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Abstract
Background: One of the most commonly used classes of anti-cancer drugs presently in clinical practice is the 
platinum-based drugs, including cisplatin. The efficacy of cisplatin therapy is often limited by the emergence of 
resistant tumours following treatment. Cisplatin resistance is multi-factorial but can be associated with increased DNA 
repair capacity, mutations in p53 or loss of DNA mismatch repair capacity.

Methods: RNA interference (RNAi) was used to reduce the transcription-coupled nucleotide excision repair (TC-NER) 
capacity of several prostate and colorectal carcinoma cell lines with specific defects in p53 and/or DNA mismatch 
repair. The effect of small inhibitory RNAs designed to target the CSB (Cockayne syndrome group B) transcript on TC-
NER and the sensitivity of cells to cisplatin-induced apoptosis was determined.

Results: These prostate and colon cancer cell lines were initially TC-NER proficient and RNAi against CSB significantly 
reduced their DNA repair capacity. Decreased TC-NER capacity was associated with an increase in the sensitivity of 
tumour cells to cisplatin-induced apoptosis, even in p53 null and DNA mismatch repair-deficient cell lines.

Conclusion: The present work indicates that CSB and TC-NER play a prominent role in determining the sensitivity of 
tumour cells to cisplatin even in the absence of p53 and DNA mismatch repair. These results further suggest that CSB 
represents a potential target for cancer therapy that may be important to overcome resistance to cisplatin in the clinic.

Background
Cisplatin [cis-diammine-dichloroplatinum (II)] has been
used in the treatment of neoplastic diseases for over 30
years [1]. The effectiveness of cisplatin is dependent on
its interaction with DNA. This drug forms a variety of
DNA adducts but more than 99% of these are intrastrand
DNA adducts, most often between adjacent purines, with
only a very small number of interstrand-crosslinks and
monoadducts [2]. These intrastrand lesions are repaired
by the nucleotide excision repair (NER) pathway so the
response of tumours to cisplatin and other platinum-
based drugs may be affected by nucleotide excision repair
capacity of the tumour cells [1].

The vast majority of what is known about NER stems
from studies using the model DNA damaging agent UV
light but NER of cisplatin-induced DNA adducts is
thought to occur through an identical mechanism [3-8].
The rate-limiting step in NER is lesion recognition and
this occurs through two distinct mechanisms yielding
two interrelated yet genetically separable subpathways of
NER [9]. Global-genomic nucleotide excision repair (GG-
NER) is responsible for the removal of the vast majority
of UV and cisplatin-lesions throughout the genome
whereas transcription-coupled nucleotide excision repair
(TC-NER) is responsible for the selective removal of only
those lesions that are present in the template strand of
expressed genes [3,5,10-12].

Cockayne syndrome (CS) and xeroderma pigmentosum
(XP) are heterogeneous disorders characterized by clini-
cal photosensitivity [13]. Based on cell fusion and com-
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plementation studies, patients with CS were classified
into two groups (CS groups A and B) whereas XP patients
were grouped into 8 groups (XP groups A through G and
V). CS and XP cells (with the exception of the variant
form, XP-V) have defects in NER. These defects can be
specific to TC-NER, GG-NER or both sub-pathways of
NER [14,15]. Therefore, fibroblasts derived from patients
with these UV sensitive syndromes have been instrumen-
tal in identifying proteins involved specifically in TC-
NER and GG-NER and provided a model system to study
the relative contribution of GG-NER and TC-NER to cis-
platin response [6,16-18].

All TC-NER-deficient (CS-B for example) and com-
pletely NER-deficient (XP-A for example) fibroblasts
were found to be exquisitely sensitive to apoptosis
induced by UV light and cisplatin [6,16-18]. Many genetic
alterations in cancer affect DNA damage responses.
Notably, loss of the p53 tumour suppressor protein and
DNA mismatch repair (MMR) proteins are among the
most common genetic alterations in cancer and these
alterations have been associated with resistance to cispla-
tin treatment [19-27]. Therefore, the effect of targeting
TC-NER on the acute response of tumour cells to cispla-
tin could not be accurately predicted.

Here we report that silencing CSB by RNA interference
(RNAi) reduced the TC-NER capacity of several prostate
and colon cancer cell lines. This repair defect was associ-
ated with increased sensitivity of CSB-targeted cells to
cisplatin-induced apoptosis. Importantly, the sensitivity
of p53- and/or MMR-deficient tumour cells to cisplatin-
induced apoptosis could be significantly increased by
silencing CSB. These results suggest that TC-NER plays a
major role in determining the sensitivity of these tumour
cells to cisplatin and further suggests that CSB represents
a potential therapeutic target for cancer therapy.

Methods
Cell Culture and UV-irradiation
HCT116, DU145 and PC-3 cells were obtained from the
American Tissue Type Collection (Camden, NJ). The
MLH1-corrected (HCT116 + chr3) and p53 nullizygous
(HCT116p53-/-) cell lines were described previously
[28,29]. HCT116 derived cells were cultured in McCoy's
media (Wisent, St. Bruno, QC) while DU145 and PC-3
cells were grown in DMEM (Hyclone, Logan, UT).
McCoy's and DMEM were supplemented with 10% fetal
bovine serum (Wisent, St. Bruno, QC). Where indicated,
cisplatin (Mayne Pharma Canada Inc., Montreal, QC)
was added to fresh, pre-warmed media at the indicated
final concentration.

To UV-irradiate cells, medium was removed and cells
were irradiated with the indicated dose using a germicidal
bulb emitting predominantly at 254 nm at 1 J/m2/s as
measured with a hand-held UV dosimeter (UVX Radi-

ometer, UVP Inc., Uplands, CA). Fresh, pre-warmed
media was replaced and dishes were returned to an incu-
bator for the indicated period of time.

RNA interference
Sub-confluent cells were transfected with the indicated
siRNA (Dharmacon, Lafayette, CO) using OptiMEM II
and Oligofectamine (Invitrogen, Burlington, ON). The
target sequences for CSB and XPA were GTGTGCAT-
GTGTCTTACGA and AGAATTGCGGCGAGCAGTA,
respectively. These RNA duplexes were used at a final
concentration of 50 nM. A non-targeting control siRNA
(TAGCGACTAAACACATCAA) was used as a negative
control.

Preparation of nuclear lysates
Cells were rinsed with phosphate buffered saline (PBS)
then trypsinized and collected by centrifugation. Cell pel-
lets were resuspended in nuclear extraction buffer (320
mM sucrose, 10 mM HEPES, 5 mM MgCl2, 1% triton-X-
100, pH 7.4), incubated on ice and then collected by cen-
trifugation at 2500 × g. The resulting pellets were rinsed
twice with nuclear wash buffer (320 mM sucrose, 10 mM
HEPES, 5 mM MgCl2, pH 7.4) and collected by centrifu-
gation at 2500 × g then resuspended in RIPA buffer (50
mM Tris-HCl pH6.8, 150 mM NaCl, 1 mM EDTA, 1%
Triton-X-100, 1% sodium deoxycholate, 0.1% SDS). Pel-
lets were disrupted using a sonicator equipped with a
chilled microtip (Thermo Fisher Scientific, Ottawa, ON)
and protein quantified using the Bradford assay (Bio-Rad,
Mississauga, ON).

Immunoblotting
Two hundred micrograms of nuclear protein per well was
subjected to gel electrophoresis using NuPAGE 3-8% gra-
dient polyacrlyamide gels (Invitrogen), to visualize CSB
protein whereas MLH1 and Ku86 were resolved using
NuPAGE 4-12% gradient polyacrylamide gels (Invitro-
gen). Proteins were transferred to Hybond-C nitrocellu-
lose (GE Healthcare, Baie d'Urfé, QC) and blots were
stained with Ponceau S Red (5 mg/ml Ponceau S Red, 2%
glacial acetic acid) to visualize total transferred proteins.
Blots were then blocked in PBSMT-A (PBS, 5% nonfat
milk powder, 0.05% Tween 20) proteins were detected
using antibodies against XPA (FL-273), CSB (E-18) and
Ku86 (M-20) (Santa Cruz Biotech, Santa Cruz, CA) and
against MLH-1 (clone G168-15, BD Biosciences, Missis-
sauga, ON) diluted in PBSMT-B (PBS, 0.5% nonfat milk
powder) and were visualized using SuperSignal West Pico
Chemiluminescent Substrate (Thermo Fisher Scientific)
in combination with X-ray film (Kodak, Rochester, NY).
Multiple proteins were detected using the same blots
using Restore Western Blot Stripping Buffer (Thermo
Fisher Scientific).
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The recovery of RNA synthesis
Sub-confluent cells were transfected with siRNA and
subsequently grown in media supplemented with 5 μCi/
mL of [14C] thymidine (GE Healthcare) to uniformly label
DNA. Seventy-two hours later, cells were treated with 10
J/m2 UV. One hour before indicated collection time, the
media was replaced with fresh media containing 50 μCi/
mL [3H] uridine (GE Healthcare) to label nascent RNA.
Samples were rinsed in PBS containing 0.2% sodium
azide (PBS-Z), collected by trypsin in PBS-Z, rinsed with
PBS-Z and cell pellets were stored at -80°C. Samples were
lysed in 1% SDS and nucleic acids were precipitated in
10% trichloroacetic acid (TCA)/0.1 M sodium pyrophos-
phate (NaPPi) and precipitated nucleic acids were col-
lected on glass fiber filters (Thermo Fisher Scientific).
Incorporation of [3H] and [14C] was determined using a
scintillation counter and [3H] counts were normalized to
[14C] counts to control for cell number. RNA synthesis is
expressed as the proportion of [3H] uridine incorporated
in UV-treated samples compared to unirradiated con-
trols.

Host cell reactivation
Recombinant adenovirus expressing the lacZ gene under
control of the murine cytomegalovirus promoter [30],
was suspended in a minimal volume of PBS and was sub-
sequently irradiated with the indicated dose of UV light
on ice, as previously described [31]. Cells were infected
with UV- or mock-treated AdlacZ at a multiplicity of
infection of 5 plaque forming units per cell. Forty-eight
hours following infection, media was removed and
monolayers were incubated with 1 mM chlorophenolred-
β-D-galactopyranoside (Fluka Biochemika, Buchs, Swit-
zerland) in 0.01% Triton X-100, 1 mM MgCl2, and 100
mM phosphate buffer (pH 8.3) [32]. Absorbance at 570
nm was determined using a Thermo Multiskan Ascent
microplate photometer (Thermo Fischer Scientific). β-
galatosidase activity from the indicated dose is expressed
relative to the activity obtained by infection with un-irra-
diated virus.

Flow cytometry
Cells were treated with the indicated dose of UV light or
cisplatin, 72 hours following transfection of the indicated
siRNA. Detached and adherent cells were collected 48
hours following treatment, fixed in 70% ethanol for a
minimum of 2 hours at -20°C and stained in 30 μM pro-
pidium iodide (Sigma-Aldrich, Oakville, ON) in PBS with
40 μg/mL of RNAse A (Sigma-Aldrich) [33]. Samples
were analyzed by fluorescence activated cell sorting using
a Becton Dickenson LSR II Facstation and CellQuest soft-
ware (Becton Dickinson, Franklin Lakes, NJ) and data
files were analyzed using FCS Express (De Novo Soft-

ware, Los Angeles, CA). Apoptosis was quantified as the
proportion of cells with subdiploid DNA content.

Caspase activity assays
Cells were transfected with the indicated siRNA and
treated with either UV light or cisplatin. Twenty four
hours following treatment, cells were collected with
trypsin, rinsed thoroughly with PBS and cell number was
determined using an automated cell counter (Vi-Cell XR,
Beckman Coulter). Caspase 3, 8 and 9 activities were
determined from 1 × 106 cells using ApoAlert caspase-3,
caspase-8 or caspase-9/6 Fluorescent Assay Kits as speci-
fied by the manufacturer (Clontech, Mountain View, CA).
Fluorescence was measured using a Thermo Fluoroskan
Ascent microplate fluorometer (Thermo Fisher Scien-
tific).

Results
RNA interference against CSB increased the sensitivity of 
prostate cancer cells to cisplatin-induced apoptosis
Prostate cancer cells (DU145 and PC-3 cells) were trans-
fected with control or anti-CSB siRNAs and CSB protein
levels were assessed by immunoblot analysis (Figure 1A).
A single UV-induced dimer in the template strand of an
active gene is sufficient to block its expression [34-36].
This principal forms the fundamental basis of host cell
reactivation (HCR) assay that is commonly used to mea-
sure the repair of transcription-blocking DNA lesions
[31,36-38]. The DU145 and PC-3 cells exhibited a similar
dose-dependent decrease in β-galactosidase activity, sug-
gesting that these cell lines have a similar capacity to
repair transcription-blocking UV lesions (Figure 1B).
Transfection of siRNAs directed against CSB led to a sig-
nificant decrease in HCR of the UV-damaged reporter
gene in both prostate cancer cell lines (Figure 1B). The
dose of UV light required to reduce β-galactosidase activ-
ity to 50% (D50) was significantly lower in CSB targeted
cells compared to control siRNA transfected cells (Figure
1C). Therefore, silencing CSB by RNAi resulted in
impaired TC-NER, allowing us to assess the contribution
of TC-NER to cisplatin response in these tumour cells.

The expression of CSB was similarly inhibited by RNAi
and the sensitivity of PC-3 and DU145 cells to cisplatin-
induced apoptosis was assessed. Silencing CSB led to a
large increase in the sensitivity of DU145 cells to cispla-
tin-induced apoptosis (Figure 1D). The increased sensi-
tivity of PC-3 cells was evident albeit less pronounced
(Figure 1D). These results indicate that the ability of these
prostate cancer cell lines to repair transcription-blocking
DNA lesions by TC-NER was significantly reduced when
CSB levels were decreased by RNAi. Importantly, these
results suggest that disruption of CSB may be beneficial
in combination with platinum-based drugs in the man-
agement of prostate cancer.
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Role of p53 and MLH1 in determining cisplatin response of 
CSB-targeted colon cancer cells
Tumour cells frequently express mutant forms of DNA
damage response proteins that may influence their sensi-
tivity to therapeutic agents like cisplatin. For example,
loss of p53 and MMR have been associated with resis-
tance to cisplatin [19-23,25]. Notably, DU145 cells carry
point mutations in both alleles of p53 and do not express
MLH1 so they are MMR- and p53-deficient [39,40]. Simi-
larly, PC-3 cells do not express detectable p53 and they
exhibit microsatellite instability indicative of a defect in
MMR [39,40]. Given the effect of targeting CSB in these
p53 and MMR-deficient prostate cancer cell lines, an
isogenic series of cell lines derived from HCT116 col-
orectal cancer cells were used to better assess the impact
of p53- and MMR-deficiency under conditions in which
CSB is silenced by RNAi.

HCT116 cells express wildtype p53 but do not express
MLH1 and are considered MMR-defective [28]. The anti-
CSB siRNA reduced CSB protein levels by more than 90%
in these cells (Figure 2A) and this led to a decrease in
their ability to repair an UV-damaged reporter gene (Fig-
ure 2B). Specifically, the dose of UV light required to
reduce β-galactosidase activity to 50% (D50) was signifi-
cantly lower in CSB-targeted HCT116 cells compared to
control siRNA transfected cells. As a second measure of
TC-NER, we assessed the ability of cells to recover
nascent RNA synthesis following UV exposure. Whereas
mock and control siRNA transfected cells recovered
nascent RNA synthesis within 8 hours following exposure
to 10 J/m2 of UV light, the incorporation of [3H] uridine
was still significantly inhibited 24 hours following UV
exposure of CSB siRNA transfected HCT116 cells (Figure

2C). Taken together, silencing CSB led to a reduction in
the capacity of HCT116 cells to perform TC-NER.

HCT116 were transfected with control and anti-CSB
siRNAs and their sensitivity to cisplatin-induced apopto-
sis was assessed. Consistent with the results in prostate
cancer cell lines, targeting CSB in HCT116 cells
increased their sensitivity to cisplatin-induced apoptosis
(Figure 2D) and this was associated with increased cas-
pase activity (Figures 2E-G). Taken together, silencing
CSB by RNAi reduced the capacity of these MMR-defi-
cient cells to repair transcription-blocking DNA lesions
and greatly increased their sensitivity to cisplatin-
induced apoptosis.

Similar experiments were performed in an MLH1-cor-
rected MMR-proficient subline of HCT116 cells
(HCT116 + chr3) (Figure 3A and 3B) [28]. Again, target-
ing CSB by RNAi in these cells inhibited HCR of the UV-
damaged reporter gene and prevented the efficient recov-
ery of nascent RNA synthesis (Figures 3C and 3D). Fur-
thermore, RNAi against CSB increased the sensitivity of
CSB-targeted cells to cisplatin-induced apoptosis and this
was associated with significant increases in the activity of
caspases 3, 8 and 9 (Figures 3E-H). Taken together, MLH1
had no apparent effect on TC-NER of UV-induced DNA
lesions or the sensitivity of these cells to cisplatin-
induced apoptosis. Targeting CSB by RNAi was equally
effective at increasing the sensitivity of these tumour cells
to cisplatin-induced apoptosis, regardless of MLH1
expression.

CSB was also silenced by RNAi in p53 nullizygous
derivatives of HCT116 cells (HCT116p53-/- cells) (Figure
4A). These p53 null cells appeared to be reduced in their
capacity to repair the UV damaged reporter gene com-

Figure 1 RNA interference in prostate cancer cell lines. (A) DU145 and PC-3 cells were transfected with non-targeting control (NT) or anti-CSB 
(CSB) siRNA and CSB levels were assessed by immunoblot analysis of nuclear lysates. CSB and Ku86 migrated with apparent molecular weights of ap-
proximately 175 and 85 kDa, respectively. (B) Host cell reactivation of a UV-damaged reporter gene was assessed in DU145 and PC-3 cells transfected 
with non-targeting control (NT) or anti-CSB (CSB) siRNA. (C) The data in (B) is expressed as the dose required to reduce β-galactosidase activity by 50%. 
(D) The indicated cell lines were transfected with control (NT- closed symbols) or CSB targeting (open symbols) siRNA. Apoptosis was assessed as the 
proportion of cells with sub-diploid DNA content 48 hours following exposure to the indicated dose of cisplatin. Each value in B-D represents the 
mean (± SEM) from at least 4 independent experiments. An * in C indicates that the value is significantly less than 100% (P ≤ 0.05, single sample t-test) 
while an * in D indicates that the value is significantly different than its respective NT control (P ≤ 0.05, t-test). Similar results were obtained following 
exposure to UV light (data not shown).
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pared to parental cells already and HCR of the UV-dam-
aged reporter gene was not further reduced by siRNA
against CSB (Figure 4B). Subtle defects in TC-NER have
been reported using similar HCR assays in other p53-
deficient cells [41]. Nonetheless, these cells had almost
fully recovered nascent RNA synthesis within 8 hours fol-
lowing UV exposure and this was again delayed in CSB
siRNA-transfected HCT116p53-/- cells (Figure 4C).
Despite the apparent repair defect detected in the HCR
experiments, the present results indicate that HCT116
p53-/- cells are not fully TC-NER deficient because RNAi
against CSB again abrogated the recovery of nascent RNA
synthesis in these cells.

There was no significant increase in the proportion of
control siRNA transfected HCT116p53-/- cells undergo-
ing apoptosis following exposure to up to 15 μM of cispl-
atin indicating that these cells were relatively resistant to
cisplatin-induced apoptosis compared to isogenic con-
trols (Figure 4D). This is likely due to the disruption of
the well-described pro-apoptotic activity of p53 in these
nullizygous cells [42]. However, decreased expression of
CSB was again associated with a significant increase in
the sensitivity of tumour cells to cisplatin-induced apop-
tosis (Figure 4D). Apoptosis was associated with a signifi-
cant increase in the activity of caspases 3, 8 and 9 (Figure

4E-G). So, while p53 nullizygous cells were less sensitive
to cisplatin-induced apoptosis, targeting TC-NER was
similarly effective at sensitizing HCT116p53-/- cells to
cisplatin-induced cell death. Clearly, p53 was not abso-
lutely required to sensitize tumour cells to cisplatin when
CSB expression was decreased by RNAi.

RNA interference against XPA sensitizes cancer cells to 
cisplatin
The CS proteins have been known to participate in TC-
NER for many years [14], however, the CS proteins may
play an additional role in regulating transcription [43-45].
Therefore, the expression of another protein required for
TC-NER was silenced by RNAi. XPA is a DNA damage
binding protein that is required for both TC-NER and
GG-NER to which no additional functions have been
ascribed [46]. XPA protein levels were reduced by RNAi
in HCT116, HCT116 + chr3 and HCT115p53-/- cells and
the sensitivity of the targeted cells to cisplatin-induced
apoptosis was assessed. Decreased expression of XPA
was associated with a statistically significant increase in
the sensitivity of all 3 cell lines to cisplatin-induced apop-
tosis (Figure 5). Taken together, decreased expression of
CSB or XPA was associated with increased sensitivity of

Figure 2 Silencing CSB in HCT116 cells. (A) The effectiveness of siRNAs against CSB in HCT116 cells was assessed by immunoblot analysis of nuclear 
lysates from cells that were either mock-transfected (M) or transfected with the indicated siRNA (non-targeting control (NT) or CSB). (B) Host cell reac-
tivation of a UV-damaged reporter gene was assessed in non-targeting siRNA (NT) and CSB siRNA (CSB) transfected cells. Reduced CSB levels were 
associated with a decrease in the dose required to reduce β-galactosidase activity to 50% (P < 0.05, t-test). (C) The ability of mock-, NT- and CSB-siRNA 
transfected cells to recover nascent RNA synthesis following UV exposure was assessed in HCT116 cells. (D) Similarly transfected HCT116 cells were 
exposed to the indicated dose of cisplatin and apoptosis was assessed as the proportion of cells with subdiploid DNA content 48 hours later. (E-G) 
The activity of caspases 3, 8 and 9, respectively, was determined 24 hours following exposure to 10 μM cisplatin. Each value in B-G represents the mean 
(± SEM) determined from a minimum of 3 independent experiments. An * in C indicates that the value is significantly less than 100% (P ≤ 0.05, single 
sample t-test) while an * in D indicates that the value is significantly different from its respective NT control (P ≤ 0.05, t-test). There was a significant 
difference in caspase 3 but not caspases 8 or 9 activity among transfectants following cisplatin treatment (P = 0.04, 0.14 and 0.30, respectively, ANOVA).
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tumour cells to cisplatin-induced apoptosis and this was
largely independent of MMR and p53.

Discussion
Link between nucleotide excision repair and sensitivity to 
cisplatin
The contribution of TC-NER to cell survival following
UV-irradiation or cisplatin treatment is thought to be cell
type specific. For example, CS-B fibroblasts have a spe-
cific defect in TC-NER and are more sensitive to UV- and
cisplatin-induced apoptosis than GG-NER deficient XP-
C fibroblasts [6,16-18]. A similar relationship was
reported in CSB nullizygous mouse embryonic fibro-
blasts and murine keratinocytes exposed to UV light
[7,16,17,47-53]. By contrast, CSB null murine embryonic
stem cells were not hypersensitive to this DNA damaging
agent [52]. The cell type-specific roles for TC-NER in

determining the fate of UV-irradiated cells raised the
question as to whether the response of tumour cells to
UV light and cisplatin would more closely resemble that
of primary cells [7,16-18,33,47-49,54,55] or embryonic
stem cells [52].

The CSB protein is required for a rate limiting step of
TC-NER [56-58]. Here we show that a series of prostate
and colon cancer cell lines retained the ability to repair
transcription-blocking DNA lesions and that silencing
CSB functionally impaired this repair process. Therefore,
we were able to test the role of TC-NER in cisplatin
response using this in vitro system. Decreased expression
of CSB was associated with increased sensitivity of cells
to cisplatin-induced apoptosis. Similarly, silencing CSB
led to increased apoptosis following exposure to UV light
(data not shown), consistent with a role for CSB in deter-
mining the sensitivity of cells to apoptosis induced by

Figure 3 RNAi against CSB in DNA mismatch repair corrected HCT116 cells. (A) The effectiveness of siRNAs against CSB in HCT116 and HCT116 
+ chr3 cells was assessed by immunoblot analysis of nuclear lysates from cells that were either mock-transfected (M) or transfected with the indicated 
siRNA (non-targeting control (NT) or CSB). HCT116 + chr3 cells express readily detectable MLH1 protein (A and B). The # denotes a non-specific band 
recognized by this antibody. (C) Host cell reactivation of a UV-damaged reporter gene was determined in non-targeting siRNA (NT) and CSB siRNA 
(CSB) transfected HCT116 + chr3 cells. Reduced CSB levels were associated with a decrease in the dose required to reduce β-galactosidase activity to 
50% (P < 0.05, t-test). (D) The ability of mock-, NT- and CSB-siRNA transfected HCT116 + chr3 cells to recover nascent RNA synthesis following UV ex-
posure was assessed in HCT116 + chr3 cells. (E) Similarly transfected HCT116 + chr3 cells were exposed to the indicated dose of cisplatin and apoptosis 
was assessed as the proportion of cells with subdiploid DNA content 48 hours later. (F-H) The activity of caspases 3, 8 and 9 was determined 24 hours 
following exposure to 10 μM cisplatin. Each value in C-H represents the mean (± SEM) determined from a minimum of 3 independent experiments. 
An * in D indicates that the value is significantly less than 100% (P ≤ 0.05, single sample t-test) while an * in E indicates that the value is significantly 
different from its respective NT control (P ≤ 0.05, t-test). There was a significant difference in caspase 3, 8 and 9 activity among transfectants following 
cisplatin treatment (P = 0.001, 0.03 and 0.05, respectively, ANOVA). Similar results were obtained following exposure to UV light (data not shown).
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both of these agents [6,16-18,50,59,60]. Lu and coworkers
reported that antisense oligonucleotides designed to
inhibit the expression of CSB increased the responsive-
ness of wildtype p53 and DNA mismatch repair profi-
cient ovarian tumour xenografts to cisplatin [61].
Targeting TC-NER may represent a means of increasing
the responsiveness of a variety of tumours to cisplatin.

MMR proteins and p53 in cisplatin resistance
Cisplatin is among the most widely used anti-neoplastic
agents. Although tumours often respond favorably to cis-
platin treatment, there is eventual disease progression in
many cases. This recurrent disease can be refractory to
subsequent treatment with platinum-based drugs [1,62-
69]. Drug resistance can in some cases be attributed to
increased DNA repair response but may also result from
a variety of other alterations including decreased apop-
totic signaling in response to this form of DNA damage

[64,67,69-74]. Two key genetic changes that have been
associated with resistance to cisplatin are p53- and
MMR-deficiency [19,21-23,25,64,75-77]. Despite the
association of p53 and MMR defects with cisplatin resis-
tance, RNAi against CSB and XPA in this panel of tumour
cell lines deficient in p53 (PC-3, DU145 and HCT116p53-
/-) and MMR (PC-3, DU145, HCT116 and HCT116p53-/
-) resulted in a significant increase in the sensitivity of
cells to cisplatin-induced cell death. The present results
indicate that targeting TC-NER sensitizes tumour cells to
cisplatin-induced apoptosis and that this was largely
independent of p53 and MMR. This makes TC-NER an
attractive target for combined cancer therapy.

Conclusion
We found that both p53 and MMR-deficient colorectal
and prostate cancer cells retain the ability to perform TC-

Figure 4 RNAi against CSB in HCT116p53-/- cells. (A) The effectiveness of siRNAs against CSB in HCT116, HCT116 + chr3 and HCT116p53-/- cells 
was assessed by immunoblot analysis of nuclear lysates from cells that were either mock-transfected (M) or transfected with the indicated siRNA (non-
targeting control (NT) or CSB). (B) HCR of a UV-damaged reporter gene was determined in non-targeting siRNA (NT) and CSB siRNA (CSB) transfected 
HCT116p53-/- cells. (C) The ability of mock-, NT- and CSB-siRNA transfected cells to recover nascent RNA synthesis following UV exposure was assessed 
in HCT116p53-/- cells. (D) The sensitivity of HCT116p53-/- cells (closed symbols, solid lines) transfected with NT (triangles) or CSB (inverted triangles) 
siRNAs to cisplatin-induced apoptosis was assessed, as described in figure 2D. The results of similar experiments presented in figure 2D for HCT116 
cells (open symbols, dashed lines) are provided for direct comparison. (E-G) The activity of caspases 3, 8 and 9, was determined following exposure to 
10 μM cisplatin. Each value in B-G represents the mean (± SEM) determined from a minimum of 3 independent experiments. An * in C indicates that 
the value is significantly less than 100% (P ≤ 0.05, single sample t-test) while an * in D indicates that the value is significantly different from its respective 
NT control (P ≤ 0.05, t-test). A significant difference in caspase 3, 8 and 9 activity was detected among transfectants following cisplatin treatment (P = 
0.0001, 0.04 and 0.002, respectively, ANOVA). Similar results were obtained following exposure to UV light (data not shown).
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NER and targeting TC-NER in these cells increased their
sensitivity to UV light and cisplatin. CSB and XPA may
represent rational targets to augment cisplatin respon-
siveness of tumours, independent of MMR capacity and
p53. This work further suggests that targeting other pro-
teins involved in TC-NER may similarly represent a
promising approach for cancer therapy. Notably, recent
clinical evidence suggests that ERCC1 levels predict
response to platinum-based therapies in non-small cells
lung cancer [1,78-80], small cell lung cancer [81], esopha-
geal cancer [82], head and neck cancer [83], bladder can-
cer [84] and testicular cancer[85]. ERCC1, like XPA, is
required for both TC-NER and GG-NER. It is possible
that the predictive value of ERCC1 is related to its role in
TC-NER and that the expression of other proteins
involved in TC-NER, like CSB, may also be predictors of
therapeutic response in diverse tumours.
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