic drugs at 3.4%
(Wong et al., 2019).

Immortalized cell lines are a valuable resource to investigate
the physiological mechanisms and body–environmental
interactions between healthy cells and cancerous cells due to
their ease of growing and manipulating in vitro. Monolayer
assays employing immortalized cancer cells are characterized
by low cost, less complexity, and are readily employed in the
HTS of drug trials and molecular biomarkers (Fan et al., 2019).
However, because of the fast proliferation of the monolayers, it
is likely that the culture might be affected by problems such as
de-differentiation or abnormal gene expression profiles, which
may influence the result of experiments as well as be contrasting
to in vivo tests (Shah et al., 2018). Furthermore, monolayer assays
glean so little about the gene expression, reorganization, and
responses involved in the tumorigenesis, mainly due the absence
of a tumor microenvironment (Gao and Chen, 2015).

To fill the gap between these insufficient or inappropriate
models, 3D cultures arise as an urgent tool to improve
the prediction system and mechanism of understanding
tumorigenesis in humans. 3D cultures allow for systematic
investigation into the several unidentified metabolic pathways
and cascades (Sawant et al., 2016).

The classical scaffold-based approach in tissue engineering has
focused on devising cells, bioactive factors, and scaffolds with
biocompatible biomaterials to produce models able to maintain
the tumor phenotype (Molina et al., 2020). In these models, it is
possible to co-cultivate epithelial and stromal cells and observe
the crosstalk of multiple cell types interacting, which regulate
normal and neoplastic development (Sawant et al., 2016).

In contrast to scaffold-based methods, scaffold-free
approaches emerge as 3D tumor models. The scaffold-free
approaches are aggregates of cells, producing several common
features that are similar to the solid tumor in vivo such as cellular

heterogeneity, cell-cell signaling, hypoxia, membrane protein
distribution, and gene expression patterns (Zhao et al., 2019).

Tumor Spheroids
The development of 3D models such as spheroids made it
possible to engineer several cancer-like microenvironments
in vitro. Many papers claim to have developed their protocols
to build tumors such as glioblastomas, colorectal, breast, liver,
lungs, among others (Kelm et al., 2003; Hirschhaeuser et al., 2010;
Chimenti et al., 2017; Eilenberger et al., 2018; Froehlich et al.,
2018; Oraiopoulou et al., 2019; Foglietta et al., 2020; Lee et al.,
2020).

The breast cell line MCF-7 is an adenocarcinoma-luminal
subtype one. The cell morphology is epithelium-like resulting in
their ability to self-aggregate into a steady shape, which makes it
easier to maintain their viability and to use it for implantation
in mice for in vivo studies (Do Amaral et al., 2011; Comşa et al.,
2015; Froehlich et al., 2018).

HEPG-2 is an epithelial-like hepatocellular carcinoma that,
due to the liver cells’ role of the metabolism, is considered a
valuable option to study cell genotoxicity (Luckert et al., 2017;
Shah et al., 2018). 3D models using HEPG-2 can be used alone in
drug screening or as a co-culture with other tumor cell lines (Lan
et al., 2010; Jung et al., 2017).

Some aspects must be considered when working with
spheroids. One of them is the quality of the 3D protocol, which
is related to some variables such as the kind of support for the
culture, the non-adherent medium used, the number of cells that
are seeded, the spheroid formation technique, the temperature,
and the amount of CO2 and O2 available (Mironov et al., 2009;
Mehta et al., 2012; Däster et al., 2017). All these factors are highly
changeable according to the tumor line chosen.

The role of hypoxia and the capacity of a tumor to induce
neovascularization in its microenvironment using spheroid
models have been debated since the early 1990s. It has been
established that genetic changes can cause an “angiogenic switch”
as the newly mutated cells acquire the ability to upregulate the
production of angiogenic factors in comparison to healthy cells,
especially in hypoxic niches (Shweiki et al., 1995; Catalano et al.,
2013).

Studies using colorectal spheroids and the 5-Fluorouracil drug
have indicated that hypoxia and necrosis induction is associated
with tumor progression and cell resistance to chemotherapy
treatments. The difference in the spheroid size is a variation that
also shows its importance in determining whether the mentioned
effects moderately or intensely impact the aggressiveness of
the tumor (Karlsson et al., 2012; Däster et al., 2017). On the
contrary, other studies developed with multicellular spheroids
also have demonstrated that when hypoxia–reoxygenation is
induced, the levels of vascular endothelial growth factor (VEGF)
are downregulated by the tumor cells, as well as it activated DNA
damage repair markers (Kondoh et al., 2013; Riffle et al., 2017).

Nevertheless, managing these elements and controlling the
long-term viability of the spheroids is an arduous task due to
their natural propensity of apoptosis, as a result of poor gaseous
and nutrients diffusion (Zhang W. et al., 2016). One possible
solution is to use microfluidic systems to allow continued flow
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of the molecules needed for the spheroids to keep metabolizing
and proliferating (Moshksayan et al., 2018). Human lung
adenocarcinoma A549 cells, for instance, can be seeded with
human endothelial cells in a collagen-I–Matrigel microfluidic
device containing a micro-pump to supply the system with
oxygen and nutrients. It is a useful protocol for further respiratory
system cancer studies (Lee et al., 2019).

Colorectal tumors are likely to be formed at elderly ages,
especially over 50 years. It is also the third cause of death
among men and women in the United States (Siegel et al., 2020).
The communication promoted by cells in the spheroid allows
studies to explore the interactions between drugs and the 3D
model (Elliott and Yuan, 2011). Concerning this approach, it was
shown through spheroid models that the anticancer drug KP1339
triggers an immune cell death in vitro, which matches arrays that
showed preclinical activity in vivo (Wernitznig et al., 2019).

Coming up with a model that mimics the microenvironment
of mammary tissue requires a complex mixture of several cell
types and tissues, as well as functional ECM and long-term
sustainable cell–cell and cell–ECM interactions. In this regard,
adipose tissue might work well when co-cultured with mammary
cell lines (Kim et al., 2004; Picollet-D’hahan et al., 2016). As a
complex tissue, adipose is constituted of several populations of
cells such as adipocytes, MSCs, endothelial progenitor cells, pre-
adipocytes, lymphocytes, pericytes, and macrophages (Schäffler
and Büchler, 2007; Hu and Polyak, 2008).

Studies with co-culture between MCF7 line and MSCs
have shown that this mesenchymal population can improve
tumor aggressiveness in vivo in comparison with MCF7
culture alone. Similar to immune cells, MSCs demonstrate
tropism for spots consisting of damaged tissue including
tumor microenvironmental sites, cooperating with migration and
metastasis (Koellensperger et al., 2017; Chen et al., 2019).

Tumor Organoids
Different from spheroids, tumor organoids must be derived
from human tumor biopsies (Drost and Clevers, 2018; Wang
et al., 2020). The advantages and applications of tumor
organoids are related to the tissue-specific mutagenic processes
accumulating specific types of somatic mutations during
malignant transformation in patients. Single stem cell-derived
and long-term-cultured organoids were used to determine the
genome-wide mutation patterns in distinct healthy stem cells
(Wang et al., 2020).

The ability to grow organoids with high efficiency from
healthy human adult stem cells has paved the way to grow
tumor tissue patient-derived organoids (PDO). So far, long-term
organoid cultures have been established from primary colon,
esophagus, pancreas, stomach, liver, endometrium, and breast
cancer tissues, as well as from metastatic colon, prostate, and
breast cancer biopsy samples (Drost and Clevers, 2018).

Another 3D model is the cultivation and testing of the patient-
derived tumor xenografts (PDTX) generated in animal models.
PDTX is about the implantation of small pieces of tumors from
human biopsies into highly immunodeficient mice. After tumor
growth, the tumor is transferred into secondary recipient mice.
PDTXs often maintain the structures of the original tumors at

molecular, cellular, and tissue levels (Drost and Clevers, 2018).
Thus, it is able to recapitulate the heterogeneity of the tumor and
its native microenvironment; however, it is more incompatible
to HTS due to its expensive, time consuming and complex
procedure (Hidalgo et al., 2014). Besides PDTX, it is also possible
to induce the tumor directly into animal models. However,
animals present great phylogenetic distance to humans, have
different metabolism, size, and lifespan, which all misdirect the
drug development during human clinical trials (Wang, 2019).

The generation of cancer spheroids and organoids, like PDO
are low cost, fast compared with PDTX, can be adapted to HTS
and allow investigation of the alterations occurring during the
initiation and progression of tumorigenesis (Fatehullah et al.,
2016; Fan et al., 2019). This is one of the reasons why tumor
organoids have been increasingly used as a faithful in vitro model
system to study cancer metastasis (Fan et al., 2019).

Tumor organoids keep the main pathophysiological features
required to identify the critical factors in the acquisition of cancer
metastatic potential, which may elucidate mechanisms involved
in the metastasis cascade (Fan et al., 2019). On the other hand,
one of the intrinsic limitations is the lack of stroma, blood vessels,
and immune cells in cultured organoids, especially the immune
cells (Wang et al., 2020) due to their regulatory roles in epithelial
cell growth and differentiation, invasion, and metastasis (Mueller
and Fusenig, 2002; Sawant et al., 2016).

One very interesting strategy when studying tumor organoids
is to associate healthy organoids with tumor ones in a fluidic
platform called organ-on-a-chip aiming to study metastasis
via the circulatory system. These devices mentioned before
are microfabricated to emulate a precise microenvironment,
controlled, with continuous flow perfusion culture, and high-
throughput format (Fan et al., 2019). Jeon et al. (2015) studied
3D vascularized organotypic microfluidic assays to study breast
cancer cell extravasation, while Xu et al. (2016) projected a four-
organ chip to assess lung cancer metastasis. Huang et al. (2009)
found out that the laminar flow properties of microfluidic devices
have been leveraged to compartmentalize human mammary
fibroblasts in an ECM gel side-by-side with another ECM gel
containing breast ductal carcinoma in situ cells; this setup
revealed that the fibroblasts had to be in contact with the tumor
cells to induce the transition to the invasive phenotype (Huang
et al., 2009; Benam et al., 2015).

High-Throughput Screening and 3D
Models
Pre-clinical studies fail around 85% in the oncological drug
trials, not demonstrating sufficient safety or efficacy (Gao et al.,
2015). To overcome this issue, the approaches that enable
high-throughput (thousands of cells per experiment) are best
suited to efficiently sample the complex cellular diversity in
organoids and to understand organoid-to-organoid variability
(Brazovskaja et al., 2019).

High-throughput screening provides a practical method
to investigate large numbers of pharmaceutical compounds
in in vitro monolayers assays, being a universal assay in
pharmaceutical and Biotech industries (Pereira and Williams,
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2007). It has also spawned a billion-dollar industry that
supports the increasing demands for speed, capacity, and cost-
effective screening of vast libraries of compounds (Pereira and
Williams, 2007). The accessibility of HTS data merged with the
ToxCastTM/Tox21 databases allows for elucidative toxicological
considerations seen below (Suh et al., 2018).

Based on the advantages of tissue engineering scaffold-
free approaches in recapitulating the tumor microenvironment,
mainly represented by spheroids and organoids, a paradigm shift
in HTS placing them at the forefront of drug discovery (Li
et al., 2016) together with the need to adapt the protocols for
the HTS. Spheroids have been adapted for use with several HTS
technologies. On the other hand, organoids represent a challenge,
mainly due to the presence of hydrogels and their heterogeneity
of shape (Figure 1). Furthermore, the most common read-
out of HTS technologies is still based on imaging systems
making spheroids and organoid depths and their associated light
scattering a technical challenge (Li et al., 2016).

So far, tumor spheroids, tumor organoids, and PDTXs are
allowed for testing of multiple individual drugs prior to in vivo
analysis (Beshiri et al., 2018). Gao et al. (2015) established∼1,000
PDXs with a diverse set of driver mutations against 62 treatments
across six indications. Mateo et al. (2015) showed the presence of
a homologous recombination deficiency genotype in Metastatic
castrate-resistant prostate cancer and predicted responsiveness to
Olaparib, which is the first genomic biomarker-driven therapy on
track for FDA approval. Another example is for human kidney
organoids, where Czerniecki et al. (2018) produced automated
organoids and assessed drug effects by HTS.

Liu et al. (2020) review that Kita et al. (2019) screened
2,098 compounds in bladder cancer organoid cell lines. They
also discovered that Disulfiram, an anti-alcoholism drug, and
cisplatin had a cooperative effect. Lampis et al. (2018), after
screening 484 compounds in six cholangiocarcinoma’s organoid
cell lines, presented that the sensitivity of HSP90 inhibitors was
related to the mutation of MIR21 gene. Kondo and Inoue (2019)
reported an advanced system for the HTS of 2,427 drugs using the
cancer tissue-originated spheroid; those lines exhibited diverse
sensitivities to the hit compounds, demonstrating the usefulness
of this system for investigating highly heterogeneous disease.

There is now increasing evidence that the tumor
microenvironment affects the efficacy of drugs on the
cancer cells (Lal-Nag et al., 2017). Several complex ovarian
cancer models have already been published, such as the
3D omental mesothelium model and models that include
microfluidics, which demonstrates this (Watters et al., 2018).
Currently, the mesothelium model is the only 3D organotypic
microenvironment model of ovarian cancer that is used by
multiple research groups (Kenny et al., 2007). The mesothelium
model recapitulates the main physiological aspects of ovarian
cancer cells in the mesothelium lining (Watters et al., 2018).
Lal-Nag et al. (2017) proved that several classes of targets were
more efficacious in cancer cells growing in the absence of the
metastatic microenvironment, and other target classes were less
efficacious in cancer cells in pre-formed spheres compared with
forming spheroids cultures. These methods were adapted to
HTS and to more than 100,000 small-molecule compounds that

can potentially identify novel treatments (Watters et al., 2018).
Hasan and group reported the use of bioprinting for in vitro
ovarian cancer tissue modeling for research applicable to HTS.
Human ovarian cancer was printed on MatrigelTM to form
multicellular acini (Hasan et al., 2011). This approach allows for
physiologically relevant cell fabrications and can also provide an
alternative to animal testing (Matai et al., 2020).

Tumor Organoids and Personalized
Medicine
As explained in the sections before, tumor organoids must be
derived from human biopsies. This outstanding characteristic
from tumor organoids has given rise to the creation of tumor
biobanks highlighting the concept of personalized medicine to
predict effective drugs before the start of the treatment. One
crucial challenge to be addressed related to drug testing for
cancer models is that the majority of drugs show intratumor
heterogeneity, while others are uniformly toxic in all cases.
Furthermore, as organoids can be produced from a patient’s
own cells, the genetic analyses and drug screening results will be
specific to the patient’s tumor (Tellez-Gabriel et al., 2018; Kondo
et al., 2019). Some examples are described below.

An organoid biobank of breast cancer tissues from >100
patients was established (Sachs et al., 2018). These organoids
represented genetic and histopathological features of breast
cancer and maintained the expression of breast cancer
biomarkers. This means organoid biobanks have predictive
value for drug efficacy in the treatment of individual patients
(Wang, 2019), allowing personalized cancer treatment.

Van de Wetering et al. (2015) established tumor organoid
cultures from 20 consecutive colorectal carcinoma patients. The
results showed that organoids were able to resemble the original
tumor characteristics, and gene expression analysis indicated
that the majority of consecutive colorectal carcinoma molecular
subtypes were properly represented.

Sachs et al. (2018) described a protocol to produce a biobank
of human mammary epithelial organoids. The organoids were
able to recapitulate the diversity of the disease. Additionally,
histological, hormonal, and gene expression analysis resembled
the status of the original tumor. Furthermore, the organoids
allowed proper drug screening tests when compared with in vivo
xeno-transplantations.

Yan et al. (2017) developed a primary gastric cancer
organoid biobank that comprises normal, dysplastic, cancer, and
lymph node metastases from 34 patients. The results showed
that organoids were able to closely mimic the morphology,
transcriptome, and gene expression profiles when compared with
in vivo original tumors. It was also seen that organoids were
sensitive to unexpected drugs (recently approved or in clinical
trials) after drug screening tests.

3D BIOPRINTING

Background
As discussed previously, 3D cell culture models as spheroids
and organoids are capable of better mimicking the tumor
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FIGURE 1 | Differences in fabrication of tumor spheroids and organoids. (A) Cell types used to produce tumor spheroids and organoids. Spheroids can be
fabricated from cancer stem cells, cancer cells/cancer cell lineages, or cancer tissue. Organoids must be fabricated from human cancer biopsies. (B) After the
fabrication process, tumor spheroids show different zones because of the distinct gradient concentrations of O2 and CO2. The zones from spheroids inside out are
necrotic, senescent, and proliferative. Organoids are usually produced in a hydrogel substrate and do not present a homogeneous size and shape.

microenvironment that is found in vivo by recapitulating
cellular and molecular events. However, spheroids and organoids
follow a non-guided spontaneous formation of tissues and
organs by self-assembly mechanism. In this context, because
of the ability to precisely guide and organize the position
of different cell types and growth factors and also perfusable
networks, 3D bioprinting has a potential to improve current
models and guide recapitulation of the tumor microenvironment
(Datta et al., 2020). The ability to engineer controllable
cancer tissue models in high resolution can considerably
accelerate cancer research and improve personalized medicine,
improving the treatment and life expectancy of cancer patients
in the future (Knowlton et al., 2015; Belgodere et al., 2018;
Langer et al., 2019).

3D bioprinting is one of the most widely used technologies in
tissue engineering and regenerative medicine to develop complex
tissues and organs that mimic their native microenvironment
(Murphy and Atala, 2014; Moroni et al., 2018). As 3D
bioprinting is a process where bioinks, usually composed
of hydrogels, and cells are turned into functional tissue-
engineered constructs from digital models, it is constantly
showing more advantages compared with classical scaffold-
based tissue engineering. One of the principal aims of using

3D bioprinting techniques so far is to biofabricate vascular
structures (Vijayavenkataraman et al., 2018). This technique
integrates biomaterials, living cells, and automated controlled
systems to create complex microstructures and precise control
over the structures developed compared with other currently
available methods (Mandrycky et al., 2016).

Usually, 3D bioprinting begins with a computer-assisted
process in order to deposit biologically relevant biomaterials,
growth factors, and living cells to generate a desired tissue
or organ model. Basically, it is possible to divide the 3D
bioprinting process in three: (1) pre-processing for acquiring
the 3D computer-aided design (CAD) model of the tissue to
be bioprinted, (2) automated deposition of cells, spheroids,
biomaterials, or other biological component of interest, and (3)
maturation of the tissue constructs (Zhang Y. S. et al., 2017;
Datta et al., 2018).

The principal 3D bioprinting techniques are (1) inkjet, (2)
extrusion-based, and (3) laser-assisted bioprinting (Huang et al.,
2017). In inkjet bioprinting, it is possible to precisely control both
the size of the desired tissue pattern, as well as the generated
droplets. In this way, it is possible to determine the volume,
size, and quantity of a sample to be bioprinted. In terms of
precision, it is possible to control the number of the cells per

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 June 2021 | Volume 9 | Article 682498

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-682498 June 16, 2021 Time: 15:56 # 9

Kronemberger et al. Recapitulating Tumorigenesis: Opportunities and Challenges of Bioprinting

droplet, which is an advantage when scaffolds are being used
(Zhang and Zhang, 2015).

Extrusion-based bioprinting is the most used technique that
uses the principles of a fluid-dispensing system with a robotic
one for extruding materials, which can then be applied to
different 3D bioprinting approaches. The fluid-dispensing system
can be directed by pneumatic, mechanical, or solenoid forces.
Through extrusion-based bioprinting, it is possible to precisely
deposit cells, which can be encapsulated in a pre-established
design of geometrical filaments and then bioprinted (Ozbolat
and Hospodiuk, 2016). However, one of the biggest challenges
of this technique is the resolution level that can be reached
(Ning and Chen, 2017).

Laser-assisted bioprinting is based on the laser-induced
forward transfer (LIFT) principle and is considered a “direct-
write” method, which can precisely control the virtual deposition
of cells, growth factors, and biomaterial containing droplets at a
MHz range speed. Therefore, with this technique, it is possible
to achieve high resolution (Devillard et al., 2014). However, the
principal disadvantage is the use of the laser directly on the cells,
which can damage cell viability (Derakhshanfar et al., 2018).

In order to authentically develop the desired tissue construct,
the hydrogel choice is crucial, mainly because the hydrogel
will provide the physical and biochemical properties to guide
cell proliferation, differentiation, and the final maturation of
the engineered construct. In this way, the hydrogel must
contain similar properties of the desired tissue when in vivo
(Gopinathan and Noh, 2018). Several hydrogel formulations have
been developed, such as decellularized ECM, alginate, gelatin,
hyaluronic acid, and polymers (such as methacrylated gelatin,
polyethylene glycol and poly lactic acid) to serve as functional
bioinks (Parak et al., 2019).

Scaffold-Free 3D Bioprinting
The use of bioinks is the foundation of bioprinting. This approach
is based on cells and/or biomaterials with specific formulations
for each type of cell (Hospodiuk et al., 2017). The ideal
formulation of bioinks should meet each cell type’s biological
requirements without toxicity to the cells (Gungor-Ozkerim et al.,
2018). Their desired properties include printing, mechanical
properties, biodegradation, and post-bioprinter maturation
(Hong et al., 2018). These properties depend on different
parameters such as solution viscosity, surface tension of the
bioink, the ability to interconnect on its own, and the properties
of the printer nozzle surface. The living cells encapsulated in
the bioink grow and occupy the space to form predefined tissue
structures (Huang et al., 2017; Gungor-Ozkerim et al., 2018).

However, an important limitation of this approach is that,
although cells can be manipulated individually, they do not form
mechanically stable assemblies in many cases unless intercellular
adhesions are made very strong, possibly by chemical means,
which is not ideal for mimicking the tissue microenvironment
(Goulart et al., 2019). Additional structural cohesion needs to be
produced by the cells, like their own secreted ECM. However, this
is a long-term process and depends on the cell type and the ECM
deposition quality (Ong et al., 2018; Heo et al., 2020).

The alternative approach of using cells with a pre-assembly
of spheroids has been widely studied, as it improves the
production capacity of its ECM, in addition to providing greater
biomechanical cohesion in larger-scale constructs for bioprinting
(Swaminathan et al., 2019). Also, spheroid-based methods are
generally milder and, therefore, induce much less or no cell
damage during bioprinting (De Moor et al., 2018). Another
attractive feature of spheroid bioprinting is its efficiency, as the
speed of bioprinting can be increased using large building blocks
such as spheroids (Gutzweiler et al., 2017).

An alternative method, still considered to be scaffold-free,
can provide temporary support to the spheroids and, thus,
facilitate their fusion and maturation in tissue models using a
set of microneedles ("Kenzan"). The Kenzan bioprinting method
provides a high-resolution biofabrication process, facilitating the
fusion of spheroids into larger tissue constructions in a needle
matrix removed after spheroid fusion. This method is used in
the Bio-3D Regenova Printer marketed by Cyfuse Biomedical
(Moldovan, 2018; Murata et al., 2020).

Recently, bioinks were developed using formulations
composed only of spheroids with several thousand cells. Studies
have shown that spheroids can form tissue threads up to 8 cm
in length with rapid spheroid fusion without using aggressive
chemicals as crosslinkers or as support materials (Bakirci
et al., 2017; Ji and Guvendiren, 2017; Osidak et al., 2019). The
spheroid bioinks showed better results than the individual cells
because they preserved the integrity of the ECM. The use of
bioinks without structure, composed only of cells, has been
attracting more and more attention as a bioprinting method
for the 3D construction of complex tissues, through which the
application of ball-beading constructions is widely addressed
(Skardal et al., 2016).

Several spheroid bioprinting techniques have been reported
in the literature. One of the first techniques widely explored
was extrusion-based bioprinting, in which the spheroids were
loaded into a syringe cylinder and extruded into a controlled
distribution gel medium. However, the spheroid tips easily
deform in the syringe and are subject to breakage during the
extrusion process. Simultaneously, the support structures need
to be printed in 3D to facilitate the aggregation of extruded
ball tips (Mandrycky et al., 2016). A significant advance was
made using the Kenzan method. However, the method has
limitations inherent to the accuracy of the 3D bioprinting process
(Moldovan et al., 2017). To overcome some of the greatest
challenges of the current techniques, recent studies have shown
that aspiration-assisted bioprinting allows accurate bioprinting of
spheroids over sacrificial or functional gel substrates (Chimene
et al., 2016). In a mold of sacrificial material, such as alginate
or agarose, the material is discarded as the bioprinted tissue
matures and subsequently deposits its components in the ECM
(Ayan et al., 2020).

Although methods using sacrificial gel substrates do not
present the common problems of inkjet and microextrusion
(such as nozzle clogging), they still have their technical
limitations (Vijayavenkataraman et al., 2018; Adhikari et al.,
2021). One of these limitations is the time necessary to form
and maturate spheroids prior to bioprinting. In addition,
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the development of specific bioinks compatible with the
characteristics of most spheroid types is essential for the viability
and correct maturation of each tissue (Li et al., 2016).

Large-scale production is also still a great challenge (Datta
et al., 2020). Studies on standardization and automation of
spheroid production are essential for building more complex
and genuine-sized tissues in the future. Moreover, an important
implication in biofabrication is training for the unique skills
and techniques required of this technology’s users and operators.
Finally, the bioprinting of 3D cell constructs originating from
spheroids composed of various types of cells has been studied to
increase the functionality of these 3D constructs (Sasmal et al.,
2018; Swaminathan et al., 2019).

3D Bioprinting of Tumor Models
For recreating the tumor microenvironment, there is a need
of tumor ECM reconstitution and the recreation of tumor
vasculature (Liu et al., 2020). In Figure 2, the essential
steps and bioinks to recreate the tumor microenvironment
by 3D bioprinting are proposed. The ECM of the tumor
microenvironment is composed of different proteins and stromal
cells, but it is known that the composition of tumor ECM is tumor
and patient specific. In addition, the biomechanical properties
of tumor ECM can regulate tumor behavior and progression
(Zhang Y. S. et al., 2016).

Recently, a considerable number of studies were performed
to develop tumor models by 3D bioprinting. Table 1 reviews

some of these studies. Dai et al. (2017) focused on replicating
tumor microenvironments by improving tumor and stromal cell
interactions in 3D bioprinted constructs. Their strategy relied on
the self-assembly of multicellular heterogeneous brain tumor cell
fibers by extrusion-based bioprinting. These fibers were part of
the tumor ECM of the brain tumor. The morphological results
showed that the construct was viable, proliferative, and presented
tumor-stromal cell interactions. Hermida et al. (2020) used
extrusion-based bioprinting to engineer glioblastoma models
made of cancer, microglia, and stromal cells bioprinted within
alginate modified with RGDS cell adhesion peptides, hyaluronic
acid, and type I collagen. The glioblastoma cells presented
more resistance to chemotherapeutic drugs in 3D engineered
bioprinted constructs compared with monolayer cultures.

Despite the development described above for spheroid
bioprinting strategies, several studies have shown the
spontaneous formation of spheroids after 3D bioprinting,
reaching the mimicry of specific cancer types. Jiang et al. (2017)
developed a proof of concept study by bioprinting a cross-linked
alginate/gelatin hydrogel composed of breast cancer lineage
cells and fibroblasts. After 1 week in culture, breast cancer cells
formed viable spheroids that increased in size over time and
attracted migrating fibroblasts through a matrix region of the
hydrogel, which infiltrated the breast cancer spheroids.

Using the technique of 3D bioprinting named “laser direct
write,” Kingsley et al. (2019) used microbeads to allow the
formation and growth of multicellular tumor spheroids with

FIGURE 2 | Steps and bioinks to biofabricate the tumor microenvironment by 3D bioprinting. (A) Steps to start the biofabrication process. First, it is necessary to
choose a bioprinting method, which will complement the desired output. The majority of studies to develop cancer models are done with extrusion-base techniques.
Then, the 3D design of the cancer model must be made by software or can be based on images. Next, it is necessary to choose the biological (cells or spheroids)
and biomaterial (usually hydrogels) components of the bioinks. Finally, the bioprinting process can be started and tissue maturation can be carried out post printing.
(B) Bioinks to replicate tumor microenvironments. In order to mimic the tumor microenvironment, the main bioinks are tumor spheroids, immune cells, endothelial
cells, and a hydrogel to support cells proliferation and survival.
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homogeneous size and shape. The decellularized rat and human
breast tissue ECM was used as a bioink for organoid formation
by 3D bioprinting (Mollica et al., 2019). The principal advantage
in this strategy is that these ECM hydrogels keep the structural
and signaling cues of the breast cancer environment, which can
determine a cell’s fate. The results showed that the hydrogel
supported the production of breast cancer cell organoids allowing
their use to engineer more complex organoids models to pre-
clinical assays.

Schmidt et al. (2019) compared the interaction of different
bioprinted hydrogels with melanoma cells. In total, five hydrogels
were tested: matrigel and two different types of commercially
available bioinks, with or without RGD sequence/laminin
mixture. In Matrigel, melanoma cells were able to spread,

proliferate, and produce networks in the construct, while
in gelatin methacrylate melanoma cells grow in clusters. As
expected, the choice of the bioink is crucial for the behavior of
cancer cells in engineered constructs.

Human breast epithelial cell lines can be bioprinted as a cell
suspension or as formed spheroids in alginate-based bioinks.
These cells only formed spheroids in Matrigel-based biolinks and
pre-formed spheroids kept their morphology and viability after
bioprinting. When spheroids were formed, breast cancer cells
were more resistant to drug assessment, replicating the tumor
microenvironment (Swaminathan et al., 2019).

Maloney et al. (2020) used an immersion printing technique
approach to perform the 3D bioprinting of tissue organoids in
96-well plates. The results showed that the bioink allowed the

TABLE 1 | Biofabrication of cancer models by 3D bioprinting.

Authors and year Aim Bioprinting
technique

Bioink Main result Article title and journal

Dai et al., 2017 Improve tumor and stromal
cell interactions by the
development of 3D
bioprinted constructs

Extrusion Cancer cells within alginate,
gelatin and fibrin

The construct was viable
and resembled properly
tumor and stromal cell
interactions found in the
in vivo tumor

Coaxial 3D bioprinting of
self-assembled multicellular
heterogeneous tumor
fibers. Scientific reports.

Hermida et al.,
2020

Engineer a 3D construct of
a glioblastoma model by
bioprinting

Extrusion Cancer, microglia and
stromal cells within
alginate/RGDS, hyaluronic
acid and collagen I
hydrogels

The biofabricated
glioblastoma model was
functional and showed
resistance to drugs

Three dimensional in vitro
models of cancer:
Bioprinting multilineage
glioblastoma models.
Advances in biological
regulation.

Jiang et al., 2017 3D bioprinting of cells to
produce complex
spheroids models

Extrusion Cancer and fibroblasts cells
within alginate/gelatin
hydrogel

The biofabricated spheroids
were viable and increased
in size over time

Directing the Self-assembly
of Tumor Spheroids by
Bioprinting Cellular
Heterogeneous Models
within Alginate/Gelatin
Hydrogels. Scientific
reports.

Kingsley et al.,
2019

Biofabrication of tumor
organoids by 3D bioprinting

Laser-
assisted

Decellularized rat and
human breast tissue
extracellular matrix

The hydrogel supported the
biofabrication of breast
cancer cell organoids

Laser-based 3D bioprinting
for spatial and size control
of tumor spheroids and
embryoid bodies. Acta
Biomaterialia.

Schmidt et al.,
2019

Biofabrication of melanoma
constructs

Extrusion Melanoma cells within
matrigel, two different types
of commercially available
bioinks, with or without
RGD
sequence/laminin-mixture

The melanoma cells were
able to spread, proliferate
and create networks in the
hydrogels

Tumor Cells Develop
Defined Cellular
Phenotypes After
3D-Bioprinting in Different
Bioinks. Cells.

Swaminathan et al.,
2019

Biofabrication of breast
cancer spheroids by 3D
bioprinting

Extrusion Breast epithelial cells and
alginate

Spheroids were formed and
resistant to drugs,
replicating better the tumor
microenviroment

Bioprinting of 3D breast
epithelial spheroids for
human cancer models.
Biofabrication.

Maloney et al.,
2020

Biofabrication of
glioblastoma and sarcoma
organoids by 3D bioprinting

FRESH Cancer cells within
hyaluronic acid and
collagen

The organoids were
biofabricated, presented a
spherical shape and can be
used for drug screening
tests

Immersion Bioprinting of
Tumor Organoids in
Multi-Well Plates for
Increasing Chemotherapy
Screening Throughput.
Micromachines.

Han et al., 2020 Recapitulate tumor
microenviroment with
spheroids by 3D bioprinting

Extrusion Fibroblasts and endothelial
cells in gelatine, alginate
and fibrinogen

Microvessel sprouting in the
construct, increase of
spheroids size and efficacy
in drug screening tests

3D Bioprinted Vascularized
Tumor for Drug Testing.
International journal of
molecular sciences.
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TABLE 2 | Current 3D models for recapitulating tumor microenvironment.

3D models Materials for 3D models preparation Cell types Mimicry level

Spheroids • Plates and rotors for cultivation such as spinner flasks,
rotary cell culture systems, liquid overlay, micropatterned
plates, low binding plates, microfluidics device
• Culture in the presence or absence of fetal bovine serum

(FBS)

• Can be obtained from cancer stem cell (CSC) population,
tissue-derived tumor spheres such as lung, bladder,
prostate, or breast cancer tissue and uveal melanoma,
including cell lineages
• Some tumor cells form spheres spontaneously, while others

require additional manipulations

+

Organoids • Cultured on diverse matrices such as Matrigel, collagen
type I, HA (hyaluronic acid) hydrogel, PEG hydrogel,
fibrin/laminin hydrogel

• Can be obtained from tumor cells isolated from tumor
tissue such as metastatic colorectal carcinoma tissue,
cervical carcinoma biopsy tissue, tumors of the
gastrointestinal tract, prostate tumor cell lines
• Can also be obtained from non-tumor organoids using

gene-editing techniques

++

Bioprinting • The 3D computer models containing information such as
complex 3D geometries surface information can be created
using MRI or CT scans
• Bioreactors for tissue maturation in post-processing

• Multiple types of cancer cells including primary cancer cells,
circulating tumor cells, and stromal cells including
fibroblasts, endothelial cells and stem cells can be used for
printing personalized tumor construct

+++

3D models Advantages Disadvantages

Spheroids • Presence of gas, nutrient and pH gradients
• Co-culture
• Cultures without expensive cultivation methods
• Reproduction of cell-cell and cell-ECM interactions
• The screening of personalized drug can be performed with

very small quantities of chemotherapeutic candidates

• Gradient structure complicates drug testing
• Fragile structure
• Difficulty of forming homogeneous spheroids
• Cannot completely recapitulate the cellular and microenvironmental heterogeneity

of physiological tumor tissue

Organoids • Reproduction of cell-cell and cell-ECM interactions
• Co-culture Primary tumor cells
• Long-term cultivation
• Stable at passaging

• Gradient of gases, nutrients and pH is not always reproducible
• Therapeutic responses may depend on the matrix
• High cost method

Bioprinting • Enables the generation of cell laden cancer tissue
constructs that can recapitulate the features of various
types of cancers
• Expressed characteristics of in vivo tumor tissues, such as

high growth rates of cancer cells, aggressive invasiveness,
angiogenesis, metastasis, high resistance to anticancer
drugs.
• Can supplement animal xenograft models because they

maintain cancer–stromal cell interactions.
• Can integrate perfusable vascular networks, automation

and high-throughput testing
• The inkjet bioprinting have low cost, fast printing and widely

accessible
• Non-contact and high cell viability in the Laser-assisted

bioprinting (LAB)
• Deposition of high-density cells in the Extrusion bioprinting

• A single bioprinting method cannot yet produce synthetic tissues and organs at all
scales and complexities.
• The inkjet bioprinting has drawbacks in terms of material viscosity.
• The microextrusion bioprinting may need materials having crosslinking mechanisms

or shear reduction properties not to affect cell viability
• The difficulty in developing well-established vascular network within tumors
• Require a labor -intensive and high cost
• The inkjet bioprinting may have Nozzle clogging
• Complex operation and time consuming preparation in laser-assisted bioprinting

(LAB)
• Low cell viability in extrusion bioprinting

3D models Adaptable tothe HTS system References

Spheroids +++ Sutherland, 1988; Wartenberg et al., 2001; Del Duca et al., 2004; Mazzoleni et al.,
2009; Hardelauf et al., 2011; Li et al., 2011; Vinci et al., 2012; Froehlich et al., 2018;
Ruiz et al., 2019

Organoids + Fujii et al., 2016; Nanki et al., 2018; Xu et al., 2018; Fan et al., 2019; Lin et al.,
2019; Nunes et al., 2019; Fiorini et al., 2020

Bioprinting N/A Hopp et al., 2005; Koch et al., 2010; Gruene et al., 2011; Murphy and Atala, 2014;
Orloff et al., 2014; Mandrycky et al., 2016; Zhu et al., 2016; Peng et al., 2017;
Mohammadi and Rabbani, 2018; Datta et al., 2020; Emmermacher et al., 2020

+, means less mimicry; ++, means intermediary mimicry; +++, higher mimicry.

maintenance of the organoid structure. In the study, the bioink
was composed of hyaluronic acid and collagen and was printed in
a support bath made of gelatin. This innovative strategy, named
as “Freeform Reversible Embedding of Suspended Hydrogels”
(FRESH) is being largely explored to bioprint soft tissues without

a scaffold, because it allows the maintenance of the biological
structure after the removal of the support bath. To the best of
our knowledge, this is the only technique at the moment that
can be used to bioprint organoids. More importantly, the authors
proved with patient-derived glioblastoma and sarcoma organoids
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that it is possible to use the method for drug screening
tests in vitro.

Han et al. (2020) used 3D bioprinting to recapitulate the tumor
microenvironment using spheroids. The method consisted of the
biofabrication of a blood vessel layer engineered by fibroblasts
and endothelial cells in gelatin, alginate, and fibrinogen, followed
by the seeding of multicellular tumor spheroids of glioblastoma
cells onto this blood vessel layer. The main results showed the
sprouting of blood vessels with an increase in spheroid size.
In addition, drug testing was performed and the biofabricated
construct was sensitive to the treatment, showing that it can be
used for drug efficacy tests in vitro.

However, there is an important limitation of these models
that use hydrogels for drug testing. HTS analysis based on
luminescence/fluorescence cannot be applied to these models due
to the presence of hydrogels which are high viscous biomaterials.
Another issue related to hydrogels is the small volume used in
some applications because it can impair HTS tests (Yu et al.,
2018). Table 2 summarizes the main characteristics, advantages,
and disadvantages of 3D models described in this review.

PERSPECTIVES

Some studies already used 3D bioprinting to develop successful
tumor models; however, to the best of our knowledge, the
use of spheroids as a printable bioink to biofabricate tumor
models has not been largely explored yet. As spheroids
are a 3D model with complex cell-to-cell and cell-to-
extracellular matrix interactions, it would be advantageous to
use them as the main component of the bioink associated
with the stromal components and immune cells. Tumor
organoids show the main advantage of being derived from
human cancer biopsies; however, their 3D bioprinting is
still in its infancy due to their shape heterogeneity, lack of
reproducibility, and complexity.

Furthermore, patient-derived 3D bioprinted tumor models
could be successfully used for in vitro drug screening of
anticancer drugs in large scale. However, some challenges need
to be addressed before this step, especially related to the hydrogel
composition. Some studies are already exploring how to optimize
the hydrogel to not impair HTS tests and analysis (Barata et al.,
2016; Sarkar and Kumar, 2016; Lee et al., 2018). In addition,
ongoing studies are focusing on the development of combined
microfluidic/bioprinted constructs to minimize the cost and
facilitate HTS of a large number of cancer drugs for a particular
patient in order to improve personalized medicine approaches
(Augustine et al., 2021).

CONCLUSION

3D bioprinting is a recent and innovative approach that offers
the ability to create highly complex hierarchical 3D constructs
with cells, biomaterials, and growth factors. Bioprinting methods
have been developed and optimized in recent years in order to
accurately replicate the morphology, functions, and physiology
of a specific tissue and their in vivo microenvironment. As
tumor microenvironments are complex in cell and extracellular
matrix composition, 3D bioprinting holds great potential for
applications in cancer research, in order to mimic more reliable
tumor models and their vasculature (Knowlton et al., 2015;
Albritton and Miller, 2017).

The use of 3D bioprinting can allow the positioning of
tumor spheroids or organoids and the surrounding stromal
and immune cells, commonly associated with this complex
tumor microenvironment. The recapitulation of tumorigenesis
will provide more reliable results to drug screening tests (Satpathy
et al., 2018; Meng et al., 2019) and personalized medicine
(Ma et al., 2018).
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