
RESEARCH ARTICLE

Big Data in metagenomics: Apache Spark vs

MPI

José M. Abuı́nID
1,2*, Nuno LopesID

1, Luı́s FerreiraID
1, Tomás F. PenaID

2, Bertil Schmidt3

1 2Ai—School of Technology, IPCA, Barcelos, Portugal, 2 CiTIUS, Universidade de Santiago de Compostela,

Santiago de Compostela, Spain, 3 Department of Computer Science, Johannes Gutenberg University, Mainz,

Germany

* josemanuel.abuin@usc.es

Abstract

The progress of next-generation sequencing has lead to the availability of massive data sets

used by a wide range of applications in biology and medicine. This has sparked significant

interest in using modern Big Data technologies to process this large amount of information

in distributed memory clusters of commodity hardware. Several approaches based on solu-

tions such as Apache Hadoop or Apache Spark, have been proposed. These solutions

allow developers to focus on the problem while the need to deal with low level details, such

as data distribution schemes or communication patterns among processing nodes, can be

ignored. However, performance and scalability are also of high importance when dealing

with increasing problems sizes, making in this way the usage of High Performance Comput-

ing (HPC) technologies such as the message passing interface (MPI) a promising alterna-

tive. Recently, MetaCacheSpark, an Apache Spark based software for detection and

quantification of species composition in food samples has been proposed. This tool can be

used to analyze high throughput sequencing data sets of metagenomic DNA and allows for

dealing with large-scale collections of complex eukaryotic and bacterial reference genome.

In this work, we propose MetaCache-MPI, a fast and memory efficient solution for comput-

ing clusters which is based on MPI instead of Apache Spark. In order to evaluate its perfor-

mance a comparison is performed between the original single CPU version of MetaCache,

the Spark version and the MPI version we are introducing. Results show that for 32 pro-

cesses, MetaCache-MPI is 1.65× faster while consuming 48.12% of the RAM memory used

by Spark for building a metagenomics database. For querying this database, also with 32

processes, the MPI version is 3.11× faster, while using 55.56% of the memory used by

Spark. We conclude that the new MetaCache-MPI version is faster in both building and que-

rying the database and uses less RAM memory, when compared with MetaCacheSpark,

while keeping the accuracy of the original implementation.

Introduction

Continuous advances in next generation sequencing (NGS) technologies have led to a constant

production of huge amounts of genomic data. These big quantities of data need to be analyzed

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Abuı́n JM, Lopes N, Ferreira L, Pena TF,

Schmidt B (2020) Big Data in metagenomics:

Apache Spark vs MPI. PLoS ONE 15(10):

e0239741. https://doi.org/10.1371/journal.

pone.0239741

Editor: Francisco Martı́nez-Álvarez, Pablo de

Olavide University, SPAIN

Received: May 6, 2020

Accepted: September 14, 2020

Published: October 6, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0239741

Copyright: © 2020 Abuı́n et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and on GitHub (https://

github.com/jmabuin/metacache-mpi).

Funding: This work has been funded by Xunta de

Galicia under grant ED481B 2018/013 which was

http://orcid.org/0000-0001-9771-818X
http://orcid.org/0000-0001-8897-5061
http://orcid.org/0000-0001-9635-5372
http://orcid.org/0000-0002-7622-4698
https://doi.org/10.1371/journal.pone.0239741
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239741&domain=pdf&date_stamp=2020-10-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239741&domain=pdf&date_stamp=2020-10-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239741&domain=pdf&date_stamp=2020-10-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239741&domain=pdf&date_stamp=2020-10-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239741&domain=pdf&date_stamp=2020-10-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239741&domain=pdf&date_stamp=2020-10-06
https://doi.org/10.1371/journal.pone.0239741
https://doi.org/10.1371/journal.pone.0239741
https://doi.org/10.1371/journal.pone.0239741
http://creativecommons.org/licenses/by/4.0/
https://github.com/jmabuin/metacache-mpi
https://github.com/jmabuin/metacache-mpi


and interpreted by domain scientists in order to obtain research results or provide proper

diagnosis to patients. However, corresponding processing times can vary from several hours to

even days. In addition, more detailed analysis may not be carried out because of large memory

requirements that often exceed the capacity of individual workstations or even shared memory

multiprocessors.

Selecting a suitable technology to deal with a critical resource (CPU time, amount of mem-

ory, etc.) can be a decisive factor that has significant influence on performance in large-scale

NGS processing pipelines. Traditionally, these problems have been addressed by using HPC

and low level programming languages, such as C, C++ or Fortran [1–3]. Recently, Big Data

technologies such as Apache Hadoop [4] and Apache Spark [5, 6] are being employed. They

allow the usage of high-level programming languages, such as Java, Python, or Scala, while

providing ease of use and performance [7–11].

For many areas, the decision of which technology to use is not clear. Apache Spark offers an

easy-to-use programming interface that allows the programmer to deal with large amounts of

data in a quick, parallel, and easy way. These characteristics can be useful when dealing with

scientific problems that need to perform simple operations on huge volumes of data. On the

other hand, for High Performance Computing (HPC) environments, other alternatives, such

as MPI (Message-Passing Interface) [12], can be more appropriate [13–16]. When the opera-

tions to be performed on the data are complex and require more time and memory resources,

the use of Big Data technologies may not provide the desired performance. This last statement

is investigated in this work by conducting a comparison between Spark and MPI using meta-

genomics as a case study.

Metagenomics can be widely defined as the study of genetic material gathered directly from

environmental samples. In this work, the focus is set on the analysis of NGS data obtained

from high-throughput shotgun sequencing of DNA samples from foodstuff, called All-Food-

Sequencing (AFS) [17, 18]. AFS allows for the detection and quantification of food ingredients

and microbiota. In comparison to traditional techniques such as quantitative real-time poly-

merase chain reaction (qPCR) [19], AFS has the ability to screen for a wide range of species as

it does not require any prior definition of possible target species.

However, the original AFS pipeline [17, 18] relies on a read alignment tool (such as BWA

[20–22], Bowtie2 [23], or CUSHAW [3]) for each considered reference genome. Thus, runtime

increases linearly with the number of considered species, which makes this approach unsuit-

able for broad-scale screening with large amounts of reference genomes from various king-

doms of life.

Recent publications [24, 25], show that a k-mer-based exact matching approach can achieve

high classification accuracy while being orders-of-magnitude faster than the alignment-based

AFS pipeline. It relies on building a database of substrings of length k of each considered refer-

ence genome. A sequencing read is then classified by querying the database using its k-mers

as queries. If a query returns a match, corresponding counters for the matching reference

genomes are incremented. Finally, a read is taxonomically labeled based on high-scoring coun-

ters and coverage analysis.

While similar approaches have worked well for metagenomic analysis of bacterial genomes

(e.g. [26, 27]), the significantly higher complexities of eukaryotic reference genomes, relevant

for monitoring food ingredients, makes the adaption of this method to food-monitoring

challenging. The software that comes with these publications is MetaCache. It employs an

intelligent subsampling of k-mers based on minhashing in order to reduce both memory con-

sumption and database construction times. Nevertheless, when considering large-scale refer-

ence genome collections, this solution is still limited by the available memory on a single

workstation. To deal with this limitation, it is possible to split the database into multiple parts,

PLOS ONE Big Data in metagenomics: Apache Spark vs MPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 2 / 20

awarded to José M. Abuin. This project was also

funded by national funds (PIDDAC), through the

FCT - Fundação para a Ciência e Tecnologia and

FCT/MCTES under the scope of the project UIDB/

05549/2020 and UIDP/05549/2020 and by the

project ‘‘NORTE-01-0145-FEDER-000045’’,

supported by Northern Portugal Regional

Operational Programme (Norte2020), under the

Portugal 2020 Partnership Agreement, through the

European Regional Development Fund (FEDER).

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0239741


consequently lowering the classification speed. Alternatively, it is possible to use the Apache

Spark based version of this approach, named MetaCacheSpark, as presented in [25].

The huge amount of memory consumed by this approach, together with its high computa-

tion time, are the elements that make this case an ideal candidate for this study. Starting from

this approach, an MPI variant has been developed and a comparison with both the Spark vari-

ant and the original MetaCache implementation (using a sequential approach) has been made.

Our results show that memory consumption depends on the utilized technology and on the

programming language [28]. Furthermore, the speed is quite different between technologies.

Experiments running MPI show an improved memory usage, some times being reduced down

to 50%, while, at the same time, being faster by a factor of 2× or 3×, in all the phases involved

in the AFS metagenomic analysis.

Background

Scientific applications can be roughly divided into two groups: those that use complex models

applied over a small set of data and those that have to analyze a large amount of information.

The former often emerges in fields such as Engineering, Physics, or Climatology, while the

latter are typical of areas like Bioinformatics, Remote sensing, Sociology, or Management.

Modelling a complex system requires the use of High-Performance Computing (HPC) infra-

structures, made up of powerful high-end machines with high-bandwidth low-latency net-

works (like Infiniband or Aries interconnect) and complemented with coprocessors such as

GPUs or FPGAs. On the other hand, analysis of very large amounts of data can be performed

using Big Data technologies, that are typically built on top of “commodity” hardware: large

clusters of low-end machines (or virtual machines in a cloud) linked together using high-

latency traditional LAN network (mostly Ethernet based).

Nowadays, the HPC community is involved in a race between companies, institutions, and

research centres to reach the exascale milestone. Exascale computing refers to supercomputers

capable of executing 1018 floating point operations per second (FLOPs), i.e., one exaFLOP per

second. To reach this performance, future supercomputers require data delivery to be fast and

efficient, both from memory and disk, and also across the network and between processors.

This is a difficult task to achieve in big supercomputers, and also in large computations, like

those present in scientific and data analytics problems. Also, developers will need exascale

Application Programming Interfaces (APIs) to facilitate the exploitation of exceptional

amounts of parallelism in applications, to enable the processing of significant amounts of data,

and to support different architectures, including those based upon heterogeneous cores or

accelerators. Those APIs and their implementations will need to carefully manage different

kinds of memories within each node. Moreover, the need to conserve energy has led to an

increased focus on reducing data motion at all levels of the memory hierarchy, from low cache

levels to main memory, requiring a rethinking of algorithms as well as of the entire HPC soft-

ware stack. In addition, exascale execution software systems will need to ensure that jobs con-

tinue to run despite the occurrence of system failures and other kinds of hardware or software

errors.

Big Data technologies, on the other hand, have become increasingly popular, and their

usage is not longer restricted to data analytics, but has been successfully used in fields like bio-

informatics [7–11, 15], chemistry [29, 30], or medicine [31, 32]. Technologies like Apache

Hadoop [4] or Apache Spark [5] offer a scalable way to process enormous amounts of data in

large clusters of “cheap” computers or virtual machines in the cloud, using simple program-

ming models. To improve scalability in systems with high latency networks, these technologies

bring computing to data, making use of distributed file systems like HDFS [33] and trying to

PLOS ONE Big Data in metagenomics: Apache Spark vs MPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 3 / 20

https://doi.org/10.1371/journal.pone.0239741


process in each node only the information that lives close to it. Besides, to cope with the fre-

quent failures of low-end computers, these technologies implement fault-tolerant mechanisms

that guarantee that the jobs will continue running in the presence of hardware or software fail-

ures. Finally, Big Data processing technologies use parallel programming paradigms (such as

MapReduce or graph execution models) that allow programmers to focus on the problem at

hand, without having to deal with explicit I/O or data exchange among processors.

MPI vs Spark

HPC systems and Big Data platforms rely on different programming paradigms [34]. For HPC

systems, the Message Passing Interface (MPI) [12] remains the standard for large-scale parallel

computing. MPI defines an interface that specifies the synchronization and data exchange of

messages across nodes within a cluster. MPI function calls allow the programmer to specify

the message contents to be exchanged. The functions are explicitly stated and are implemented

through libraries that handle the inter-node communication.

In the case of Big Data, Apache Spark is one of the most popular technologies. Spark is

based on a graph execution model, in which computation is represented by a Directed Acyclic

Graph (DAG) of tasks. From the source code, Spark creates a logical plan, which is a DAG rep-

resenting the operations to be carried out. Then, this logical plan is optimized and a physical
plan, which specifies how the logical plan will execute on the cluster, is created [35].

Spark expresses parallelism by means of data structures, namely DataFrames, DataSets and

RDDs (Resilient Distributed Dataset) that either are automatically partitioned and distributed

across the cluster nodes or have been previously stored in a distributed file system, for exam-

ple, HDFS. A driver process is in charge of distributing work across the executors, which are

daemons running at each node and that manage the local execution of operations on local

data. Spark relies on a cluster manager (usually YARN [36] or Mesos [37]) to control physical

machines and allocate resources to applications.

Both technologies were designed for distributed memory systems, composed of multiple

nodes with local independent memory. In terms of the programming model, Spark follows a

global shared memory design, where DataFrames, DataSets or RDDs are used as global vari-

ables over a sequential program. All the data distribution and message transfer is under the

control of the Spark engine. On the other hand, MPI usually follows a SPMD (Single Program,

Multiple Data) model, with multiple autonomous processors simultaneously executing the

same program, sending and receiving messages to and from each other, all under the program-

mer control. It is the developer’s responsibility to distribute the data and to design the message

exchange calls in such a way that the execution of the same program on all nodes achieves the

desired outcome.

Thus, programming with MPI requires the developer to take explicit control of the individ-

ual node states and communication patterns. On the other hand, Spark’s design is simpler for

the developer, since it just needs to specify a sequential program behaviour that automatically

generates local execution tasks to be distributed across nodes by the engine itself. Another

added value from using Spark is the fault tolerance feature of the data and computation, i.e., if

a node fails, Spark will recover the data and recompute as necessary, whereas fault tolerance

must be explicitly built on MPI programs.

A main drawback of Apache Spark is that its programming model may not be suitable for

all problems, e.g. irregular ones. Programmers have to express their algorithms as a set of

transformations and actions over Spark data structures, having limited control over data parti-

tioning and computing distribution. MPI, instead, provides much greater flexibility, being

suitable for most algorithms, at the cost of a greater programming effort.

PLOS ONE Big Data in metagenomics: Apache Spark vs MPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 4 / 20

https://doi.org/10.1371/journal.pone.0239741


Implementation

In this section details about the implementation of MetaCache-MPI will be presented. Two of

the functionalities from the original MetaCache algorithm have been developed in MPI: data-

base construction/building and database querying/classification. The main goal is to reduce

memory consumption and computing times for both of these phases.

Parallel building phase

The original MetaCache approach is to build a huge hashmap by applying a technique named

minhashing, as described in [24]. In order to build the database from a set of input reference

genomes it follows these steps:

1. Read and build the given input taxonomy.

2. Add the input sequences to the database (hashmap). Meanwhile, look up for the parent

sequence and update the taxonomy.

3. Rank targets that remain unranked in the database by using external post-process files.

4. Remove overpopulated features from the database (optional).

5. Write database to disk.

MetaCache-MPI performs Step 2 in parallel by splitting the number of sequences among

the MPI processes which reduces the amount of memory needed per node. At the same time,

it will reduce the computing time needed to build the database. To do this, each process reads

the input sequences from the input files as in the sequential case, as the sequences are needed

to build the full taxonomy. However, only the sequences that correspond to the current MPI

process will be added into the local hashmap. In this way, each process will contain a portion

of the huge hashmap from the original case.

In order to determine whether a sequence belongs to an MPI process or not, a Round

Robin algorithm is used. According to this algorithm, sequence read number s will be added

to MPI process number s mod N, being N the total number of MPI processes. In this way,

sequence 0 will be added into process 0, number 1 into process 1, and so on. Sequence N will

be added again in process 0, and this Round Robin algorithm continues until there are no

more sequences left.

Steps 3 to 5 are run in a sequential way in all the MPI processes, except for step number 4,

which requires a reduction phase. This reduction is needed because the number of items that

belong to each key has to be known. If certain key goes beyond a given number of items, it can

be deleted in all the MPI processes local hashmaps. This fact is related to the remove overpopu-
lated features, explained in later sections.

In order to perform this kind of reduction operations MPI provides some useful functions.

However, in this case, it is not possible to use them. For example, to use MPI_Reduce, the same

number of items must be present in each one of the MPI processes, and that is not the case. A

workaround can be a combination of MPI_Gather and MPI_Bcast to gather all items into MPI

process number 0, do the reduction and send the result to all the other processes. However,

one of the parameters of MPI_Gather is an integer that represents the number of items, and in

this case, the number of items can be larger than the maximum value of the integer type.

Because of these limitations, the use of an alternative is required. There are some known

solutions for this problem, for example, to define specific data types, but this is not suitable for

this case, as it is not possible to know the specific size that this new data type is going to need.

PLOS ONE Big Data in metagenomics: Apache Spark vs MPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 5 / 20

https://doi.org/10.1371/journal.pone.0239741


To overcome this problem our approach is to reduce the number of items per hashmap key

in one of the MPI processes (Process 0) and then broadcast to all processes the list of keys that

must be removed, but without using MPI_Gather. To do this, it is necessary to perform specific

send/receive calls in the processes to get the needed data in the MPI Process 0. This is a slow

process, as each one of the MPI processes is sending its data to process 0 in a sequential way.

Thus, we have implemented a custom reduction algorithm to deal with this situation.

This customized algorithm requires each MPI process to be classified as a sender or a

receiver. This behaviour is illustrated in Fig 1 using an example. In the first iteration of this

example, Process 1 sends data to Process 0, Process 3 to Process 2, and so on. In the next itera-

tion Process 2 becomes a sender, and sends data to Process 0, meanwhile Process 4 (which is

now a sender) stays without performing any action, as it still does not have a receiver to send

its data to. In the third and final iteration, Process 4 sends its data to Process 0, finalizing the

reduction process. At the end, all the data is stored at Process 0, which was this algorithm final

goal. If a traditional send/receive algorithm is used here, the total number of iterations would

be 5, this is, the total number of processes minus one.

Parallel classification phase

The distributed hashmap from the building phase is stored in a number of files equal to the

number of MPI processes being used. At the start of the classification phase each process loads

one of the database files to main memory and, in this way, reads the partial hashmap and the

full taxonomy.

After that, the steps involved in the classification are:

1. Once the partial hashmaps have been read by the distributed processes, all the processes

start to read the input sequences to be classified. It is important to notice here that all the

processes are going to read all the input sequences and store partial results from their piece

of the distributed hashmap. At this phase, each one of the MPI processes can use various

threads, where each thread handles a given number of input sequences. Each thread

accesses the hashmap and stores the possible candidates in the same way as in the original

version.

2. Results from the previous phase are partial, and they need to be grouped. So, another reduc-

tion is needed in order to obtain the global results. To do this, the reduction algorithm that

has been used in the construction phase is performed again, but now using the data of the

possible candidates instead of the data used to get the overpopulated features during build-

ing. It is important to notice that this reduction phase is not multi-threaded, as there are

possible deadlocks in the process.

Fig 1. Reduction algorithm example.

https://doi.org/10.1371/journal.pone.0239741.g001

PLOS ONE Big Data in metagenomics: Apache Spark vs MPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 6 / 20

https://doi.org/10.1371/journal.pone.0239741.g001
https://doi.org/10.1371/journal.pone.0239741


3. After the reduction process, all the global results are going to be stored in the Process 0,

where the final global candidates are obtained in the same way than the original MetaCache

tool. In this final process, the same number of threads than in Phase 1 are used.

4. Process 0 writes to disk the obtained results.

5. If more sequences are left, the algorithm goes back to Step 1.

To better explain this process, a small example is shown in Fig 2, where the X in Step 1 is

the first sequence to classify in the current iteration. In this example, two MPI processes are

used to perform this phase, Process 0 and Process 1. Each one of these two processes is using 4

threads. At Step 1 each thread processes S sequences, but all the MPI processes are going to

take as input the same sequences. As 4 threads are being used, the total amount of sequences

processed is 4 × S. It is important to notice here that this S parameter can be configured by the

user, and it should be set according the total number of sequences. In Step 2 the partial results

are obtained, and the reduction process is performed. After that, in Step 3, four threads are

used again to get the best candidates from the reduction phase. Again, each thread is in charge

of process results for S sequences. In the next step, MPI Process 0 is responsible of writing the

final results, as this is the only process that has all the results. Finally, if more sequences are

left, the algorithm goes back to Step 1.

Results

In this section the results about performance and quantification of MetaCache-MPI are pre-

sented, including a comparison with MetaCacheSpark. In order to provide a fair comparison

between MPI and Spark solutions, the same hardware infrastructure is employed. In this case,

we use a Big Data cluster composed of 12 Dell EMC PowerEdge R730 servers, each one with a

dual Xeon E5-2630v4 (2.2GHz 10 cores) CPUs with 384 GB RAM and 32 TB HDDs, running

Java version Openjdk 1.8.0_201, gcc 7.3.1, Spark 2.2.0, and Hadoop 2.7.3. Regarding MPI, the

used version was OpenMPI 3.0.2. The cluster network is a 10 GB BaseT ethernet. This infra-

structure may not the best choice in terms of MPI performance, but, as was stated at the begin-

ning of this paragraph, the main goal is to carry out a fair comparison.

Furthermore, in order to analyze the scalability of the MPI version we use a HPC infrastruc-

ture, the cluster FinisTerrae II available at the Galician Supercomputing Center (CESGA,

www.cesga.es). This cluster is composed by 306 nodes, each with 2 Haswell 2680v3 processors

(24 cores) and 128 GB of RAM memory. These nodes are connected with an Infiniband

FDR@56Gbps network. Software versions are gcc 6.4.0 and OpenMPI 2.1.6. This cluster also

Fig 2. Classification example.

https://doi.org/10.1371/journal.pone.0239741.g002

PLOS ONE Big Data in metagenomics: Apache Spark vs MPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 7 / 20

https://www.cesga.es
https://doi.org/10.1371/journal.pone.0239741.g002
https://doi.org/10.1371/journal.pone.0239741


has other kind of nodes with accelerators, but for these experiments only the indicated type of

nodes have been used.

Parameters used during executions

The following parameters have been used during the experiments, as they are the same as used

in [25]. For building:

• -remove-overpopulated-features: Removes from the database features that have more than

a given number of items (default is 254). This parameter was introduced in previous sec-

tions, and it is explained here. For animal genomes, it happens quite often that a given key

from the database is filled with locations from only a few or just a single animal, the ones

that are inserted first when building the database. This leads to a huge bias in the database.

For this reason, these full key values are discarded, in order to reduce the bias.

For classification:

• -abundance-per species: Groups final results per species and perform a re-distribution of

items classified above species level.

• -lowest species: The lowest common ancestor used for classification is at species level.

• -maxcand 4: The maximum number of candidates considered for classification is 4.

• -hitmin 4: The minimum number of hits to consider a candidate is 4.

• -hitdiff 80: Parameter used when classifying in order to determine possible candidates.

Input data

In order to measure performance and accuracy of the MetaCache-MPI, several databases of

varying size containing different organisms have been created. Food-related genomes (selec-

tion of main ingredients) used for database construction are listed in Table 1 while the consid-

ered bacteria, viruses, and archaea from NCBI RefSeq (Release 90) are summarized in Table 2.

The created databases with their included reference genomes are described in Table 3.

Ten short read data sets are used for testing the performance of the classification phase.

They were sequenced from calibrator sausage samples and were downloaded from ENA proj-

ect ID PRJNA271645 (Kal_D and KAL_D) and PRJEB34001 (all other data)). These ten sau-

sages data sets contain admixtures of a set of food relevant ingredients (chicken, turkey, pork,

beef, horse, sheep) sequenced on an Illumina HiSeq machine as described in [38]. Table 4

shows the read data sets together with the corresponding percentage of meat components used

during preparation. The samples comprise meat proportions ranging from 0.5% to 80% and

can be subdivided into two categories: Kal A-E consist only of mammalian meat, while KLyo

A-D represent Lyoner-like sausages containing poultry in addition to mammals [19, 39]. The

data set KAL_D is identical to Kal_D but sequenced with higher coverage.

MPI vs Spark performance results

For the comparison between the MPI and Spark approaches, two important measures should

be defined. First, the time spent for both database construction and database classification.

Second, the amount of RAM memory used in both phases. For the memory measurement, the

maximum amount (peak) in one of the processes is used as reference.

PLOS ONE Big Data in metagenomics: Apache Spark vs MPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 8 / 20

https://doi.org/10.1371/journal.pone.0239741


To perform these experiments, the biggest of the data sets has been used for building

(AFS31RS90), and also the biggest of the sequenced sausages data has been used for classifica-

tion (KAL_D).

Results about the execution time for building the database are presented in Fig 3. Here,

results with one process are obtained by using MetaCache [25]. In this figure we can see how

Table 1. Food-related reference genomes used for database construction.

Item Name ID # sequences Size on disk

1 Sus scrofa (pig) GCA_000003025.6 612 2.4 GB

2 Equus caballus (horse) GCF_000002305.2 9 636 2.4 GB

3 Meleagris gallopavo (turkey) GCF_000146605.2 231 286 1.2 GB

4 Mus musculus (house mouse) GCF_000001635.25 239 2.7 GB

5 Gallus gallus (chicken) GCF_000002315.4 464 1.1 GB

6 Ovis aries (sheep) GCF_000298735.2 5 466 2.5 GB

7 Rattus norvegicus (Norway rat) GCF_000001895.5 955 2.8 GB

8 Bos taurus (cattle) GCF_000003055.6 3 143 2.6 GB

9 Bubalus bubalis (water buffalo) GCF_000471725.1 366 982 2.8 GB

10 Oryctolagus cuniculus (rabbit) GCF_000003625.3 3 241 2.6 GB

11 Capreolus capreolus (Western roe deer) GCA_000751575.1 3 088 511 3.0 GB

12 Struthio camelus australis (African ostrich) GCA_000698965.1 6 914 1.2 GB

13 Anas platyrhynchos (mallard) GCF_000355885.1 78 488 1.1 GB

14 Capra hircus (goat) GCF_001704415.1 29 907 2.8 GB

15 Cervus elaphus hippelaphus (red deer) GCA_002197005.1 11 479 3.3 GB

16 Cavia aperea (Brazilian guinea pig) GCA_000688575.1 3 131 2.6 GB

17 Camelus ferus (Wild Bactrian camel) GCF_000311805.1 13 334 1.9 GB

18 Canis lupus familiaris (dog) GCF_000002285.3 3 268 2.3 GB

19 Felis catus (domestic cat) GCF_000181335.3 4 508 2.4 GB

20 Homo sapiens (human) GCF_000001405.38 594 3.1 GB

21 Equus asinus asinus (ass) GCA_003033725.1 9 021 2.2 GB

22 Rangifer tarandus (reindeer) GCA_004026565.1 1 360 739 2.9 GB

23 Phasianus colchicus (Ring-necked pheasant) GCA_004143745.1 39 677 987 MB

24 Glycine max (soybean) GCF_000004515.5 1 192 946 MB

25 Zea mays (maize) GCF_000005005.2 267 2.1 GB

26 Triticum aestivum (bread wheat) GCA_900519105.1 22 14.0 GB

27 Secale cereale (rye) GCA_900002355.1 1 581 707 1.8 GB

28 Hordeum vulgare (barley) GCA_004114815.1 1 856 3.8 GB

29 Oryza sativa Japonica Group (Japanese rice) GCF_001433935.1 58 362 MB

30 Arachis hypogaea (peanut) GCF_003086295.1 21 2.4 GB

31 Saccharomyces cerevisiae S288C (baker’s yeast) GCA_000146045.2 16 12 MB

Total 6856734 77 GB

https://doi.org/10.1371/journal.pone.0239741.t001

Table 2. Reference genomes from NCBI RefSeq (Release 90) used for database construction.

Organism Number of references Size on disk

bacteria 21365 41.0 GB

viral 10069 269 MB

archaea 406 656 MB

Total 31840 41.9 GB

https://doi.org/10.1371/journal.pone.0239741.t002

PLOS ONE Big Data in metagenomics: Apache Spark vs MPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 9 / 20

https://doi.org/10.1371/journal.pone.0239741.t001
https://doi.org/10.1371/journal.pone.0239741.t002
https://doi.org/10.1371/journal.pone.0239741


the use of MPI accelerates the building process in a substantial way. For example, when using

8 processors/executors, the improvement of the MPI version over the Spark version is bigger

than a factor of 2×. When the the number of processes/executors is increased, the improve-

ment of MPI with respect to Spark is reduced, although it is still better. For example, MPI

reduces the execution time by 25% in the case of 64 processes. This reduction in the improve-

ment is due to the limitations expressed by the Amdahl’s law [40], as only one of the Meta-

Cache building phases has been parallelized.

Table 3. Data sets used for database construction.

Name Number of references Size on disk

AFS20 Animal genomes from 1 to 20 45.8 GB

AFS20RS90 Animal genomes from 1 to 20 plus NCBI RefSeq (Release 90) 87.5 GB

AFS31 Animal genomes from 1 to 31 76.8 GB

AFS31RS90 Animal genomes from 1 to 31 plus NCBI RefSeq (Release 90) 118.5 GB

https://doi.org/10.1371/journal.pone.0239741.t003

Table 4. Calibrator sausage datasets and their meat composition.

Name #Reads (paired-end) Size Cattle Sheep Pig Horse Chicken Turkey

KLyo_A 401K 241 MB 14.0% 0.0% 80.0% 0.0% 0.5% 5.5%

KLyo_B 302K 175 MB 36.0% 0.0% 58.0% 0.0% 2.0% 4.0%

KLyo_C 507K 298 MB 58.0% 0.0% 36.0% 0.0% 4.0% 2.0%

KLyo_D 417K 238 MB 80.0% 0.0% 14.0% 0.0% 5.5% 0.5%

Kal_A 830K 494 MB 1.0% 9.0% 35.0% 55.0% 0.0% 0.0%

Kal_B 977K 62 MB 9.0% 1.0% 55.0% 35.0% 0.0% 0.0%

Kal_C 404K 248 MB 25.0% 25.0% 25.0% 25.0% 0.0% 0.0%

Kal_D 403K 239 MB 35.0% 55.0% 9.0% 1.0% 0.0% 0.0%

Kal_E 289K 177 MB 55.0% 35.0% 1.0% 9.0% 0.0% 0.0%

KAL_D 26,114K 12.8 GB 35.0% 55.0% 9.0% 1.0% 0.0% 0.0%

https://doi.org/10.1371/journal.pone.0239741.t004

Fig 3. Execution times of the MPI version and the Spark version to build the database AFS31RS90 with different

number of processes.

https://doi.org/10.1371/journal.pone.0239741.g003

PLOS ONE Big Data in metagenomics: Apache Spark vs MPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 10 / 20

https://doi.org/10.1371/journal.pone.0239741.t003
https://doi.org/10.1371/journal.pone.0239741.t004
https://doi.org/10.1371/journal.pone.0239741.g003
https://doi.org/10.1371/journal.pone.0239741


On the other hand, results about memory consumption for the building phase for the

selected data set are shown at Table 5. In this table, results with one process were obtained

with the original version of MetaCache. We can see how the memory used by the MPI version

is much smaller than the one used by Spark. For example, when using 8 cores, the memory

used by the Spark version is more than 3× the amount of memory used by MPI, while the exe-

cution time is much smaller in the MPI version. As the number of cores increase, the differ-

ence in memory usage decreases. But even in the case of 64 cores, the difference is quite

substantial, around 13 GB per process, which implies a total difference of 64 × 13 = 832 GB of

total RAM consumption.

Regarding speed and memory consumption for the classification phase, both results can be

observed at Table 6. Here, a comprehensive study regarding classification speed and RAM

memory consumption is presented. Speed is shown in million reads classified per minute

(MR/m) for different number of processes and threads used per process. Values for 32 pro-

cesses/16 threads could not be obtained due to a limitation in the cluster queue system to run

Spark. Regarding the RAM memory usage, as in the case of the building phase, it is presented

as peak memory per process.

Taking this into account, it is also important to remember that the reference data used in

this case is the database built from the AFS31RS90 data set and the KAL_D sausage sequences

as input data to classification. As well as when building, results with one core are the ones

obtained with the original MetaCache tool. Speed results show that the MPI version is much

faster than the Spark version, between 2× and 3×, while the consumed memory for the MPI

version is typically 50%—60% the amount of memory used in the Spark version.

Also, it is important to notice that the classification speed in the MPI version is higher than

the one with the original MetaCache, being the opposite for MetaCacheSpark. This is because

Table 5. Peak memory (in GB per process/executor) for building database AFS31RS90.

Software Version Number of processes/executors

1 8 16 32 64

MetaCache-MPI 135.00 56.91 49.65 33.66 31.84

MetaCacheSpark 135.00 175.12 100.07 68.94 45.14

https://doi.org/10.1371/journal.pone.0239741.t005

Table 6. Speed in MR/m and Peak memory (in GB per process) for querying database AFS31RS90 and dataset KAL_D in Big Data cluster.

MetaCache-MPI

Speed in MR/m Peak memory

Processes number 1 8 16 32 1 8 16 32

Threads per process

4 2.00 5.39 5.77 5.26 116.71 GB 40.00 GB 36.50 GB 32.20 GB

8 3.89 7.80 7.91 7.31 116.82 GB 40.92 GB 36.13 GB 32.60 GB

16 6.90 8.18 8.75 - 117.12 GB 41.50 GB 36.58 GB -

MetaCacheSpark

Speed in MR/m Peak memory

Executors number 1 8 16 32 1 8 16 32

Threads per executor

4 2.00 1.35 1.63 1.54 116.71 GB 110.87 GB 64.68 GB 48.20 GB

8 3.89 2.63 2.44 2.35 116.82 GB 111.71 GB 65.02 GB 50.80 GB

16 6.90 3.11 2.94 - 117.12 GB 111.62 GB 65.72 GB -

https://doi.org/10.1371/journal.pone.0239741.t006

PLOS ONE Big Data in metagenomics: Apache Spark vs MPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 11 / 20

https://doi.org/10.1371/journal.pone.0239741.t005
https://doi.org/10.1371/journal.pone.0239741.t006
https://doi.org/10.1371/journal.pone.0239741


the piece of the database owned by each one of the processes is smaller than the one big hash-

map owned by the unique process in MetaCache, thus it is faster to lookup in the smaller hash-

maps. Also, in comparison to MetaCacheSpark, the small hashmaps owned by each processes

are smaller in MPI (C++) than Java, with its consequent impact on performance. By using this

approach, speeds very close to 9 MR/m were achieved, while consuming only 36.58 GB of peak

RAM memory, for 16 processes and 16 threads per process. Meanwhile, Spark, with the same

amount of processes/executors, is able to reach 2.94 MR/m while using 65.72 GB of peak RAM

memory, which is almost twice the memory used by MPI. In order to show a more visual

representation of these results Fig 4 is presented. In this Fig 4, to the left, results about the clas-

sification speed can be observed. To the right, results about memory consumption are shown.

By looking at these plots two conclusions can be obtained. First, the difference regarding mem-

ory consumption when using 8 cores is overwhelming, almost 80 GB. The second, speed

increases with the number of processes for the MPI version, except for 32 processes, probably

because of the Amdahl’s law. However, with Spark, speed decreases as the number of pro-

cesses/executors grows.

MPI scalability results

In this Section we present results about MetaCache-MPI scalability for both building and que-

rying, using the HPC cluster FinisTerrae II at the Galicia Supercomputing Centre. Considering

the Building phase for all data sets, the first computing time results are presented in Table 7.

Here, execution times are divided in the time of adding the sequences into the database (which

Fig 4. Speed in MR/m (left) and Peak memory in GB per process (right) for querying database AFS31RS90 and dataset KAL_D in Big Data cluster.

https://doi.org/10.1371/journal.pone.0239741.g004

Table 7. Execution times (hh:mm:ss) when building databases in FinisTerrae II.

Adding sequences Total

Proc. num. 1 8 16 32 64 1 8 16 32 64

Data set

AFS20 01:14:02 00:14:26 00:10:41 00:08:53 00:08:48 01:31:57 00:29:38 00:23:54 00:22:17 00:21:59

AFS20RS90 02:46:51 00:31:41 00:28:02 00:26:41 00:25:52 03:09:42 00:48:51 00:43:54 00:41:43 00:40:31

AFS31 02:07:34 00:23:52 00:20:35 00:17:24 00:15:07 02:31:17 00:41:47 00:38:26 00:34:12 00:31:37

AFS31RS90 - 00:42:58 00:35:12 00:32:18 00:31:07 - 01:06:41 00:53:13 00:50:27 00:48:26

https://doi.org/10.1371/journal.pone.0239741.t007

PLOS ONE Big Data in metagenomics: Apache Spark vs MPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 12 / 20

https://doi.org/10.1371/journal.pone.0239741.g004
https://doi.org/10.1371/journal.pone.0239741.t007
https://doi.org/10.1371/journal.pone.0239741


is step 2 from the “Parallel building phase” Section, i.e., the phase that has been actually paralle-

lized) and the time involved in the whole building phase. The whole building time includes the

time of adding sequences plus an extra time used for MPI communications, build the taxon-

omy, rank unranked targets and write the final database to disk. This extra time, that runs in a

sequential way, is around 15-20 minutes, depending on the input data set.

In this Table, special focus should be put in the fact that all the databases can be created in

less than one hour when using MPI. For example, when using the AFS20RS90 data set, the exe-

cution time of the original sequential versions is more than 3 hours, while in the MPI version

this time decreases to 40 minutes using 64 cores. Although scalability is good with a small

number of cores, when the number of cores increases, performance is devalued, mainly

because of the impact of the I/O when adding the sequences. For example, with 8 processes,

the speed-up just for adding sequences is between 5× and 5.4× for all the data sets. Regarding

the total time with the same number of processes, speed up is around 3.5×. This value is lower

than the speed-up of adding sequences again because of the Amdahl’s law.

Results with one process could not be obtained for the AFS31RS90 data set, as the maxi-

mum available memory per node is 128 GB, and the process of building the database for this

data set with the original MetaCache uses more than this amount of memory. However, it can

be processed using various nodes in less than 50 minutes, which enables the possibility of

building big databases that could not be created using the original MetaCache. We must high-

light again that this is one of the big advantages of the MPI implementation.

Regarding the memory consumption for building, results are presented in Table 8. For the

AFS31RS90 data set case with one process, the value is the indicated in Table 5. As it was stated

before, results for the AFS31RS90 data set with MetaCache can not be obtained at the Finister-

rae II, but the amount of memory is the same independently of the system used. Results show

how the memory used to build database with dataset AFS20 decreases until barely 15 GB per

process. With this amount of consumed memory, this database could be build in machines

with 16 GB of RAM memory, which are very common nowadays.

This same approach can be taken for the AFS31RS90 data set. With this data set and 64 pro-

cesses the peak memory is under 32 GB. Nowadays, typical memory in computing nodes for a

cluster is between 64 and 128 GB or even more. As a final result, we can say that thanks to the

distributed memory approach, databases that were very difficult to build in common nodes are

now easily built in less time.

We now present the results regarding the classification speed and memory consumption.

These results are shown in Table 9 where we query sequences from sausage KAL_D with all

the databases. As the database for AFS31RS90 could not be built with MetaCache, results with

one processor for this data set are not shown.

For the classification speed, again, as the access to the hashmap owned by each one of the

MPI processes is faster than the access to the huge hashmap with just one process, speeds for

Table 8. Consumed memory in GB when building for all databases in FinisTerrae II.

Peak memory in GB

Number of processes 1 8 16 32 64

Data set

AFS20 63.86 27.22 21.62 17.5 14.48

AFS20RS90 110.04 43.96 44.54 30.59 24.55

AFS31 90.62 39.64 35.76 28.24 24.13

AFS31RS90 135.00 56.91 49.65 33.66 31.84

https://doi.org/10.1371/journal.pone.0239741.t008

PLOS ONE Big Data in metagenomics: Apache Spark vs MPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 13 / 20

https://doi.org/10.1371/journal.pone.0239741.t008
https://doi.org/10.1371/journal.pone.0239741


MPI are higher than those for the original MetaCache. However, as the number of processes

increase, speed from MetaCache gets closer, because, the more MPI processes, the more com-

munications are needed, which implies a performance degradation. It is important to notice

here that, in all the cases with 16 threads per process, a speed higher than 10 MR/m is achieved

with the MPI version for all the databases, being close to 15 MR/m in the case of 8 processes

and 16 threads per process for the AFS20 data set.

As for the memory consumption, there is relevant reduction of about half the usage in the

MPI version, when using only 8 processes. For example, for the biggest database AFS31RS90,

according to [25], the memory consumed for MetaCache during this phase is 117 GB, while

the MPI version is able to decrease it to a peak memory of 41.50 GB using 8 cores and 16

threads per process. This indicates that, with these input data, MetaCache-MPI can run in typi-

cal computing clusters with a typical amount of memory per node (64-128 GB) and, at the

same time, get classification speeds higher than the ones obtained with the original version of

MetaCache.

Table 9. Speed in MR/m and Peak memory (in GB per process) for querying all databases and dataset KAL_D in FinisTerrae II.

AFS20

Speed in MR/m Peak memory

Processes number 1 8 16 32 1 8 16 32

Threads per process

1 0.98 3.19 3.72 4.05 46.99 GB 31.66 GB 28.27 GB 28.40 GB

4 3.39 9.09 9.50 9.41 47.15 GB 31.40 GB 27.97 GB 27.66 GB

8 6.48 11.26 11.82 10.65 47.38 GB 30.70 GB 28.83 GB 28.27 GB

16 11.2 14.68 13.05 12.63 47.81 GB 32.05 GB 29.37 GB 28.51 GB

AFS20RS90

Speed in MR/m Peak memory

Process number 1 8 16 32 1 8 16 32

Threads per process

1 0.62 2.88 3.42 3.70 79.76 GB 38.65 GB 32.59 GB 31.65 GB

4 3.22 7.73 8.43 8.56 79.92 GB 37.16 GB 32.39 GB 30.45 GB

8 5.70 11.35 10.82 10.28 80.16 GB 36.88 GB 32.25 GB 31.23 GB

16 9.91 13.52 11.51 11.07 80.46 GB 36.93 GB 33.42 GB 31.18 GB

AFS31

Speed in MR/m Peak memory

Process number 1 8 16 32 1 8 16 32

Threads per process

1 0.70 2.87 3.34 3.86 67.03 GB 36.03 GB 34.50 GB 31.23 GB

4 2.84 7.83 8.82 8.53 67.20 GB 35.00 GB 32.56 GB 30.27 GB

8 5.38 10.66 11.71 10.85 67.42 GB 36.49 GB 32.38 GB 29.89 GB

16 8.90 13.64 12.91 10.81 67.89 GB 37.55 GB 32.54 GB 32.91 GB

AFS31RS90

Speed in MR/m Peak memory

Process number 1 8 16 32 1 8 16 32

Threads per process

1 - 2.67 3.08 3.49 - 39.87 GB 37.59 GB 32.73 GB

4 - 6.90 7.61 8.00 - 40.0 GB 36.50 GB 32.20 GB

8 - 10.06 10.32 9.04 - 40.92 GB 36.13 GB 32.60 GB

16 - 12.97 11.21 10.54 - 41.50 GB 36.58 GB 33.05 GB

https://doi.org/10.1371/journal.pone.0239741.t009

PLOS ONE Big Data in metagenomics: Apache Spark vs MPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 14 / 20

https://doi.org/10.1371/journal.pone.0239741.t009
https://doi.org/10.1371/journal.pone.0239741


Quantification results

In this Section, we present results about accuracy and quantification. To do this, we perform a

comparison between the original MetaCache tool, MetaCacheSpark and MetaCache-MPI for

all the input sausages with database AFS20. Results for MetaMache and MetaCacheSpark are

the same from [25].

Results for KLyo A-D sausages can be observed at Table 10. We can see how results for

MetaCache-MPI are very similar to the other versions. The results for the original Meta-

Cache version are closer to the expected data, but the results obtained with the MPI version

are almost the same, having very small differences. These differences are caused by ties

among possible candidates when performing the classification. As we can see, results

obtained with the MPI version are almost equivalent to the sequential version while, at the

same time, the memory consumption and execution time are smaller using MetaCache-

MPI.

Results for Kal A-E and KAL_D are shown at Table 11. Again, as in the previous case,

results are very similar for all versions, but in this case MetaCacheSpark performs slightly

worse, while MetaCache and MetaCache-MPI get results very close to the expected. For the

KLyo case, it seemed that MetaCache is able to get slightly better results, but, in the Kal case,

MetaCache-MPI seems to present a better behaviour. Again, we must highlight that reducing

the execution times and memory consumption is essential for this kind of problems. Because

of that, and as the results observed for all the input sausages are very similar, is very clear that

the use of the MetaCache-MPI version has a lot of advantages over the sequential and the

Spark counterparts.

Table 10. Quantification results for the Klyo samples using the reference dataset AFS20.

Dataset Classifier Cattle Pig W.Buf. Goat Chicken Turkey S FP S Dev

KLyo_A Ground truth 14.0% 80.0% 0.00% 0.00% 0.50% 5.50%

MetaCache 16.6% 71.5% 0.04% 0.02% 0.60% 4.64% 0.28% 12.39%

MetaCache-MPI 16.7% 71.5% 0.04% 0.02% 0.60% 4.63% 0.29% 12.43%

MetaCacheSpark 16.9% 71.2% 0.04% 0.02% 0.60% 4.64% 0.32% 12.99%

KLyo_B Ground truth 36.0% 58.0% 0.00% 0.00% 2.00% 4.00%

MetaCache 37.6% 51.0% 0.12% 0.04% 2.05% 2.99% 0.50% 10.16%

MetaCache-MPI 37.6% 50.9% 0.12% 0.04% 2.06% 3.01% 0.52% 10.23%

MetaCacheSpark 37.9% 50.5% 0.12% 0.04% 2.06% 3.02% 0.60% 11.11%

KLyo_C Ground truth 58.0% 36.0% 0.00% 0.00% 4.00% 2.00%

MetaCache 57.7% 27.1% 0.16% 0.06% 3.56% 1.16% 0.95% 11.47%

MetaCache-MPI 57.7% 27.0% 0.16% 0.06% 3.59% 1.17% 0.97% 11.52%

MetaCacheSpark 57.7% 26.9% 0.16% 0.06% 3.63% 1.18% 0.95% 11.48%

KLyo_D Ground truth 80.0% 14.0% 0.00% 0.00% 5.50% 0.50%

MetaCache 74.7% 10.9% 0.23% 0.08% 4.66% 0.33% 0.93% 10.27%

MetaCache-MPI 74.7% 10.9% 0.23% 0.08% 4.69% 0.33% 0.94% 10.29%

MetaCacheSpark 74.7% 10.8% 0.23% 0.08% 4.69% 0.33% 1.09% 10.58%

Average MetaCache 0.14% 0.05% 0.67% 11.07%

MetaCache-MPI 0.14% 0.05% 0.69% 11.12%

MetaCacheSpark 0.14% 0.05% 0.74% 11.54%

W.Buf: Water Buffalo, S FP: Sum of all false positive read classifications, S Dev: Sum of absolute deviations to the given meat composition (best results for each dataset

in bold).

https://doi.org/10.1371/journal.pone.0239741.t010

PLOS ONE Big Data in metagenomics: Apache Spark vs MPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 15 / 20

https://doi.org/10.1371/journal.pone.0239741.t010
https://doi.org/10.1371/journal.pone.0239741


Discussion

Food sequencing is becoming a very important area in metagenomics. Not only because of the

quantification and identification of animal species in all kinds of animal-based food for quality

control, but also because of the same procedures for other kinds of organisms, such as viruses,

plants, fungi, or bacteria. This becomes extremely important, for example, in cases where

avoiding the spread of a disease related with spoiled food becomes a global health problem. In

these kind of situations, where speed and accuracy are a priority factor, the software intro-

duced in this work can come into action and identify these cases in a very small amount of

time, with an accuracy similar to MetaCache.

Furthermore, the required amount of species included in the study is also a very important

handicap. This factor is directly related to the amount of memory used by the database. In the

case of MetaCache-MPI, as it is a distributed memory approach, the consumed memory is dis-

tributed into several computing nodes, making it possible to handle data sets that otherwise

would be impossible to tackle. All of this, without losing the accuracy that MetaCache can

provide.

Table 11. Quantification results for the Kal samples using the reference dataset AFS20.

Dataset Classifier Cattle Sheep Pig Horse W.Buf. Goat S FP S Dev

Kal_A Ground truth 1.00% 9.0% 35.0% 55.0% 0.00% 0.00%

MetaCache 1.25% 11.0% 30.5% 54.1% 0.01% 0.29% 0.42% 8.13%

MetaCache-MPI 1.25% 11.1% 30.5% 54.1% 0.01% 0.29% 0.42% 8.24%

MetaCacheSpark 1.27% 11.1% 30.3% 54.1% 0.01% 0.29% 0.45% 8.42%

Kal_B Ground truth 9.0% 1.00% 55.0% 35.0% 0.00% 0.00%

MetaCache 10.5% 1.42% 49.3% 35.6% 0.03% 0.06% 0.27% 8.43%

MetaCache-MPI 10.5% 1.42% 49.3% 35.5% 0.03% 0.06% 0.27% 8.39%

MetaCacheSpark 10.6% 1.42% 49.1% 35.7% 0.03% 0.06% 0.30% 8.92%

Kal_C Ground truth 25.0% 25.0% 25.0% 25.0% 0.00% 0.00%

MetaCache 23.3% 29.6% 19.2% 23.0% 0.06% 0.73% 1.08% 15.28%

MetaCache-MPI 23.3% 29.7% 19.2% 22.9% 0.06% 0.73% 1.08% 15.32%

MetaCacheSpark 23.5% 29.6% 19.0% 22.9% 0.06% 0.73% 1.18% 15.32%

Kal_D Ground truth 35.0% 55.0% 9.00% 1.00% 0.00% 0.00%

MetaCache 32.9% 51.5% 7.14% 1.14% 0.09% 1.50% 2.07% 9.62%

MetaCache-MPI 32.9% 51.5% 7.12% 1.13% 0.09% 1.50% 2.07% 9.61%

MetaCacheSpark 33.2% 51.2% 7.03% 1.13% 0.09% 1.49% 2.23% 9.91%

Kal_E Ground truth 55.0% 35.0% 1.00% 9.00% 0.00% 0.00%

MetaCache 50.4% 33.7% 0.99% 7.80% 0.12% 0.96% 1.52% 8.55%

MetaCache-MPI 50.5% 33.7% 0.99% 7.79% 0.12% 0.96% 1.52% 8.55%

MetaCacheSpark 50.7% 33.4% 0.97% 7.73% 0.12% 0.95% 1.66% 8.82%

KAL_D Ground truth 35.0% 55.0% 9.00% 1.00% 0.00% 0.00%

MetaCache 30.3% 49.6% 7.27% 1.16% 0.08% 1.25% 1.38% 13.36%

MetaCache-MPI 30.3% 49.6% 7.28% 1.16% 0.08% 1.25% 1.36% 13.34%

MetaCacheSpark 30.4% 49.5% 7.25% 1.16% 0.08% 1.26% 1.36% 13.36%

Average MetaCache 0.07% 0.80% 1.12% 10.56%

MetaCache-MPI 0.07% 0.80% 1.12% 10.57%

MetaCacheSpark 0.07% 0.80% 1.20% 10.79%

W.Buf: Water Buffalo, S FP: Sum of all false positive read classifications, S Dev: Sum of absolute deviations to the given meat composition (best results for each dataset

in bold).

https://doi.org/10.1371/journal.pone.0239741.t011

PLOS ONE Big Data in metagenomics: Apache Spark vs MPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 16 / 20

https://doi.org/10.1371/journal.pone.0239741.t011
https://doi.org/10.1371/journal.pone.0239741


This accuracy has been tested throughout this work, where the authors have run a set of dif-

ferent experiments that have also been performed in [25]. In this way, results involving three

different approaches were tested: one from MetaCache, the original sequential tool; other by

using the Big Data engine Apache Spark; and the approach introduced in this work using MPI.

The most important advantages of the MPI version are those related to memory consumption

an the execution time (speed) for both database building and querying (classification).

These advantages can be observed in the results, where it is shown that the High Perfor-

mance Computing approach by using MPI consumes less memory and time than the approach

that uses the Spark Big Data engine. For example, for building the database with the biggest

data set used in this work for 64 processes, MPI uses 70% of the RAM memory used by Spark,

while spending only 72% of the time. Regarding classification/querying, MPI is faster by sev-

eral millions of reads per minute. For example, for the biggest database and data set, using 32

processes and 8 threads per process, MPI is 3.11× faster, while using 64.17% of the RAM mem-

ory used by the Spark approach.

Conclusions

In this work, the MetaCache-MPI tool has been introduced. It consists in a distributed mem-

ory approach to perform metagenomics analysis based on MetaCache, with the main advan-

tages of a lower execution time and less memory consumption, and the main consequences of

being able to create and query bigger databases that otherwise could not be created, with a sig-

nificant reduction in time.

In order to test this implementation, experiments from [25] have been replicated and

approached with the new MPI implementation. Results show how the new MPI version gets

quantification and identification percentages similar to MetaCache, while being faster for both

querying and building databases. This also applies to the comparison with MetaCacheSpark,

where this work also establishes that MetaCache-MPI uses less RAM memory and is faster

than the Apache Spark implementation. By relying on a MPI distributed memory approach,

our software can scale efficiently towards large-scale collections of complex eukaryotic and

bacterial reference genomes making this tool suitable for broad-scale metagenomic screening

applications.

Acknowledgments

The authors would like to thank Galicia Supercomputing Centre (CESGA) for the access to

their supercomputing resources, and also CiTIUS systems administrators for their uncondi-

tional help.

Author Contributions

Conceptualization: José M. Abuı́n.

Formal analysis: José M. Abuı́n.

Funding acquisition: José M. Abuı́n.

Investigation: José M. Abuı́n, Bertil Schmidt.

Methodology: José M. Abuı́n.

Project administration: José M. Abuı́n.

Resources: José M. Abuı́n.

PLOS ONE Big Data in metagenomics: Apache Spark vs MPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 17 / 20

https://doi.org/10.1371/journal.pone.0239741


Software: José M. Abuı́n.

Supervision: José M. Abuı́n, Nuno Lopes, Luı́s Ferreira, Tomás F. Pena, Bertil Schmidt.

Validation: José M. Abuı́n, Luı́s Ferreira, Bertil Schmidt.

Visualization: José M. Abuı́n, Nuno Lopes, Bertil Schmidt.

Writing – original draft: José M. Abuı́n, Nuno Lopes, Luı́s Ferreira, Tomás F. Pena, Bertil

Schmidt.

Writing – review & editing: José M. Abuı́n, Nuno Lopes, Luı́s Ferreira, Tomás F. Pena, Bertil

Schmidt.

References
1. Carrier P, Long B, Walsh R, Dawson J, Sosa CP, Haas B, et al. The impact of high-performance com-

puting best practice applied to next-generation sequencing workflows. BioRxiv. 2015;.https://doi.org/10.

1101/017665

2. Vargas-Perez S, Saeed F. A hybrid MPI-OpenMP strategy to speedup the compression of big next-gen-

eration sequencing datasets. IEEE Transactions on Parallel and Distributed Systems. 2017; 28

(10):2760–2769. https://doi.org/10.1109/TPDS.2017.2692782

3. Liu Y, Schmidt B, Maskell DL. CUSHAW: a CUDA compatible short read aligner to large genomes

based on the Burrows-Wheeler transform. Bioinformatics. 2012; 28(14):1830–1837. https://doi.org/10.

1093/bioinformatics/bts276 PMID: 22576173

4. Apache Software Foundation. Apache Hadoop;. Available from: http://hadoop.apache.org.

5. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: Cluster Computing with Working

Sets. In: Proc. of the 2nd USENIX Conference on Hot Topics in Cloud Computing (HotCloud); 2010.

p. 10–10.

6. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, et al. Resilient Distributed Datasets: A

Fault-tolerant Abstraction for In-memory Cluster Computing. In: Proc. of the 9th USENIX Conference

on Networked Systems Design and Implementation; 2012. p. 2–2.

7. Abuı́n JM, Pichel JC, Pena TF, Amigo J. BigBWA: Approaching the Burrows–Wheeler Aligner to Big

Data Technologies. Bioinformatics. 2015; 31(24):4003–4005.https://doi.org/10.1093/bioinformatics/

btv506 PMID: 26323715

8. Abuı́n JM, Pichel JC, Pena TF, Amigo J. SparkBWA: speeding up the alignment of high-throughput

DNA sequencing data. PloS ONE. 2016; 11(5). https://doi.org/10.1371/journal.pone.0155461 PMID:

27182962

9. Abuı́n JM, Pena TF, Pichel JC. PASTASpark: multiple sequence alignment meets Big Data.

Bioinformatics. 2017; 33(18):2948–2950. https://doi.org/10.1093/bioinformatics/btx354 PMID:

28582480

10. Guo R, Zhao Y, Zou Q, Fang X, Peng S. Bioinformatics applications on Apache Spark. GigaScience.

2018; 7(8):giy098. https://doi.org/10.1093/gigascience/giy098 PMID: 30101283

11. Zhang L, Liu C, Dong S. PipeMEM: A framework to speed up BWA-MEM in Spark with low overhead.

Genes. 2019; 10(11):886. https://doi.org/10.3390/genes10110886 PMID: 31689965

12. Walker DW, Dongarra JJ. MPI: a standard message passing interface. Supercomputer. 1996; 12:56–

68.

13. Abuı́n JM. Big Data meets High Performance Computing: Genomics and Natural Language Processing

as case studies. University of Santiago de Compostela; 2017.

14. Reed DA, Dongarra J. Exascale Computing and Big Data. Commun ACM. 2015; 58(7):56–68. https://

doi.org/10.1145/2699414

15. Schmidt B, Hildebrandt A. Next-generation sequencing: big data meets high performance computing.

Drug discovery today. 2017; 22(4):712–717. https://doi.org/10.1016/j.drudis.2017.01.014 PMID:

28163155

16. Reyes-Ortiz Jorge L and Oneto Luca and Anguita Davide. Big Data Analytics in the Cloud: Spark on

Hadoop vs MPI/OpenMP on Beowulf. Procedia Computer Science. 2015; 53:121—130. https://doi.org/

10.1016/j.procs.2015.07.286

PLOS ONE Big Data in metagenomics: Apache Spark vs MPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 18 / 20

https://doi.org/10.1101/017665
https://doi.org/10.1101/017665
https://doi.org/10.1109/TPDS.2017.2692782
https://doi.org/10.1093/bioinformatics/bts276
https://doi.org/10.1093/bioinformatics/bts276
http://www.ncbi.nlm.nih.gov/pubmed/22576173
http://hadoop.apache.org
https://doi.org/10.1093/bioinformatics/btv506
https://doi.org/10.1093/bioinformatics/btv506
http://www.ncbi.nlm.nih.gov/pubmed/26323715
https://doi.org/10.1371/journal.pone.0155461
http://www.ncbi.nlm.nih.gov/pubmed/27182962
https://doi.org/10.1093/bioinformatics/btx354
http://www.ncbi.nlm.nih.gov/pubmed/28582480
https://doi.org/10.1093/gigascience/giy098
http://www.ncbi.nlm.nih.gov/pubmed/30101283
https://doi.org/10.3390/genes10110886
http://www.ncbi.nlm.nih.gov/pubmed/31689965
https://doi.org/10.1145/2699414
https://doi.org/10.1145/2699414
https://doi.org/10.1016/j.drudis.2017.01.014
http://www.ncbi.nlm.nih.gov/pubmed/28163155
https://doi.org/10.1016/j.procs.2015.07.286
https://doi.org/10.1016/j.procs.2015.07.286
https://doi.org/10.1371/journal.pone.0239741


17. Ripp F, Krombholz CF, Liu Y, et al. All-Food-Seq (AFS): a quantifiable screen for species in biological

samples by deep DNA sequencing. BMC Genomics. 2014; 15:639. https://doi.org/10.1186/1471-2164-

15-639 PMID: 25081296

18. Liu Y, Ripp F, Koeppel R, Schmidt H, Hellmann SL, Weber M, et al. AFS: identification and quantifica-

tion of species composition by metagenomic sequencing. Bioinformatics. 2017; 33(9):1396–1398.

https://doi.org/10.1093/bioinformatics/btw822 PMID: 28453677

19. Köppel R, Ruf J, Rentsch J. Multiplex real-time PCR for the detection and quantification of DNA from

beef, pork, horse and sheep. European Food Research and Technology. 2011; 232(1):151–155.

https://doi.org/10.1007/s00217-010-1371-y

20. Li H, Durbin R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformat-

ics. 2009; 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324 PMID: 19451168

21. Li H, Durbin R. Fast and Accurate Long-Read Alignment with Burrows-Wheeler Transform. Bioinformat-

ics. 2010; 26(5):589–595. https://doi.org/10.1093/bioinformatics/btp698 PMID: 20080505

22. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.

arXiv:13033997v2. 2013;.

23. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature methods. 2012; 9

(4):357. https://doi.org/10.1038/nmeth.1923 PMID: 22388286

24. Müller A, Hundt C, Hildebrandt A, Hankeln T, Schmidt B. MetaCache: context-aware classification of

metagenomic reads using minhashing. Bioinformatics. 2017; 33(23):3740–3748. https://doi.org/10.

1093/bioinformatics/btx520 PMID: 28961782

25. Kobus R, Abuı́n JM, Müller A, Hellmann SL, Pichel JC, Pena TF, et al. A big data approach to metage-

nomics for all-food-sequencing. BMC Bioinformatics. 2020; 21(1):102. https://doi.org/10.1186/s12859-

020-3429-6 PMID: 32164527

26. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments.

Genome Biology. 2014; 15:R46. https://doi.org/10.1186/gb-2014-15-3-r46 PMID: 24580807

27. Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in metagenomics

data. PeerJ Computer Science. 2017; 3:e104. https://doi.org/10.7717/peerj-cs.104

28. Pereira R, Couto M, Ribeiro F, Rua R, Cunha J, Fernandes JP, et al. Energy efficiency across program-

ming languages: How do energy, time, and memory relate? In: Proceedings of the 10th ACM SIGPLAN

International Conference on Software Language Engineering. SLE 2017. New York, NY, USA: ACM;

2017. p. 256–267. Available from: http://doi.acm.org/10.1145/3136014.3136031.

29. Szymańska E. Modern data science for analytical chemical data–A comprehensive review. Analytica

chimica acta. 2018; 1028:1–10. https://doi.org/10.1016/j.aca.2018.05.038 PMID: 29884345

30. Tetko IV, Engkvist O, Koch U, Reymond JL, Chen H. BIGCHEM: challenges and opportunities for big

data analysis in chemistry. Molecular informatics. 2016; 35(11-12):615–621. https://doi.org/10.1002/

minf.201600073 PMID: 27464907

31. Costa FF. Big Data in biomedicine. Drug discovery today. 2014; 19(4):433–440. https://doi.org/10.

1016/j.drudis.2013.10.012 PMID: 24183925

32. Levin N. Big Data and biomedicine. In: The Palgrave Handbook of Biology and Society. Springer; 2018.

p. 663–681.

33. Shvachko K, Kuang H, Radia S, Chansler R. The Hadoop Distributed File System. In: Proceedings of

the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST). MSST’10.

Washington, DC, USA: IEEE Computer Society; 2010. p. 1–10.

34. Asaadi H, Khaldi D, Chapman B. A comparative survey of the HPC and Big Data paradigms: Analysis

and experiments. In: 2016 IEEE International Conference on Cluster Computing (CLUSTER). IEEE;

2016. p. 423–432.

35. Chambers B, Zaharia M. Spark: The Definitive Guide: Big Data Processing Made Simple. O’Reilly

Media, Inc.; 2018.

36. Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, et al. Apache Hadoop YARN: Yet

Another Resource Negotiator. In: Proc. of the 4th Annual Symposium on Cloud Computing (SOCC);

2013. p. 5:1–5:16.

37. Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz RH, et al. Mesos: A platform for fine-

grained resource sharing in the data center. In: NSDI. vol. 11; 2011. p. 22–22.

38. Hellmann SL, Ripp F, Bikar SE, Schmidt B, Köppel R, Hankeln T. Identification and quantification of

meat product ingredients by whole-genome metagenomics (All-Food-Seq). European Food Research

and Technology. 2020; 246(1):193–200. https://doi.org/10.1007/s00217-019-03404-y

39. Eugster A, Ruf J, Rentsch J, Köppel R. Quantification of beef, pork, chicken and turkey proportions in

sausages: use of matrix-adapted standards and comparison of single versus multiplex PCR in an

PLOS ONE Big Data in metagenomics: Apache Spark vs MPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 19 / 20

https://doi.org/10.1186/1471-2164-15-639
https://doi.org/10.1186/1471-2164-15-639
http://www.ncbi.nlm.nih.gov/pubmed/25081296
https://doi.org/10.1093/bioinformatics/btw822
http://www.ncbi.nlm.nih.gov/pubmed/28453677
https://doi.org/10.1007/s00217-010-1371-y
https://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1093/bioinformatics/btp698
http://www.ncbi.nlm.nih.gov/pubmed/20080505
https://doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
https://doi.org/10.1093/bioinformatics/btx520
https://doi.org/10.1093/bioinformatics/btx520
http://www.ncbi.nlm.nih.gov/pubmed/28961782
https://doi.org/10.1186/s12859-020-3429-6
https://doi.org/10.1186/s12859-020-3429-6
http://www.ncbi.nlm.nih.gov/pubmed/32164527
https://doi.org/10.1186/gb-2014-15-3-r46
http://www.ncbi.nlm.nih.gov/pubmed/24580807
https://doi.org/10.7717/peerj-cs.104
http://doi.acm.org/10.1145/3136014.3136031
https://doi.org/10.1016/j.aca.2018.05.038
http://www.ncbi.nlm.nih.gov/pubmed/29884345
https://doi.org/10.1002/minf.201600073
https://doi.org/10.1002/minf.201600073
http://www.ncbi.nlm.nih.gov/pubmed/27464907
https://doi.org/10.1016/j.drudis.2013.10.012
https://doi.org/10.1016/j.drudis.2013.10.012
http://www.ncbi.nlm.nih.gov/pubmed/24183925
https://doi.org/10.1007/s00217-019-03404-y
https://doi.org/10.1371/journal.pone.0239741


interlaboratory trial. European Food Research and Technology. 2009; 230(1):55. https://doi.org/10.

1007/s00217-009-1138-5

40. Amdahl GM. Validity of the single processor approach to achieving large scale computing capabilities.

In: Proceedings of the April 18-20, 1967, spring joint computer conference; 1967. p. 483–485.

PLOS ONE Big Data in metagenomics: Apache Spark vs MPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0239741 October 6, 2020 20 / 20

https://doi.org/10.1007/s00217-009-1138-5
https://doi.org/10.1007/s00217-009-1138-5
https://doi.org/10.1371/journal.pone.0239741

