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J wave is the bulge generated in the descending slope of the terminal portion of the QRS complex in the electrocardiogram.
The presence of J wave may lead to sudden death. However, the diagnosis of J wave variation only depends on doctor’s clinical
experiences at present and missed diagnosis is easy to occur. In this paper, a new method is proposed to realize the automatic
detection of J wave. First, the synchrosqueezed wavelet transform is used to obtain the precise time-frequency information of
the ECG. Then, the inverse transformation of SST is computed to get the intrinsic mode function of the ECG. At last, the time-
frequency features and SST-based and the entropy features based on modes are fed to Random forest to realize the automatic
detection of J wave. As the experimental results shown, the proposed method has achieved the highest accuracy, sensitivity, and
specificity compared with existing techniques.

1. Introduction

J wave is the bulge or ectrosis generated in the descending
slope of the terminal portion of the QRS complex in the elec-
trocardiogram (ECG). The morphologic pattern, amplitude,
and the duration of J wave are various; besides, it always
hides in the ST segment [1, 2]. The presence of J wave may
lead to fatal malignant arrhythmia and even sudden death.
Therefore, more and more attention has been attached to the
research of J wave.

In 1936, Shipley and Hallaran discovered J wave in the
ECG of patients with premature repolarization syndrome for
the first time [3]. In 1938 Tomashewski found J wave in a
frozen male patient's ECG [4]. In 1980s, the phenomenon
of sudden death during sleep in young healthy men occurs
frequently in Southeast Asian countries [5]. From 1948 to
1982 in Philippines, Manila, 722 cases of sudden death in
healthy youth were reported and J wave occurred in their
ECG [6–8]. In 1984, Otto et al. reported three healthy young
men who had ventricular fibrillation during sleep, whose
heart structures were normal, but the ECG showed J wave
[9]. In 1992, Brugada brothers reported 8 cases with sudden
cardiac death and J wave was found in their ECGs [10]. In
1996, Professor Yan and Professor Antzelevitch published

an article in Circulation to investigate the molecular and
electrophysiological principles of J wave [11]. Since then, the
study of J wave has attracted more and more attention of
experts and scholars, but these studies mainly focus on the
view of medical science, and so far, only the doctor's clinical
experience, combined with the naked eye to identify J wave
appearing in the diagnosis of J wave syndrome [12]. However,
the clinical misdiagnosis and missed diagnosis are easy to
occur if the disease is diagnosed only by doctor's clinical
experiences; because the morphologic pattern, amplitude,
and the duration of J wave are various, the resulting symp-
toms are also different.Therefore, the automatic detection of J
wave forms the perspective of signal processing and machine
learning is a significant task.

At present, there are very few people who do this work.
To the best of our knowledge, in 2014, Clack et al. analyzed
the ECG with the help of computer for the first time. They
set up a breakpoint at the descending slope of the QRS
wave. As a result, they achieved the sensitivity of 89.5%,
the specificity of 94.5%, and the accuracy of 91.3% [13].
In 2015, Wang et al. used signal processing combined with
functional analysis to recognize J wave automatically, which
achieved the sensitivity of 88.45%, the specificity of 87.8%,
and the accuracy of 89.6% [14]. However, the datasets are
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Table 1: The number of beats used in the work.

Set J wave-negative J wave-positive
Training set 21600 18000
Testing set 14400 12000
Total 36000 30000

too small and the results are not universal. In our previous
work, we have used the curve fitting and wavelet transform
to extract ECG features. Combined with SVM classifier,
the sensitivity of 93.21%, the specificity of 93.87%, and the
accuracy of 92.58% have been achieved [15]. However, at that
time, the amount of data is too small, and the result is not
convincing. The other drawback of this method is that the
computational efficiency is not high. Since the incidence of
J wave syndrome patients is low, we have tried to build J
wave database in paper [16] before we have not collected
enough samples. In that system, we have achieved the average
sensitivity of 91.32%, average specificity of 92.2%, and average
accuracy of 93.35%. But the built database, after all, is not
real data, so we reexplore the methods of J wave auto-
matic detection and identification after we collected enough
data.

Wavelet transform (WT) is a good time-frequency anal-
ysis method, while it is restricted to the Heisenberg time-
frequency uncertainty principle [17]. To put it another way,
it is impossible for WT to improve the time-frequency
resolution at the same time; that means, a high time reso-
lution means a lower frequency resolution and vice versa.
The temporal resolution and frequency resolution vary with
the wavelet scale in WT, and the time-frequency blurring
occurs on the transformed time-scale plane. Empirical mode
decomposition (EMD) is an effective tool for time-frequency
analysis of signals, while there are a lot of problems such as
sifting criterion, endpoint effect, and mode mixing in EMD
[18]. Moreover, the EMD does not have a firm mathematical
framework. In view of the above shortcomings, ID et al.
proposed a new time-frequency transform method named
synchrosqueezed wavelet transform (SST). It is a powerful
tool for time-frequency analysis of ECG and the precise
time-frequency information can be evaluated using SST
[19].

In this paper, a new methodology based on SST and
Random forest (RF) is proposed to realize the automatic
detection of J wave.We computed the time-frequency feature
based on SST as the first feature. Through the inverse
transformation of SST we obtained five modes of the ECG
episodes and we have evaluated Renyi entropy, approximate
entropy, and sample entropy as the nonlinear features. Then,
the RF is utilized to achieve the detection and classification
of J wave-positive and J wave-negative from ECGs. The flow
chart of the proposed method for the automatic detection
of J wave is provided in Figure 1. The remaining part of
the paper is organized as follows. In Section 2, we describe
the database used in this work. In Section 3, the developed
method is described.The results and discussion are presented
in Section 4 and Section 5, respectively. Finally, the present
work is concluded in Section 6.

2. Data Preparation

2.1. Data Source. In our work, the ECG signals were collected
from the Shanxi Dayi Hospital, which is the cooperating
partner of our project. Infiniti digital twelve-channel ECG
SE 1200-Express was applied and the ECG data were sampled
at 500 Hz. The database consisted of 30 normal ECG record-
ings (20 males and 10 females), which come from the health
checkup, and 25 abnormal ECG recordings (23 males and 2
females), which come form the patients with J wave related
diseases, and all human beings enrolled in the study were
signed informed consent. We choose 20-minute duration of
Holter monitoring for each ECG record. It is to say that we
intercepted 1200 heart beats of each ECG recording in our
research. In this paper, the normal ECG patter is defined as
J wave-negative and the abnormal ECG patter is defined as
J wave-positive. We divided the data into training sets and
testing sets. Among them, the training sets contain 18 J wave-
negative data and 15 J wave-positive data, while the testing
sets are comprised of 12 J wave negative data and 10 J wave-
positive data.

2.2. Preprocessing of Data. Denoising of the ECG signal is
carried by eight level Daubechies wavelet 6 (db6) in this
preprocessing stage [20]. Pan-Tompkin’s algorithm is used
for the detection of R-peak on the preprocessed ECG signal,
after that the ECG episodes are segmented using the detected
R-point [20, 21]. The number of the ECG beats for J wave-
positive and J wave-negative used in this study are revealed
in Table 1. Since J wave always hides in the ST segment, we
choose 120 samples after R-point as our subjects in the study.

3. Method

3.1. Time-Frequency Feature SST-Based
3.1.1. The Basic Theory of SST. SST is a powerful and promis-
ing tool to analyze the time-frequency (TF) information of
nonstationary signals, which is based onWTand reallocation
methods [22]. It is computed by reassigned wavelet coef-
ficients from time-scale plane to TF-plane; thus, a sharper
TF distribution is achieved. It is the postprocessing of WT.
Besides, it succeeded the philosophy of the EMD. Different
from EMD, it has a sound theoretical base and the mode
mixing phenomenon has been overcome in SST. Another
advantage of SST is that the kind of mother wavelet has
a small part to play in the results of SST [19]. The basic
principles of SST are as follows [23, 24].

The Continuous Wavelet Transform (CWT) of a signal is
[25]

𝑊𝑓 (𝑎, 𝑏) = 1√𝑎 ∫𝑓 (𝑡) 𝜓∗ (𝑡 − 𝑏𝑎 )𝑑𝑡 (1)



BioMed Research International 3

Preprocessing

Segmentation

Feture Extraction
TF features 
SST_based+

entropy feature 

Random ForestsTraining set

Classification
model

The results

atTesting set

l

De-noising

Pan-Tompkin’s
algorithm 

Input ECG signal

Figure 1: Block diagram of the proposed method.

where,𝜓 is themother wavelet, 𝑎 is the scaling factor, 𝑏 is time
shift factor.

According to Plancherel’s theory, equation (1) can be
rewritten as:

𝑊𝑓 (𝑎, 𝑏) = 12𝜋∫𝑓 (𝜉) 𝑎−1/2 ∧𝜓∗ (𝑎𝜉) 𝑒𝑗𝑏𝜉𝑑𝜉 (2)

where �̂�(𝜉) is the Fourier transform of 𝜓(𝑡) and 𝑓(𝜉)is the
Fourier transform of 𝑓(𝑡).

When 𝑓(𝑡) = 𝐴 cos(𝑤𝑡), with Fourier transform 𝑓(𝜉) =𝜋𝐴[𝛿(𝜉 − 𝑤) + 𝛿(𝜉 + 𝑤)] then (2) can be transformed into

𝑊𝑓 (𝑎, 𝑏) = 𝐴4𝜋𝑎1/2 ∧𝜓 (𝑎𝑤)𝑒𝑖𝑏𝑤 (3)

One of the properties of WT is that the TF energy of the
results always concentrated around the central frequency of
the signal. The most powerful place, commonly known as
“ridge”, is the signal frequency. However, the energy smeared
around the “ridge” always affects the recognition of the signal,
which means, when �̂�(𝜉) is gathered around 𝜉 = 𝑤0,𝑊𝑓(𝑎, 𝑏)
will be gathered around 𝑎 = 𝑤0/𝑤, while 𝑊𝑓(𝑎, 𝑏) will be
diffused around the the “ridge” 𝑎 = 𝑤0/𝑤. On the other hand,
the oscillation of𝑊𝑓(𝑎, 𝑏) in 𝑏points to the original frequency𝑤, nothing to dowith the value of 𝑎 [22].This is the theoretical
basis of SST.

The process of the SST is as follows [26, 27]:

(1) Calculate the frequency domain form of the results of
WT, just as (3).

(2) Calculate the instantaneous frequency (IF) of the
signal.

𝑤𝑓 (𝑎, 𝑏) = −𝑖 (𝑊𝑓 (𝑎, 𝑏))−1 𝜕𝜕𝑏𝑊𝑓 (𝑎, 𝑏) (4)

(3) Discretize scaling factor 𝑎 and compute the𝑊𝑓(𝑎, 𝑏)
for any 𝑎𝑘.

(4) Compress and rearrange the coefficients of WT. The
information can be transformed from the time-scale
plane to the time-frequency plane; moreover, the IF
can be extracted in this step.

𝑇𝑓 (𝑤𝑙, 𝑏)
= (Δ𝑤)−1 ∑

𝑎𝑘 :|𝑤(𝑎𝑘 ,𝑏)−𝑤𝑙|≤Δ𝑤/2

𝑊𝑓 (𝑎𝑘, 𝑏) 𝑎−3/2𝑘 (Δ𝑎)𝑘 (5)

where Δ𝑤 = 𝑤𝑙 − 𝑤𝑙−1 and 𝑎𝑘 − 𝑎𝑘−1 = Δ𝑎𝑘.
Equation (5) reveals that the TF representation is

obtained by “synchrosqueezing” along scale direction at the
narrow band [𝑤𝑙 − Δ𝑤/2, 𝑤𝑙 + Δ𝑤/2] with central frequency𝑤𝑙, i.e., the scaling factor 𝑎 and the IF 𝑤𝑓(𝑎, 𝑏) are “binned”
once the equation is computed.
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Figure 2:The time-frequency curve of the ECG fragment when the center frequency is 25hz. (a)The TF-planeWT-based of J wave-positive.
(b)TheTF-planeWT-based of J wave-negative. (c)TheTF-plane SST-based of J wave-positive. (d)TheTF-plane SST-based of J wave-negative.

3.1.2. The Parameter Selection of SST. SST is an improvement
based on CWT.The choice of wavelet basis and the setting of
wavelet base parameter make great differences to the results
of CWT. In [25], It is proved that the wavelet base has
much more smaller effect on SST compared with CWT and
it is another advantage of SST. Morlet wavelet is carried in
this paper, and we set the center frequencies of the wavelet
basis are 25hz, 35hz, and 45hz, respectively to find the best
center frequency of Morlet wavelet. The TF curve of J wave-
positive and J wave-negative signal obtained by WT and SST
at different center frequencies is revealed in Figures 2–4.

The TF-plane WT-based is obtained by (4). It can be
shown from Figures 2–4 that the TF-plane derived from
the WT is subjected to a poor TF resolution and smearing
effect along frequency axis is serious. In contrast, the TF
resolution SST-based is more focused and more energy-
intensive. Besides, when the center frequency of wavelet
basis is 35hz, we obtain the best TF resolution. Since the
excellent performance of SST to achieve a high-precision TF
resolution, we choose the results of SST as the first kind
of feature to realize the automatic detection of J wave. SST
can avoid frequencymixing effectively. Even the decomposed
signal is contained of modes with relatively close frequency,
SST can still extract them.This powerful function is based on
the precise reconstruction theory of SST and the theories are
as follows.

For any signal 𝑓(𝑡), it can be indicated as 𝑓(𝑡) =∑𝐾
𝑘=1 𝐴𝑘(𝑡)𝑒𝑖𝜙𝑘(𝑡) + 𝜑(𝑡) and the continuous form of 𝑓(𝑡) SST-

based is as follows:

𝑆𝛿𝑓,𝜀 (𝑏, 𝑤)
= ∫

𝐴𝜀,𝑓(𝑏)

𝑊𝑓 (𝑎, 𝑏) 1𝛿 [
𝑤 − 𝑤𝑓 (𝑎, 𝑏)𝛿 ] 𝑎−3/2𝑑𝑎 (6)

where 𝜀 is threshold and 𝛿 is accuracy and 𝐴𝜀,𝑓(𝑏) = {𝑎 ∈𝑅+; |𝑊𝑓(𝑎, 𝑏)| < 𝜀}.
When 𝜀 is small enough, it suffices to reconstruct each

frequency mode signal with high precision [28]. That is, for
each 𝑘 = {1, 2, 3....𝐾}, constant 𝐶 can be found, for any 𝑏 ∈ 𝑅:


lim
𝛿→0

(𝑅𝜓−1 ∫
|𝑤−𝜙𝑘(𝑏)|<𝜀

𝑆𝛿𝑓,𝜀 (𝑏, 𝑤) 𝑑𝑤 − 𝐴𝑘 (𝑏) 𝑒𝑗𝜙𝑘(𝑏)


≤ 𝐶𝜀
(7)

where 𝑅𝜓 = √2𝜋∫ �̂�(𝜁)𝜁−1𝑑𝜁 and 𝜙𝑘(𝑏) is the center
frequency of every mode. The process to get the individual
frequency modal function is as follows:(1) Calculate the SST results of the original signal.(2) Calculate the frequency center of individual compo-
nent, that is, 𝜙𝑘(𝑏) [28].

(3) The discretized result of 𝑇𝑓(𝑤𝑙, 𝑏) in (5) can be
represented by �̃�𝑓(𝑤𝑙, 𝑡𝑚), where 𝑡𝑚 is the discrete time 𝑡𝑚 =𝑡0 + 𝑚Δ𝑡, with Δ𝑡 being the sampling interval and 𝑚 =0, 1, ...𝑛 − 1, n is the total number of modes contained in the
signal 𝑓(𝑡) [29].
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Figure 3:The time-frequency curve of the ECG fragment when the center frequency is 35hz. (a)The TF-planeWT-based of J wave-positive.
(b)TheTF-planeWT-based of J wave-negative. (c)TheTF-plane SST-based of J wave-positive. (d)TheTF-plane SST-based of J wave-negative.
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Figure 4:The time-frequency curve of the ECG fragment when the center frequency is 45hz. (a)The TF-planeWT-based of J wave-positive.
(b)TheTF-planeWT-based of J wave-negative. (c)TheTF-plane SST-based of J wave-positive. (d)TheTF-plane SST-based of J wave-negative.



6 BioMed Research International

(4) Calculate the individual component of 𝑓(𝑡). It can be
reconstructed from the �̃�𝑠(𝑤𝑙, 𝑡𝑚)using the inverseCWTover
a narrow frequency 𝜏 ∈ [𝜙𝑘−(1/2)Δ𝑤, 𝜙𝑘+(1/2)Δ𝑤] around
the 𝑘𝑡ℎ component [30]. It can be evaluated as follows:

𝑓𝑘 (𝑡𝑚) = 2𝑅−1𝜓 Re( ∑
𝜙𝑘∈𝜏

�̃�𝑆 (𝜙𝑘, 𝑡𝑚)) (8)

Here, we get five modes and the intrinsic modes of J wave-
positive and J wave-negative are provided in Figure 5.

It can be seen from Figure 5 that the amplitude and
frequency information of J wave-positive and J wave-negative
are distinguished significantly, especially at mode 3, mode 4,
and mode 5. It is evident that the frequency characteristics of
J wave-positive in mode 3, mode 4, and mode 5 are higher
compared to the corresponding mode of J wave-negative,
while the amplitude are lower.

The entropy features extracted in this paper are resulted
from these intrinsicmode functions. It is discussed in the next
subsection.

3.2. Nonlinear Entropy Feature Inverse SST-Based. Due to
the nonlinear properties of biological signals, researchers
tend to choose the theory of nonlinear dynamics, which are
effectivemethods, to analyze them.When studying biological
signals, entropy, as a kind of nonlinear feature, often makes a
good performance. Renyi entropy (RE), approximate entropy
(ApEn), and sample entropy (SampEn), for this reason, are
used in this study to implement J wave automatic detection.

3.2.1. Mode Renyi Entropy. In [31], Williams et al. introduced
the RE of TF distribution. RE can be used as a measure of
signal complexity at frequency domain, and the essence of
signal can be researched by counting the RE of the signal at
frequency domain [32]. Suppose that 𝑋 is a random variable
with a finite number of values. Its probability distribution is𝑝 = {𝑝1, 𝑝2, ...𝑝𝑛} with 𝑤(𝑝) = ∑𝑝𝑖 ≤ 1, and its RE is defined
as

𝑅𝛼 (𝑝) = 11 − 𝛼 log2∑𝑖 𝑝𝛼𝑖∑𝑖 𝑝𝑖 (9)

When 𝛼 = 1, the first-order RE degenerates into Shannon
entropy. So, we regard RE as a more general form of infor-
mation entropy. The theoretical derivation and simulation
experiment in [33] concluded that when 𝛼 = 3, the
measurement of RE has the best stability.Therefore, the third-
order RE can describe the information of different signals
effectively. From what has been discussed above, we choose𝛼 = 3 in this article.

3.2.2. Mode Approximate Entropy. ApEn is a kind of nonneg-
ative quantitative description of the complexity of nonlinear
time series. The more complex time series correspond to the
greater value of ApEn [34]. Simultaneously, ApEn can obtain
stable statistics even though the data is short. It is also for
this reason, ApEn can achieve good performance in ourwork,
which is defined as

𝐴𝑝𝑒𝑛 (𝑚, 𝑟,𝑁) = 1𝑁 − 𝑚 + 1
𝑁−𝑚∑
𝑖=1

log𝐶𝑚+1
𝑖 (𝑟) (10)

where 𝐶𝑖
𝑚 is the correlation coefficient and it can be denoted

as

𝐶𝑖
𝑚 = 1𝑁 − 𝑚 + 1

𝑁−𝑚+1∑
𝑗=1

Θ(𝑟 − 𝑥𝑖 − 𝑥𝑗) (11)

where 𝑥𝑖, 𝑥𝑗 represent phase trajectory points and 𝑁, 𝑟, Θ,𝑚 denote the number of midpoint in the phase space, radial
length of a circular disk centered at the reference points, step
function, and embedding dimension, respectively [34].

The performance of the ApEn is related to the values of𝑁, 𝑚, and 𝑟. The results of the literature [34–36] show that
when 𝑚 is 2 and 𝑟 is 0.2 multiple of the standard deviation
of the data (SDNN), the value of ApEn has a steady statistical
properties. Accordingly, we take𝑚 = 2 and 𝑟 = 0.2 × 𝑆𝐷𝑁𝑁
in this work, respectively.

3.2.3. Mode Sample Entropy. Proposed by Richman and
Moornan, SampEn is similar to the ApEn but with higher
precision tomeasure the complexity of the time series. For the
sake of the value of SampEn, continuous matching of points
inside the threshold 𝑟 is done until the match does not exist
[34, 37]. The variables 𝐴(𝑘) and 𝐵(𝑘) for all lengths 𝑘 up to 𝑒
keep track of all matching templates. It is given by

𝑆𝑎𝑚𝑝𝐸𝑛 (𝑘, 𝑟,𝑁) = − ln 𝐴 (𝑘)𝐵 (𝑘 − 1) (12)

where 𝑘 = 0, 1, . . . , 𝑚 − 1 and 𝑁 is the length of the study
object. Similar to ApEn 𝑚 = 2, 𝑟 = 0.2 × 𝑆𝐷𝑁𝑁 are taken in
this paper, respectively [37].

3.3. Classification. Combining with his Bagging Integrated
LearningTheory proposed in 1996 and the random subspace
method proposed by Ho in 1998, Leo Breiman introduced
Random forest (RF) in 2001. RF is always regard as an
excellent ensemble classifier [38].The core of RF is to establish
many decision trees according to random features from
random samples with bagging strategy, and the final classi-
fication result is voted by these trees [39]. The classification
processes of RF are given as follows:(1) Adopt the technique of bootstrap resampling to
extract multiple samples from the original samples.(2) Build CART decision tree by selecting 𝐾 features
randomly from all features of above samples.(3) Repeat the upper two steps𝑚 times, which is to set up
the𝑚 CART decision trees.(4)Combinemultiple decision trees’ prediction and draw
a final classification results by voting.

RF is selected as the classifier to realize J wave automatic
detection in this paper, since it has the following excellent
properties compared to other classifiers:(1) RF can deal with high-dimensional data and weak
relevant data effectively [39–41].(2)There is no overfitting in RF [40].(3) It can draw the rank of importance of the features [40].
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Figure 5:The intrinsic mode of J wave-positive and J wave-negative (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4, and (e) mode 5.The red
lines stand for J wave-positive and the blue lines stand for J wave-negative.

(4) There are less parameters which need to set in RF
compared to other state-of-the-art classifiers. The number of
the base decision trees is always the only variable need to set
in RF; according to the study in [42, 43], the number of the
base learners is set to 150 in this work.

4. Results

4.1. Analysis of Mode Entropy Features. In this subsection,
we have analyzed the entropy features from the statistical
perspective. The within-class variation of RE feature for J
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Figure 6: (a)The within-class variation of RE feature for J wave-negative frommode 1 to mode 5. (b)The within-class variation of RE feature
for J wave-positive from mode 1 to mode 5.
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Figure 7: (a) The mean of RE from mode 1 to mode 5; (b) the standard deviation values of RE from mode 1 to mode 5.

wave-negative and J wave-positive class frommode 1 tomode
5 is shown in Figures 6(a) and 6(b). Figures 7(a) and 7(b)
depict the mean and the standard deviation values of RE.
The results reveal that the mean and the standard deviation
values of the J wave-positive episodes are higher than J wave-
negative. In the analyses of the statistical significance of these
features from mode 1 to mode 5, we have used Welch's two-
tailed t-test technique [44, 45] by means of SPSS statistical
analysis software. By doing this, t-value and p-value can be
obtained, which are typically used to quantify the idea of
statistical significance.The t-value and the p-value of RE from
mode 1 to mode 5 have been listed in Table 2. The high t-
value and the low p-value show that the discrimination of
RE between J wave-negative and J wave-positive subjects are
significant.

The within-class variation of ApEn and SampEn feature
for J wave-negative and J wave-positive class from mode 1
to mode 5 is shown in Figures 8(a), 8(b), 10(a), and 10(b),
respectively. The mean and the standard deviation values of
ApEn and SampEn are shown in Figures 9(a), 9(b), 11(a), and
11(b), respectively. From these figures, we have shown that

the statistical features of ApEn and SampEn are significantly
different for J wave-negative and J wave-positive episodes.
The J wave-positive class has higher standard deviation
values at mode 1 to mode 5, while inverse tendencies in
the mean value of ApEn and SampEn from mode 1 to
mode 5 are observed. The t-value and the p-value of ApEn
and SampEn from mode 1 to mode 5 have been revealed
in Tables 3 and 4. The p-values of the ApEn feature at
mode 1, mode 2, and mode 5 are 0.003, 0.007, and 0.002,
respectively. However, the p-values of the SampEn at mode
1 to mode 5 are less than 0.001; thus, the SampEn may
have better performance in the process of the classification.
Anyway, the entropy features are statistically significant for
classification of J wave-negative and J wave-positive class
from ECG and these features are suitable for detection of J
wave-positive.

4.2. Performance Metrics. The following five types of per-
formance evaluation indicators are used to evaluate the
effect of the proposed method for ECG J wave detection
[44, 46, 47]:
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Table 2: The t-value and the p-value of RE from mode 1 to mode 5.

Features RE M1 RE M2 RE M3 RE M4 RE M5
t-value 20.82 19.95 18.64 19.89 17.96
p-value <0.001 <0.001 <0.001 <0.001 <0.001

Table 3: The t-value and the p-value of ApEn from mode 1 to mode 5.

Features ApEn M1 ApEn M2 ApEn M3 ApEn M4 ApEn M5
t-value 8.07 6.54 13.75 12.69 9.32
p-value 0.003 0.007 <0.001 <0.001 0.002
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Figure 8: (a) The within-class variation of ApEn feature for J wave-negative from mode 1 to mode 5. (b) The within-class variation of ApEn
feature for J wave-positive from mode 1 to mode 5.
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Figure 9: (a) The mean of ApEn from mode 1 to mode 5; (b) the standard deviation values of ApEn from mode 1 to mode 5.

Table 4: The t-value and the p-value of SampEn from mode 1 to mode 5.

Features SampEn M1 SampEn M2 SampEn M3 SampEn M4 SampEn M5
t-value 26.89 25.78 28.37 24.56 27.53
p-value <0.001 <0.001 <0.001 <0.001 <0.001
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Figure 10: (a) The within-class variation of SampEn feature for J wave-negative from mode 1 to mode 5; (b) the within-class variation of
SampEn feature for J wave-positive from mode 1 to mode 5.
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Figure 11: (a) The mean of SampEn from mode 1 to mode 5; (b) the standard deviation values of SampEn from mode 1 to mode 5.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖V𝑖𝑡𝑦 (𝑆𝑒) = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 × 100%
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑝) = 𝑇𝑁𝑇𝑁 + 𝐹𝑃 × 100%
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 × 100%
𝑀𝑎𝑡𝑡ℎ𝑒𝑤𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑀𝐶𝐶)

= 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√(𝑇𝑃 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁) (𝑇𝑃 + 𝐹𝑁) (𝑇𝑁 + 𝐹𝑃)

(13)

where true positive (TP) and false negative (FN) stand for
the number of heartbeats of J-positive which have been
classified correctly and incorrectly, respectively, while true
negative (TN) and false positive (FP) stand for the number of
heartbeats of J-negative which have been classified correctly
and incorrectly, respectively. An ideal classification system
should have lowered both FN and FP, so that it achieves
high Se, high Sp, and high ACC as well as high MCC. In

addition, the area under the receive operating characteristic
curve (AUC) is used in our work to achieve more objective
evaluation results and the higher the value of AUC, the more
desirable the classification system.

4.3. Experimental Results. Firstly, we compared the presented
method in this paper with some existing techniques and the
results are listed in Table 5.

Table 5 revealed that the proposed method outperforms
the methods reported in [13, 14]. The proposed method has
achieved the highest ACC, Se, Sp, MCC, and AUC of 96.9%,
96.5%, 95.8%, 0.923, and 0.957, respectively. Besides, the
databases of [13, 14] are too small. In [13] the database is
comprised of 100 resting 12-lead samples. In [14] the training
set contains 100 samples and the test set contains 116 samples,
which results in the results of the experiment having no
generality.

Secondly, the previous method we have reported in [15,
16] has been evaluated with the latest collected data and the
results are shown in Table 6.
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Figure 12: The ranking results of features extracted in this paper.

Table 5: The results of existing techniques.

Method ACC (%) Se (%) Sp (%) MCC AUC
Clark et al. [13] 91.3 89.5 94.5 0.840 0.893
Wang et al. [14] 89.6 88.5 87.8 0.760 0.852
The proposed method 96.9 96.5 95.8 0.923 0.957

Table 6: The results of the the previous method we have reported using the latest data.

Method ACC (%) Se (%) Sp (%) MCC AUC
Li and Liu et al. [15] 92.6 93.2 93.9 0.870 0.928
Li and Bai et al. [16] 93.4 91.3 92.2 0.850 0.899
The proposed method 96.9 96.5 95.8 0.923 0.957

Table 6 revealed that the proposed method has achieved
the highest ACC, Se, Sp, MCC, and AUC, which proved the
effectiveness of the proposedmethod to realize the automatic
detection of J wave.

5. Discussion

In this subsection, the effect of different features on the
classification results has been discussed firstly. RF can rank
features according to the importance of the features; this
is one of the superiorities of the RF. Figure 12 depicts
the ranking results. It is observed from Figure 12 that the
time-frequency feature based on SST outperforms the other
features. In the nonlinear entropy feature, the RE has the
best performance and the effect of the SampEn is better than
the ApEn. The RE feature emphasizes the spectral variation
combined with the excellent time and frequency property of
SST.Thismay be the reason for which the RE is ranked first in
entropy feature. The received operating characteristic (ROC)
curves of RF classifier for various features are provided in
Figure 13. It can be seen that the RF classifier has the highest
AUCwhen it is fed to all features (time-frequency feature, RE,
ApEn, and SampEn feature) and the area is 0.957. The rest of
area under ROC curves are 0.951, 0.809, 0.721, and 0.702 and
the corresponding features are time-frequency feature, RE,
ApEn, and SampEn feature, respectively, which is consistent
with our earlier analysis.

In addition, the computational efficiency and detection
results of different classifiers are discussed in this subsection.
Table 7 reveals the ACC, the value ofMCC, AUC, the training

time, and the testing time using the features extracted in
this paper to different classifiers. For RF, the numbers of
base learners are set as 100, 150, and 300, respectively.
For K-Nearest Neighbour (KNN), the k is set as 6 [48].
For support vector machines (SVM), the idea of 10-fold
cross validation and the grid-search is adopted to get the
satisfactory parameter 𝛾 in radial basis function (RBF) and
the penalty factor 𝐶, which had the shortest time-consuming
[49, 50].

It can be seen from Table 7 that the RF is more time-
consuming than KNN and DT in training sets, since it
needs to establish many decision trees and votes for samples
through the trees in the process of the training. It can also be
observed that as the number of base learners increases, the
training time and the testing time increase linearly. However,
the testing time of RF is far less than its training time. In
application, the testing time is more important, since the
offline data is usually adopted in the process of testing.When
the number of base learners is 150, theRF achieved the highest
ACC,MCC, andAUCof 96.9%, 0.923, and 0.957, respectively,
compared with other classifiers, which proved the sensible of
choosing the classifier in our paper. Although SVM achieved
comparable classification results to RF, its time consumption
was much greater than that of RF.

6. Conclusion

A new method is proposed in this paper to achieve the
automatic detection of J wave. The experimental results
have proved that the proposed method can detect the J
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Table 7: The ACC, MCC, AUC, and training and testing time (in seconds) of different classifiers.

Classifier ACC MCC AUC Training time Testing time Total time

RF
75 90.9% 0.819 0.875 28.583 2.735 31.318
150 96.9% 0.923 0.957 56.879 5.625 62.504
300 94.1% 0.896 0.913 113.427 9.673 123.100

KNN (K=2) 87.63% 0.712 0.846 0.953 45.797 46.750
DT 85.6% 0.672 0.823 2.9041 0.052 2.993
SVM 95.0% 0.908 0.935 84.475 45.539 130.014

Figure 13: The ROC curve of RF classifier for various features.

wave automatically and accurately. What is more, it pro-
vides a reliable foundation for the clinical diagnosis. We
introduced time-frequency domain features and nonlinear
entropy features (RE, ApEn, and SampEn) in the process of
the feature extraction, after that, the RF is utilized in the
stage of classification. The entropy features are computed by
the modes of the ECG, which are evaluated by the inverse
transformation of SST.

Compared with the existing techniques, the advantages
of the proposed method are as follows. It is the first time
to obtain the intrinsic mode function of ECG though SST.
The good time-frequency characteristics and the perfect
reconstruction ability of SST make it a powerful tool to
discriminate J wave-negative and J wave-positive from ECGs.
Combined with RF, which is a kind of ensemble classifiers
with great performance, we obtain the best results to realize
the automatic detection of J wave.

In the future, the work can be extended in two aspects:(1) The developed methodology can be applied to the
diagnosis and recognition of other heart diseases, even other
biosignals, such as electroencephalogram(EEG).(2) Feature selection can be studied to further improve
the computational efficiency of J wave automatic detection.
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