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Background. Accurate diagnostic tools to identify patients at risk of cancer therapy-related
cardiac dysfunction (CTRCD) are critical. For patients undergoing cardiotoxic cancer therapy,
ejection fraction assessment using radionuclide ventriculography (RNVG) is commonly used
for serial assessment of left ventricular (LV) function.

Methods. In this retrospective study, approximate entropy (ApEn), synchrony, entropy,
and standard deviation from the phase histogram (phase SD) were investigated as potential
early markers of LV dysfunction to predict CTRCD. These phase parameters were calculated
from the baseline RNVG phase image for 177 breast cancer patients before commencing car-
diotoxic therapy.

Results. Of the 177 patients, 11 had a decline in left ventricular ejection fraction (LVEF) of
over 10% to an LVEF below 50% after treatment had commenced. This patient group had a
significantly higher ApEn at baseline to those who maintained a normal LVEF throughout
treatment. Of the parameters investigated, ApEn was superior for predicting the risk of
CTRCD. Combining ApEn with the baseline LVEF further improved the discrimination
between the groups.

Conclusions. The results suggest that RNVG phase analysis using approximate entropy
may aid in the detection of sub-clinical LV contraction abnormalities, not detectable by baseline
LVEF measurement, predicting a subsequent decline in LVEF. (J Nucl Cardiol 2022;29:581–9.)
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Abbreviations
CTRCD Cancer therapy-related cardiac

dysfunction

LVEF Left ventricular ejection fraction

RNVG Radionuclide ventriculography

MUGA Multi-gated acquisition study

GLS Global longitudinal strain

LBBB Left bundle branch block

MI Myocardial Infarction

ApEn Approximate entropy

SD Standard deviation

INTRODUCTION

Survival from breast cancer has improved substan-

tially over the last 20 to 30 years due to earlier diagnosis

and advances in treatment with adjuvant radiotherapy

and chemotherapy. However, cardiotoxicity as a result

of this therapy is now the leading cause of morbidity and

mortality for survivors.1,2

Radiotherapy and anthracycline/trastuzumab-based

chemotherapy regimens have been associated with

increased risk of cardiovascular disease.3 Anthracy-

cline-based regimens are associated with the dose-

dependent risk of Type 1 cardiotoxicity and heart

failure, while trastuzumab is generally associated with

reversible Type 2 cardiotoxicity. However, permanent

cardiac dysfunction can occur with both Type 1 and 2

cardiotoxicity, despite intervention.4 The risk of cancer

therapy-related cardiac dysfunction (CTRCD) increases

significantly when trastuzumab is combined with anthra-

cyclines.5 Cardiac monitoring is required for patients

receiving anthracycline/trastuzumab-based treatments,

and currently, this relies on the serial assessment of left

ventricular ejection fraction (LVEF). Each patient will

have a baseline LVEF measurement, then serial LVEF

assessment every 3 months during treatment. The

European Society of Cardiology (ESC) guidelines con-

sider a 10% point decrease of LVEF to below the lower

limit of normal (\ 50%) to be an indicator of cardiotox-

icity and recommend treatment is altered or stopped to

prevent further left ventricular (LV) dysfunction or the

development of symptomatic heart failure.6

One potential limitation of the current guidelines is

that LVEF decline is often a late phenomenon. There-

fore, it would be useful if we can identify sub-clinical

cardiac abnormalities and identify patients who are at

higher risk before treatment starts.

Radionuclide ventriculography (RNVG), also com-

monly known as multi-gated acquisition study (MUGA)

or cardiac blood pool imaging, is a well-established

technique that can reproducibly measure ejection frac-

tion and is commonly used to assess LV function in

patients undergoing cardiotoxic cancer therapy.

Echocardiography is also widely used to assess LVEF

but is limited by operator variability and poor repro-

ducibility of LVEF measurement, especially in patients

post mastectomy who have had reconstructive surgery.

LV dyssynchrony can be assessed with a number of

imaging techniques. Recently, there has been increased

interest in echocardiography deformation assessment

with global longitudinal strain (GLS), as an early

marker of LV dysfunction for chemotherapy patients.6

This work aims to determine if phase parameters

applied to baseline RNVG phase images can measure

sub-clinical contraction abnormalities prior to treatment

to predict which patients are at a higher risk of CTRCD.

At present, there are no published studies investigating

RNVG phase parameters as a predictor of CTRCD.

RNVG Phase Images

Phase images, representing the timing of contrac-

tion, can be created from RNVG data to provide

additional information on ventricular function.7,8 The

timing of contraction, relative to the R wave of the ECG,

is obtained from the time-activity curve for each pixel in

the RNVG image to create a phase map; a higher phase

angle indicates delayed contraction within the region. In

a phase image with normal contraction, the pixels within

the LV should all be a similar phase value, representing

synchronous contraction. Regions of dyssynchronous

contraction will appear as delays in the phase images/

histograms. This is illustrated in Figure 1, where the

phase for a patient with an aneurysm, left bundle branch

block (LBBB), or myocardial infarction (MI) has a

distinctly different phase pattern compared to a patient

with normal contraction. This technique can also detect

more subtle phase abnormalities. Phase data from

RNVG images can be quantitatively assessed using the

mean and the standard deviation of the phase histogram.

Approximate Entropy

Various measures have been established to quantify

dyssynchrony. Most parameters previously investigated

are from first-order statistics calculated from the phase

histogram such as phase standard deviation (SD).

O’Connell et al. derived synchrony to describe the

contraction of the left ventricle using the phase and

amplitude data extracted from the region of interest, and

entropy (from Shannon information measure9) as a

measure of randomness of contraction within the ven-

tricle.10 They demonstrated that synchrony and entropy
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were superior to phase SD for discriminating between

normal and abnormal contraction.

However, parameters based on first-order statistics

such as synchrony, entropy, and phase SD do not take

into account the spatial relation between the pixel

values. More advanced statistical parameters can be

used to quantitatively assess ventricular phase.

Approximate entropy (ApEn) is a regularity statistic

developed from Kolmogorov–Sinai entropy by Pincus.11

When applied to RNVG phase images, ApEn is a

statistical measure of dyssynchrony within the ventricle.

ApEn calculates the probability that a series of length m

remains similar within a tolerance r at the next point in

the data series, and unlike entropy, takes into account

the similarity of adjacent data points and thus can

accommodate spatial information more accurately.

ApEn is defined as

ApEn ¼ �ðN � mÞ�1
XN�m

i¼1

ln
cimþ1 rð Þ
cim

� �
;

where N is the length of data, m is the sequence length, r
is the tolerance, cimþ1 rð Þ is conditional probability that

when a sequence is within the tolerance then the next

element will also be within tolerance. The pixel values

are considered as a data series. Each group of ‘m’ pixels
will be compared to every other group of ‘m’ pixels

within the ROI, including itself. If the group is within

the tolerance value r, it will be counted. This is carried

out for every group of ‘m’ pixels then repeated with

groups of ‘mþ 1’ to calculate probabilities cim and cimþ1 .

ApEn includes a ‘self match’ of vectors creating a

bias towards regularity. Several publications also sug-

gest that ApEn lacks relative consistency, meaning that

the value of ApEn can ‘flip’ when the input parameters

are varied.12 For this reason, the input parameters (m and

r) must be fixed when comparing datasets. At present,

there is no established m, r or normal range for ApEn

applied to RNVG phase images. The values of m and r
that are used will markedly affect the results, so it is

essential to optimize the input parameters for the data

being considered.

ApEn is well established in other fields including

gait analysis and heart rate variability but has not

previously been widely investigated for assessing ven-

tricular contraction.13–20 Cullen et al. investigated

change in ApEn for serial assessment of 8 patients

receiving Herceptin.21 This work found a significant

change in ejection fraction and ApEn over the course of

treatment, however, further work with a larger patient

group is necessary. While change in ApEn has been

considered, ApEn as a predictive marker has not yet

been investigated.

METHOD

ApEn Optimization

Test data were created to simulate patient phase images

using in-house code written in R 3.6.3 (R Development Core

Team, Vienna, Austria),22 allowing m and r to be tested in a

controlled environment. The code allowed the mean and SD in

each radial segment to be altered individually, allowing

abnormal segments to be introduced. Some publications

suggest using a r value which is 0.1-0.2 SD of the dataset

and m = 2,11,23 although no justification for this choice was

found in the literature review. This was used as a starting point

to select the test range. A range of m between 1 and 5, and r
between 0.25 and 21 were tested using the simulated data.

Patient phase images representing normal, LBBB, and MI were

subsequently used to test the results.

There is a value of r where the ApEn calculated from both

normal and abnormal phase images is equal, as demonstrated

in Figure 2. This plot shows an example of the variation in

ApEn values comparing a simulated normal and MI phase

image across a range of tolerances r. This emphasizes the need

for choosing an appropriate value of r for the data. If a lower

value of r is selected then a higher ApEn is normal, while if a

larger value of r is selected a higher ApEn represents abnormal

phase. This is consistent with the work published by Yentes

et al.12 The most important factor in the selection is avoiding

the area where abnormal and normal are equal. This ‘flip’

point, where ApEn cannot discriminate between normal and

abnormal, will vary depending on how abnormal the phase is,

so the range of flip points for the data type must be considered.

After optimization, the final m and r values used were

m = 2, r = 7. These values were also tested across the clinical

range of left ventricle sizes using simulated data, to ensure

consistency with an increase in the number of pixels in the data

series, N. The optimization work carried out with both

simulated and patient data provides confidence that the

selected input values are appropriate.

Data Acquisition

A retrospective study was undertaken to review 193

consecutive female patients (mean age: 54) who had an RNVG

scan at Glasgow Western Infirmary Hospital between 2005 and

2008. All patients included in this study had a baseline RNVG

before receiving cardiotoxic cancer therapy. Each patient had

serial 24-frame gated RNVG scans, acquired at intervals of

approximately 3 months for up to 2 years following the

baseline study, with each patient having between 2 and 9

RNVGs. Patients with a baseline LVEF of \ 55% were

excluded from the study.

In-vivo labeling was performed using intravenous admin-

istration of pyrophosphate 20 minutes prior to injection of

Technetium-99m pertechnetate. The administered dose for

each scan was 800 MBq (21.6 mCi).

Each study was acquired with a Picker 3000XP 3-headed

gamma camera (Picker International, Cleveland Heights, Ohio,

USA) with a low-energy high-resolution collimator. The
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gamma camera was positioned to achieve the best septal

separation and the scan was acquired for 5 million counts using

frame mode acquisition and a matrix size of 64 9 64. The

LVEF was assessed by an experienced operator using Picker

Lightbox software, with a manual dual region technique to

measure the ejection fraction.

For this study only the raw images were available,

therefore the baseline study for all 193 patients was repro-

cessed using MAPS Link medical software. Phase and

amplitude images were created from the first-order Fourier

harmonic. For each baseline study a single left ventricle region

was manually drawn, using the end-diastolic image with

reference to the phase and amplitude images. Sixteen patients

were excluded at this stage (11 patients with gating problems,

which were picked up from the phase image and time-activity

curve, 4 patients with a baseline LVEF below 55%, and 1

patient with a baseline scan below diagnostic quality due to

poor radiopharmaceutical labeling), leaving 177 patients.

Data Analysis

Following each patient’s baseline scan, the LVEF from all

subsequent studies was compared to the baseline to establish

the maximum LVEF drop. The reported LVEF from the

original analysis was used, along with the phase images

created using MAPS Link Medical software. Based on the ESC

guidelines, patients were split by LVEF decline into 2 groups,

those who maintained a normal LVEF and those who had an

LVEF drop of over 10% to below 50%.

In-house software written in R 3.6.3 was used to calculate

ApEn for the baseline scans.24 The software creates a data

series from the pixels in each region of interest within the

phase image, starting from the top left it reads the image from

left to right, then right to left on the line below until it reaches

the bottom, meaning each group of ‘m’ pixels will be adjacent

to each other.

ApEn calculations were carried out on the phase images

of the baseline scans, using input parameters m = 2 and r = 7.

Synchrony, entropy, and phase SD were also included for

comparison.

Statistical Analysis

Shapiro–Wilk’s test was used to check the normality of

the distribution for each parameter. To test multivariate

normality the Henze–Zirkler test was used. Significance testing

was performed for each parameter, using the unpaired t test or
Wilcoxon-signed-rank test, based on the outcome of the

univariate test of normality. Hotelling’s T2 test was used to

determine if there was a significant difference between

multivariate means of the different populations.25

A logistic regression model was fitted in R using all of the

phase parameters and the interaction between ApEn and

baseline LVEF. A second logistic regression model was

created which excluded all of the non-significant variables. A

chi-squared test was used to assess the overall significance of

the logistic regression models. The area under the receiver

operator curve (AUC) and significance was reported for both

models.

Random Forest and Naive-Bayes classifiers were fitted

using all predictors with the caret package in R,26 with 10-fold

cross-validation and 3 repeats. The AUC was calculated for

each classifier.

A P value of \ 0.05 was considered significant for all

tests. All data analysis and statistics were performed in R

3.6.3.22,27,28

RESULTS

Patients were split into 2 groups based on the

change in LVEF during treatment. Group 1 maintained a

normal LVEF ([ 50%) during treatment, and Group 2

had a decline in LVEF of more than 10% to below 50%.

The guidelines would recommend that the treatment for

Group 2 is altered or stopped. There was no significant

difference (P[ 0.05) in age between the two groups.

bFigure 1. Example images showing phase pattern and associ-
ated LV phase histogram for a a normal patient with similar
phase values throughout the ventricles, b an MI patient with
late phase values in the area of an apical MI, c a patient with
left bundle branch block, where there is a gradual change in
phase values across the LV, and d a patient with a large
aneurysm where two distinctly separate segments within the
LV are contracting at different times.
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Figure 2. Simulated data representing phase image for a
normal LV (in red) and for a large MI (in blue), showing the
variation of ApEn with tolerance r, where m = 2. The shaded
area represents the difference in ApEn between the normal and
MI phase image in this example.
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ApEn, phase SD, and age were normally distributed

while synchrony, entropy, and baseline LVEF were not.

Multivariate normality testing for ApEn combined with

baseline LVEF revealed that both groups were normally

distributed.

The results for ApEn, synchrony, entropy, and

phase SD are summarized in Table 1. There was a

significant difference (P\ 0.05) in ApEn and LVEF at

baseline between the groups. The combination of ApEn

and baseline LVEF was also significantly different

between the two groups. The other parameters were not

significant.

A boxplot showing the results of ApEn for the

groups can be seen in Figure 3. Figure 4 demonstrates

how the separation between the groups can be improved

by combining the baseline LVEF with the baseline

ApEn. This plot indicates that patients with a lower

LVEF and higher ApEn at their baseline RNVG (lower

right quadrant) are more likely to have an LVEF drop of

more than 10% to below 50%.

The fitted logistic regression modelling demon-

strated that ApEn, baseline LVEF, and their interaction

were significant predictors for CTRCD. The additional

variables/predictors synchrony, entropy, and phase SD

were not important when ApEn and baseline LVEF are

included in the model. The AUC was 0.81 for logistic

regression model 1 with all predictors and 0.88 for

logistic regression model 2 with only the significant

predictors and the interaction between them. A summary

of the logistic regression results is shown in Table 2.

The AUC values for the classifiers and logistic

regression models are compared in Table 3. Using all

predictors, an AUC of 0.87 was achieved under the

Random Forest classifier and 0.78 under the Naive-

Bayes classifier.

DISCUSSION

The results confirm that at the baseline RNVG,

there was a significant difference in ApEn between the

group with LVEF decline of more than 10% to below

50% (Group 2) and the group that maintained a normal

LVEF throughout treatment. ApEn performed better

than synchrony, entropy, and phase SD for predicting

CTRCD in this dataset.

Improved discrimination between the groups was

achieved by considering the combination of baseline

LVEF and baseline ApEn. The results suggest that

Table 1. Summary of results for each phase parameter

Mean ± SD

Significance test P value

Group 1
Maintained
normal LVEF

Group 2 > 10%
drop to LVEF
below 50%

Number of patients 166 11

Age 55 ± 11 56 ± 15 Wilcoxon-rank-signed 0.799

Synchrony 0.991 ± 0.004 0.989 ± 0.004 Wilcoxon-rank-signed 0.121

Entropy 0.559 ± 0.040 0.584 ± 0.028 Wilcoxon-rank-signed 0.054

ApEn 0.348 ± 0.107 0.418 ± 0.076 Two sample t test 0.014

Phase SD 7.90 ± 1.96 8.91 ± 1.78 Wilcoxon-rank-signed 0.094

Baseline LVEF 73.5 ± 6.1 64.5 ± 6.7 Two sample t test \0.001

(ApEn, baseline LVEF) Hotelling’s T2 \0.001

P = 0.014 
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Figure 3. ApEn for patients calculated from baseline RNVG
phase image, split into two groups based on LVEF decline.
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patients with a lower LVEF and higher ApEn at their

baseline RNVG (lower right quadrant in Figure 4) are at

a higher risk of developing CTRCD during treatment. Of

the patients tested, no one who fell within the top left

quadrant in Figure4 had an LVEF drop to below 50%.

The logistic regression model demonstrated the

interaction between ApEn and baseline LVEF was

significant between the two groups, suggesting that

LVEF combined with ApEn has predictive value at the

baseline scan. There was no improvement to the

performance of the model when synchrony, entropy,

and phase SD were included.

The classifiers performed well, achieving an AUC

of 0.78 with Naive-Bayes and 0.87 with Random Forest.

The Random Forest model and logistic regression model

2 performed best on this dataset. However, these results

should be interpreted with caution due to the small

number of patients who had a significant LVEF decline

during treatment. Further work with additional data for

testing would be desirable.

Published studies using echocardiography have

investigated GLS to assess LV contraction abnormalities

and detect sub-clinical changes before any decline in

LVEF, with several studies demonstrating that a change

in GLS during treatment precedes the drop in

LVEF.29–32 Ali et al.33 found that GLS could detect

subtle LV abnormalities prior to chemotherapy, and was

predictive of cardiac events. They also found a signif-

icant difference in baseline LVEF between the groups.

Despite there being published results using strain to

demonstrate subtle abnormalities before treatment, this

is the first RNVG study investigating ApEn as a

predictive measure.

ApEn has shown to be promising in this patient

cohort and can be calculated quickly without any

additional scanning, dose, or processing time. Patients

with higher ApEn and low LVEF at baseline may be

more susceptible to the cardiotoxic effects of the

therapy. Further improvement could potentially be

Hotelling’s test, p = <0.001
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Figure 4. Baseline LVEF plotted against baseline ApEn for
both groups. The dashed lines represent the mean ApEn and
mean LVEF of the test population.

Table 2. Logistic regression models

Predictor

Logistic regression model 1 Logistic Regression model 2

Coefficient P value Coefficient P value

ApEn - 116.3147 0.044 - 99.1931 0.004

Baseline LVEF - 0.9568 0.014 - 0.8518 0.009

ApEn, baseline LVEF interaction 1.7457 0.040 1.5253 0.033

Synchrony 241.7221 0.455

Entropy 22.0685 0.5356

Phase SD 0.2912 0.7761

Model \0.001 \0.001

Table 3. Comparison of performance for each
model and classifier

AUC

Logistic regression 1 (all predictors) 0.81

Logistic regression 2 (ApEn, baseline LVEF

interaction)

0.88

Random forest (all predictors) 0.87

Naive-Bayes (all predictors) 0.78
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achieved by combining ApEn with other clinical param-

eters and assessing as part of wider texture analysis.

Additional data would be necessary to define a decision

boundary using these parameters to highlight those most

at risk.

Limitations of Study

Of the 177 patients included in this study, only 11

patients had an LVEF decline of more than 10% to

below 50%. Due to this study being retrospective,

limited information was available detailing the treatment

and doses, therefore this study does not discriminate

between different chemotherapy regimes. Although the

initial results are promising, a prospective study would

be desirable to continue this work.

Conclusions

Patients who have a normal LVEF before treatment

may have subtle phase abnormalities which can be

detected at the baseline test. The results of this study

suggest that ApEn combined with the baseline LVEF

could potentially predict which patients are at a higher

risk of developing CTRCD, as measured by LVEF

decline, before treatment commences. If patients who

are at a higher risk of CTRCD can be identified, patient

treatment and monitoring could become more personal-

ized to the individual, helping to achieve the best

outcome for each patient.
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Combining baseline ApEn with baseline LVEF

could potentially predict which patients are at a higher

risk of developing CTRCD before cardiotoxic treatment
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