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Abstract

Objective: This study aims to address the challenge of privacy-preserving Alzheimer’s disease classification using federated
learning across various data distributions, focusing on real-world applicability. The goal is to improve the efficiency of clas-
sification by minimizing communication rounds between clients and the central server.

Methods: The proposed approach leverages two key strategies: increasing parallelism by utilizing more clients in each com-
munication round and increasing computation per client during the intervals between rounds. To reflect real-world scen-
arios, data is divided into three distributions: identical and independently distributed, non-identical and independently
distributed equal, and non-identical and independently distributed unequal. The impact of extreme quantity distribution
skew is also examined. A convolutional neural network is used to evaluate the performance across these setups.

Results: The empirical study demonstrates that the proposed federated learning approach achieves a maximum accuracy of
84.75%, a precision of 86%, a recall of 85%, and an F1-score of 84%. Increasing the number of local epochs improves clas-
sification performance and reduces communication needs. The experiments show that federated learning is effective in
handling heterogeneous datasets when all clients participate in each round of training. However, the results also indicate
that extreme quantity distribution skew negatively impacts classification performance.

Conclusions: The study confirms that federated learning is a viable solution for Alzheimer’s disease classification while preserv-
ing data privacy. Increasing local computation and client participation enhances classification performance, though extreme dis-
tribution imbalances present a challenge. Further investigation is needed to address these limitations in real-world scenarios.
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Introduction
Neurodegenerative disorder mild cognitive impairment
(MCI) is characterized as the prodromal stage of cognitive
decline that falls between normal aging and the onset of
dementia.1–4 It is estimated that ∼15%–20% of individuals
aged 65 and older experience MCI.3 Alarmingly, MCI
carries a substantial risk of progression to Alzheimer’s
disease (AD) or other forms of dementia, with a ∼54%
chance of such progression.5,6 The prevalence of dementia
is a global concern, and AD accounts for a significant

portion of dementia cases.3,7,8 Statistics reveal that around
60%–70% or 60%–80% of all dementia cases are attributed
to AD.3,8,9
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AD is a severe and progressive neurological condition
that manifests through a range of cognitive impairments,
including gradual memory loss, reasoning difficulties,
behavioral changes, communication issues, motor dysfunc-
tion, and impaired daily activities, among other cognitive
deficits.10–13 The pathology of AD is characterized by
abnormal proteins that disrupt brain cells and neurons,
leading to the breakdown of signal transmitters crucial for
memory retention.14 AD extends beyond the realm of clin-
ical symptoms; it has profound social, economic, and global
implications.15 The burden on caregivers, often family
members, is immense, encompassing emotional, financial,
and practical challenges.16

According to the World Alzheimer Report 2021,
Alzheimer’s Disease International (ADI) has reported that
up to 75% of people with dementia worldwide remain
undiagnosed, and this figure may be as high as 90% in
some low- and middle-income countries, where stigma
and lack of awareness about dementia pose significant bar-
riers to diagnosis. The number of people living with demen-
tia has surpassed 55 million globally, and this number
continues to grow, with projections indicating it could
reach 78 million by 2030.14 The socioeconomic impact of
dementia is also substantial, with the worldwide cost
expected to have exceeded US$1.3 trillion in 2019 and pre-
dicted to rise to over US$2.8 trillion by 2030 due to the
increasing number of individuals living with dementia
and the associated caregiving expenses.17 Consequently,
it is imperative to focus on preventive measures to
combat this debilitating disease for the sake of both health-
care and the economy.

While the precise causes of AD are still a subject of
ongoing research, several risk factors have been identified.
These risk factors include genetics, family history, head
injuries, down syndrome, heart disease, diabetes, stress,
stroke, high blood pressure, high cholesterol, and,
notably, age.18,19 There are promising anti-amyloid treat-
ments (e.g. aducanumab, lecanemab, etc.) that are clinically
indicated in patients with earlier stages of AD, so earlier and
accurate detection of AD is important when considering the
potential use of these medications.

To detect AD, conventional centralized machine learn-
ing models require data to be transmitted to a central
server, posing significant privacy vulnerabilities. In con-
trast, federated learning (FL) offers a methodology for
model training that eliminates the need to centralize data,
thereby safeguarding the privacy of individuals or entities
providing their data. This privacy-preserving approach
aligns with the imperative need to protect the confidentiality
of such information in an era where data security and
privacy concerns are paramount. As such, in this study,
we have employed FL to classify AD.

FL is a machine learning paradigm that involves training
a model using data from multiple clients, such as mobile
phones, tablets, and hospitals, without the need to directly

share sensitive training data. This collaborative approach
is often facilitated by a central server that orchestrates the
learning process.20–22 There are two common settings for
FL, which are determined by the network’s size and charac-
teristics: cross-device FL and cross-silo FL.23 Cross-device
FL pertains to scenarios where numerous clients participate,
each having limited data, bandwidth, and availability, such
as mobile devices, laptops, and tablets. In contrast, cross-
silo FL involves a smaller number of clients, but each pos-
sesses more substantial resources, including institutions like
banks, schools, and hospitals. Notably, in cross-silo FL,
each client is required to actively engage in the entire train-
ing process, which is feasible due to the limited number of
clients, typically ranging from two to 100. Figure 1 pro-
vides a visual representation and working mechanism of
the FL. This privacy-preserving mechanism has significant
potential applications in areas like privacy-preserving
disease detection and classification. The abovementioned
works of FL (explained in more detail in the literature
review section) did not conduct experiments based on
either different real-world scenarios or with the aim of redu-
cing communication costs while classifying AD. Therefore,
the novelty of this research is summarized below:

• Conducted an empirical and rigorous study focused on
the detection and classification of AD utilizing privacy-
preserving FL.

• Generated synthetic dataset representative of real-world
scenarios from the original dataset and conducted
experiments to validate the approach’s efficacy.

• Implemented experiments exploring strategies of
increasing parallelism and computation per client to
reduce communication costs while classifying AD.

The rest of the article is organized as follows. The
“Literature review” section delves into related literature,
highlighting potential areas for further research. In the
“Methods and materials” section, we describe our method
for privacy-preserving AD classification using the FL
scheme and provide the materials used in the experimental
results analysis. The “Results and discussions” section fur-
nishes the experimental outcomes and discussions, and
finally, “Conclusion and future work” section presents the
conclusion and outlines future research directions.

Literature review
This section provides several recent studies that were con-
ducted by applying centralized learning (CL) and FL. To safe-
guard data privacy and address data heterogeneity issues, the
researchers by Lei et al.24 introduced a framework for multi-
site federated domain adaptation based on the transformer
model. They utilized the transformer to uncover relationships
among features from multi-template regions of interest and to
harness the complementary information from these templates.
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Their study encompassed three distinct datasets: the
Alzheimer’s Disease Neuroimaging Initiative (ADNI), the
Australian Imaging, Biomarker and Lifestyle Flagship
Study of Aging (AIBL), and AI4AD data. They conducted
both two-way classifications, distinguishing between AD
versus healthy control (HC), MCI versus HC, and AD
versus MCI, as well as a three-way classification task, separ-
ating AD,MCI, and HC. The results showed accuracy rates of
88.75%, 69.51%, and 69.88% for the two-way classification
tasks involving AD versus HC, MCI versus HC, and AD
versus MCI, respectively.

In their work,25 the authors introduced an evolutionary
deep convolutional neural network (EDCNN) designed

for the identification of AD within a privacy-protected FL
framework. Their primary emphasis was on convex opti-
mization, to enhance the computational efficiency and
accuracy of AD detection. The study involved the utiliza-
tion of multimodal datasets, including MRI, EEG, and
blood test data, each serving as a distinct node within the
federated settings. The researchers by Huang et al.26 dedi-
cated their efforts to developing a privacy-preserving AD
classification framework called federated conditional
mutual learning (FedCM), designed for client-aware
mutual learning. They validated their proposed framework
using three different AD datasets: ADNI, Open Access
Series of Imaging Studies (OASIS), and AIBL. They

Figure 1. The working mechanism of federated learning (FL) framework. At each communication round t , C clients are selected and
trained on their local model by their private dataset and also send their local model parameters. The central orchestration aggregates all
the updates sent by selected client C through the FedAvg or other algorithms and trains the global model. After that, the central
orchestration sends the updated global model to the C clients for retraining purposes. This process continues until reaching training
convergence.
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conducted two and three-class classifications on the labeled
data, differentiating AD, MCI, and HC subjects. In the
context of AD versus HC, they achieved remarkable
results, attaining a maximum accuracy of 91.9%, a recall
of 100%, and a specificity of 91.1% by applying three-
dimensional-convolutional neural network (3D-CNN) to
the OASIS dataset.

In another secure FL-based approach presented by the
researcher,27 the focus was on the neuroimaging modality.
The authors implemented a fully homomorphic encryption
mechanism to ensure secure communication and aggrega-
tion. They tested their method with the AD datasets
(ADNI, OASIS, and AIBL) and the 3D-CNN model.
They trained the neural model using three (ADNI phases),
four (ADNI phases + OASIS), and five (ADNI phases +
OASIS + AIBL) learners or clients. The best performance
was achieved with a five-learner setup, resulting in an
accuracy of 86%, precision of 80.98%, recall of 81.32%,
and an F1-score of 81.14% when considering the ADNI,
OASIS, and AIBL datasets. Using the same five learners,
the authors achieved an accuracy of 86.12%, a precision
of 79.77%, a recall of 82.87%, and an F1-score of
81.22% for centralized settings.

Movahed and Rezaeian28 introduced a machine learning
framework for diagnosing mild AD, focusing on extracting
spectral, functional connectivity, and nonlinear features
from EEG signals. They utilized the sequential backward
feature selection (SBFS) algorithm to choose the most suit-
able feature subset. Multiple classifiers, including support
vector machines (SVM) with linear and RBF kernels, logis-
tic regression (LR), k-nearest neighbor (KNN), decision
tree (DT), gentleBoost, naive Bayes (NB), and RushBoost
(RB), were examined. Among the classifiers, SVM with
10-fold cross-validation (CV) exhibited the best
performance.

Siuly et al.3 devised a framework for distinguishing mild
AD from HC. They employed the stationary wavelet trans-
formation (SWT) method to eliminate low-frequency
(including baseline drift) and high-frequency (including
power line interference) noise. They analyzed data in non-
overlapping 2-second sliding windows. The study intro-
duced the piecewise aggregate approximation (PAA) tech-
nique. To evaluate their approach, they used extreme
learning machines (ELM), SVM, and KNN with 10-fold
CV. Plant et al.29 proposed a classification framework for
distinguishing AD from HC using frequency and time–fre-
quency features extracted from EEG data. They conducted
experiments under resting-state eyes open (EO) and eyes
closed (EC) conditions, segmenting the EEG signal into
4-second windows. After preprocessing the data, they
applied the KNN model with 10-fold CV.

Sarraf et al.30 presented a method for AD and HC detec-
tion using CNN. They utilized MRI and fMRI as their
experimental modalities, achieving accuracy rates of
99.9% and 98.84% for the fMRI and MRI pipelines,

respectively. Khatun et al.4 employed single-channel EEG
data from Fpz (near the forehead) to classify individuals
with MCI from those with normal cognitive functioning.
They analyzed the data in 25ms windows with a 50%
overlap across the entire signal. For feature selection, they
used the random forest (RF). As classifiers, they utilized
SVM with a radial basis function (RBF) kernel and LR
with leave-one-out CV.

For early AD detection, an empirical analysis was per-
formed by McBride et al.5 The researchers explored spec-
tral and complexity features as EEG-based biomarkers to
differentiate between normal older individuals, those with
MCI, and AD subjects. They considered 24 features and
calculated their average values for each channel and 12
brain regions, including left and right regions, as well as a
global region representing the average of all regions.
They devised a three-way classifier based on a two-way
classifier (HC vs. MCI, HC vs. AD, and MCI vs. AD)
using a pairwise coupling approach. They applied a quad-
ratic kernel with an SVM classifier for classification
under EO, EC, and counting task (CT) conditions.

Aghajani et al.31 proposed a method for mild AD detec-
tion using EEG signals. They aimed to distinguish between
healthy individuals and those with mild AD by mapping
EEG signals to their corresponding distributed sources via
standardized low-resolution brain electromagnetic tomog-
raphy based on a realistic head model. They proposed
using the relative logarithmic transformed power spectrum
density of estimated sources as a feature. Singular value
decomposition was employed to reduce the number of fea-
tures and enhance separability.

Plant et al.29 introduced a sulcal feature-based approach
for classifying AD and HC. They computed various fea-
tures of the sulcal medial surface, including depth, length,
mean curvature, Gaussian curvature, and surface area.
These features were used in conjunction with an SVM for
classification. When tested using 10-fold CV, the model
achieved an accuracy of 87.9%, sensitivity of 90.0%, speci-
ficity of 86.7%, and an area under the receiver operating
characteristic curve (AUC) of 89%.

A comparison of the potentially related works is tabu-
lated in Table 1. Several factors underlie the motivation
for this planned research. While conventional CL has
been extensively explored for disease detection and classi-
fication, limited attention has been given to employing FL.
Those few researchers who have ventured into healthcare
applications of FL have often omitted empirical analysis.

Methods and materials

Method overview

Our primary goal is to optimize the efficiency of AD clas-
sification through advancements in the FL framework by
minimizing the number of communication rounds required
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Table 1. Comparison of the previously conducted relevant literature for the detection and classification of AD.

Reference Approach Data Model Performance metrics Strengths Shortcomings Year

Lei et al.24 FL MRI Transformer Accuracy rates of
88.75%, 69.51%,
69.88%
for AD versus HC,
MCI versus HC,
and AD versus MCI,
respectively

Utilizes advanced
transformer
model to
integrate
multi-site
data effectively

Requires large
datasets
to train
effectively,
complex
model
architecture

2023

Lakhan et al.25 FL MRI, EEG,
blood
test

EDCNN Focus on convex
optimization for AD
detection,
commendable
performance

Enhances
computational
efficiency;
incorporates
multimodal
data

May overlook
unique dataset
characteristics
due to
optimization
focus

2023

Stripelis et al.27 FL MRI 3D-CNN Accuracy of 86%,
precision 80.98%,
recall 81.32%, and
F1-score 0.8114.

High privacy
preservation;
robust against
data
distribution
variability

Performance can be
dependent on the
number
and quality of FL
participants

2022

Huang et al.26 FL MRI 3D-CNN Maximum accuracy
91.9%, recall
100%,
specificity 91.1%

Excellent
classification
accuracy;
perfect
recall rate

Could benefit
from further
validation
across more
diverse datasets

2021

Movahed and
Rezaeian28

CL EEG SVM, LR, KNN,
DT,
gentleBoost,
NB, RB

SVM with 10-fold
CV showed
best performance

Diverse classifier
testing; robust
feature
selection via
SBFS

Single modality
(EEG)
may limit
diagnostic
applicability

2022

Siuly et al.3 CL EEG ELM, SVM, KNN ELM maximum
accuracy 98.78%,
precision 99.69%,
recall 98.32%,
F1-score 98.95%

High accuracy;
robust against
noise
with SWT
method

Limited to EEG data;
may not
generalize well
to other
modalities

2020

Durongbhan
et al.7

CL EEG KNN In EO state, accuracy
83.32%, recall
72.57%,
specificity 87.52%

Performs well
under
different
sensory
conditions (EO
and EC)

Performance varies
significantly
between
conditions

2019

Khatun et al.4 CL EEG SVM, LR Accuracy 87.90%,
recall 84.90%,
specificity 95%

Effective in
distinguishing
MCI from
normal
cognitive
functioning

High dependency on
EEG placement
and quality

2019

(continued)
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during model training. This reduction in communication
demands additional computational input, a resource-
intensive proposition that we address through two principal
strategies: (1) increased parallelism, which entails engaging
a larger cohort of clients to perform tasks concurrently
during each communication round, leveraging their collect-
ive computational power to potentially accelerate the learn-
ing process while maintaining or reducing the frequency of
required communications; and (2) increased computation
per client, where each client is tasked with performing
more complex computational tasks within each training
cycle, such as advanced processing tasks that contribute
to the model’s learning phase, thereby enriching the train-
ing process within the same communication interval. To
ensure the relevance and applicability of our FL enhance-
ments, we divide the original dataset into three distinct
data distributions: identical and independently distributed
(IID), non-IID equal, and non-IID unequal, each presenting
unique challenges and scenarios that closely mimic the
variety of real-world conditions under which FL systems
must operate. This setup allows us to thoroughly test the
resilience and adaptability of our proposed methodologies
in different data environments, providing comprehensive

insights into their effectiveness and potential areas for
further refinement.

Firstly, the collected image data are preprocessed and
then used to create IID, non-IID equal, and non-IID
unequal synthetic datasets. These datasets are subsequently
used for further experiments. The overview of the proposed
methodology is depicted in Figure 2.

Dataset

Our experimental Alzheimer’s dataset contains 6400
T1-weighted MRI images from four classes, each 128 ×
128 pixels.32 The statistical description of this dataset is
outlined in Table 2. Note that the collected image data are
originally sourced from the following recognized sources:
ADNI,33 alzheimers.net,34 MRI and Alzheimer’s,35
Alzheimer’s Disease and Healthy Aging Data,36 and the
European Prevention of Alzheimer’s Dementia.37

Data preprocessing

This research employed fundamental image processing
techniques to prepare the data dynamics for training. The
preprocessing procedures are outlined below:

Table 1. Continued.

Reference Approach Data Model Performance metrics Strengths Shortcomings Year

Sarraf et al.30 CL MRI, fMRI CNN Accuracy 99.9%
for fMRI, 98.84%
for MRI

High accuracy;
utilizes
advanced
imaging
modalities

fMRI may not be
accessible in all
clinical settings

2016

Plant et al.29 CL MRI SVM Accuracy 87.9%,
sensitivity 90.0%,
specificity 86.7%,
AUC 89%

Uses detailed
sulcal
features for
high
diagnostic
specificity

Complexity of
feature
extraction may
hinder
practical
application

2016

McBride et al.5 CL EEG SVM Accuracy 84.4% for
EO, 96.9% for CT,
and 71.9% for EC

Utilizes complex
EEG features
for
detailed
analysis

Results vary
significantly
across tasks;
complex setup

2014

Aghajani et al.31 CL EEG SVM Accuracy 84.40%,
recall 75%,
specificity 93.70%

Novel use of
sLORETA
for feature
extraction from
EEG

May require high
computational
resources
for feature
analysis

2013

AD: Alzheimers disease; FL: federated learning; CL: centralized learning; MRI: magnetic resonance imaging; fMRI: functional magnetic resonance imaging;
EEG: electroencephalography; EDCNN: evolutionary deep convolutional neural network; SVM: support vector machine; KNN: k-nearest neighbor; 3D-CNN:
three-dimensional convolutional neural network; ELM: extreme learning machine; LR: logistic regression; DT: decision tree; NB: Naive Bayes; RB: RushBoost;
HC: healthy control; MCI: mild cognitive impairment; EO: eyes open; EC: eyes closed; CT: counting task; AUC: area under the receiver operating characteristic
curve; CV: cross-validation.
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Normalization. Image normalization was carried out to scale
every pixel in the image to a range between 0 and 1. This
involves transforming the pixel intensity range of the
image into a standardized scale, facilitating model learning,
and enhancing training effectiveness.38 Variations in light-
ing conditions, contrast levels, and color distributions
among images can all introduce biases, which normaliza-
tion helps mitigate. The steps involved in image normaliza-
tion are as follows. The mean pixel value is subtracted from

each pixel in the image, thereby eliminating any inherent
data dynamics bias, resulting in pixel values centered at
zero. Subsequently, the image is divided by the standard
deviation of the pixel values, ensuring that the pixel
values have a unit standard deviation. This helps to equalize
the scale of different features within the image.
Mathematically, it can be defined as follows:

Normalized pixel = pixel− min pixel

max pixel− min pixel
(1)

Labeling. The dataset encompasses 416 subjects aged 18 to
96, with 3–4 T1-weighted MRI scans per subject. All sub-
jects are right-handed and of both genders. Among those
over 60, 100 have been clinically diagnosed with very
mild to moderate AD. Additionally, a reliability subset
includes 20 non-demented subjects imaged within 90
days of their initial session. On the other hand, the longitu-
dinal data comprises 150 subjects aged 60–96, scanned at
least twice over a year, totaling 373 imaging sessions.
Each subject’s scans are obtained in single sessions. Of

Figure 2. An overview diagram of the proposed framework for privacy-preserving AD classification using the FL scheme. AD: Alzheimers
disease; FL: federated learning.

Table 2. Statistical description of AD dataset.

Type Subject Train Test Channel

Mild demented 896 672 224 3

Moderate demented 64 48 16 3

Very mild demented 2240 1680 560 3

HC 3200 2400 800 3

AD: Alzheimer’s disease; HC: eyes closed.

Sahid et al. 7



Table 3. Impact of the client fraction C on the classification of AD with E = 10. We use K = 10 client for our experiment.

Data
distribution B Performance metric

C

0.0 (%) 0.1 (%) 0.2 (%) 0.5 (%) 0.8 (%) 1.0 (%)

IID 10 Accuracy 84.06 84 80 82.88 80.31 83.25

Precision 85 87 83 84 81 85

Recall 84 84 80 83 80 83

F1-score 82 81 76 81 78 81

32 Accuracy 81.44 80.06 81.88 81.31 81.12 80.69

Precision 84 84 85 85 84 84

Recall 81 80 82 81 81 81

F1-score 78 77 79 78 79 77

Non-IID equal 10 Accuracy 68 67.38 70.25 72.44 69.87 74.62

Precision 75 70 78 77 81 80

Recall 68 67 70 72 70 75

F1-score 54 62 59 72 70 68

32 Accuracy 65 68 66.69 69.94 74.19 74.69

Precision 40 59 49 76 80 80

Recall 65 68 67 70 74 75

F1-score 48 59 52 61 71 70

Non-IID unequal 10 Accuracy 80.69 76.06 82.31 81.25 83 82.88

Precision 82 80 85 81 85 82

Recall 81 76 82 81 83 83

F1-score 78 70 82 80 81 82

32 Accuracy 81.25 70.19 80.6 83.5 82.06 84.12

Precision 83 83 83 83 82 85

Recall 81 70 80 84 82 84

F1-score 81 63 78 83 80 82

Note: C = 0.0, C = 0.1, and C = 1.0 corresponds to one, 10%, and 100% client participation per round, respectively; AD: Alzheimers disease; IID: identical
and independently distributed.
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these subjects, 72 remain consistently non-demented, while
64 are consistently demented, including 51 with mild to
moderate Alzheimer’s. Another 14 subjects transitioned
from non-demented to demented over time.

Artificial partitioning (synthetic data creation) of centralized
dataset. To create a synthetic dataset, we take a labeled cen-
tralized dataset and employ some scheme described below
to pathologically partition the dataset among a set of K
clients. These K clients contain local datasets
D1, D2, . . . , Di, . . . , DK , respectively. As such, the
global dataset is DΔ = D1 ∪ D2 ∪ · · · ∪ Di ∪ · · · ∪ DK .
Assume that Di ∩ Dj = ∅ for i ≠ j. We define the number
of samples in node i as |Di|, where | · | denotes the size of
the set. In contrast, this approach does result in a heteroge-
neous dataset, our adopted scheme to build a synthetic
non-IID dataset is outlined below:

1. Label distribution skew (prior probability shift).
Consider a scenario with K representing the number
of clients, each characterized by the Pk(x, y) data distri-
bution. This distribution can be reformulated as
Pk(x|y)Pk(y). Within this context, we can distinguish
two distinct scenarios, both of which involve non-
identical conditions. The first scenario is referred to as
label distribution skew, wherein the label distributions
{Pk(y)}

K
k=1 exhibit variation among different clients,

while the conditional generating distributions
{Pk(x|y)}Kk=1 are assumed to remain consistent. This
situation may arise when specific types of data are inad-
equately represented within the local context.38

2. Data quantity disparity (unbalancedness or quantity
skew). Furthermore, variations in the volume of data
held by different clients can result in unequal levels of
uncertainty in locally updated models and heterogeneity
in the frequency of local updates. In real-world applica-
tions, the quantity of data may vary significantly among
clients, with large institutions, such as hospitals, typic-
ally possessing considerably more medical records
than smaller clinics. Notably, the distribution of data
quantities frequently demonstrates a pattern where sub-
stantial datasets are primarily concentrated in a few spe-
cific locations, while a vast number of locations have
smaller dataset sizes distributed across them.38

In a non-IID equal distribution, the data quantity is equal,
whereas in a non-IID unequal data distribution, the quan-
tity varies. In our study, we’ll conduct an experiment
based on IID, non-IID equal, and non-IID unequal distri-
bution of our adopted Alzheimer’s dataset. Formally, for
the IID settings let us standardize the stochastic optimiza-
tion problem,

min
x∈Rm

F(x) : = x ∼ DE[l(w; x)] (2)

In non-IID settings, each of k ∈ [K] clients has a local
data distribution Dk and a local objective function,

fk(x) : = x ∼ DkE[l(w; x)] (3)

where we recall that l(w; x) is the empirical loss of a model
w at non-identical data x. We typically wish to minimize

F(x) = 1
K

∑K

k=1

fk(x) (4)

for our experimental Alzheimer’s dataset.

Federated setups

Cross-silo. A discrete entity or organization that manages
and controls its unique dataset is commonly referred to as
a data silo. When multiple data silos or distinct organiza-
tions collaborate to collectively train a unified global
model, this variant of FL is recognized as cross-silo FL.
Cross-silo FL represents a scenario in which there is a
restricted count of participating clients, encompassing
entities like banks, schools, and hospitals, each of which
possesses more abundant resources. It’s noteworthy that
these same data silos can be utilized in both the training
phase and the subsequent inference stage. Specifically, in
the context of cross-silo FL, the number of clients involved
typically ranges from 2 to 100, as noted by Kairouz et al.38

Client sampling. In cross-silo FL experiments, each client is
required to engage in the full training process, since there
are only a few clients (about 2–100), so the client sampling
rate is 100% or Csampled = {D1, D2, . . . , Di, . . . , DK}.
As well as, in this study, we also scale up our
analysis to partial participation, that is, Csampled ⊆
{D1, D2, . . . , Di, . . . , DK} (such as 10%, 20%, 60%, and
100%) of clients in each round of training.

Federated algorithm. In our experimental setup, we employ
the Federated averaging (FedAvg) algorithms to aggregate
updates originating from each client, where each client
k ∈ [K]. The description of this algorithm is as follows:

The FedAvg algorithm is recognized as the most
straightforward aggregator method, as mentioned in the ref-
erence.23 To express this mathematically,

θt+1 =
∑K

k=1

Nk

N
θk,t (5)

In the equation above, θt+1 signifies the updated global
model at iteration (t + 1). Here, K represents the total
count of participating clients, Nk corresponds to the
number of samples contributed by client k, and N encom-
passes the overall sample count across all clients. Lastly,
θk,t denotes the update originating from a local model of
client k during the communication round t.
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Optimizers. For simplicity of hyperparameter tuning and
experimental controls, we use minibatch stochastic gradient
descent (SGD) for client-local training for all experiments.

Hyperparameters. In our experiment, we set clients to train
for E ∈ {1, 5, 20} local epochs in every round. Local
epochs are a popular technique to reduce communication
costs. The local batch size across all clients is fixed with
B ∈ {10, 50, 32}. For each IID and non-IID data distribu-
tion, we set T = 50 communication rounds. We set the
learning rate η = 0.01. The total number of clients K =
10 and client selection C ∈ {0.0, 0.1, 0.2, 0.5, 0.8, 1.0}.
Thus, C controls the global batch size, with C = 1 corre-
sponding to full-batch (non-stochastic) gradient descent.

Model structure. For image classification feed-forward deep
networks, and in particular convolutional networks, are
well-known to provide state-of-the-art results.39,40 Our
experiments include a non-convex LeNet5 CNN model.

Evaluation protocol. To assess the efficacy of CNN-based
FL settings for the classification of AD, this study employed
various essential performance metrics. These metrics pri-
marily rely on the widely used tool known as the confusion
matrix. The confusion matrix is illustrated in Table 4. It
serves as a performance assessment tool that summarizes
the performance of the applied classification model by
quantifying true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN).

• TP: This represents the number of cases correctly pre-
dicted as positive.

• TN: This signifies the number of cases correctly pre-
dicted as negative.

• FP: It accounts for the instances where negative cases
were incorrectly predicted as positive.

• FN: This denotes the count of positive cases erroneously
predicted as negative.

Accuracy. Accuracy is defined as the ratio of correctly clas-
sified data instances to all data instances.41 Mathematically,

Accuracy = TP+ TN

TP+ TN + FP+ FN
(6)

Precision. Precision evaluates the accuracy of the minority
class.42 Mathematically,

Precision = TP

TP+ FP
(7)

Recall. Recall quantifies how many of the actual positive
cases were correctly identified among all positive
instances.42,43 Mathematically,

Recall = TP

TP+ FN
(8)

F1-score. The F1-score is the harmonic mean of Precision
and Recall.41,44 Mathematically:

F1− score = 2 ∗ Precision ∗ Recall
Precision+ Recall

(9)

Note that the employed accuracy, precision, recall, and
F1-score as our primary evaluation metrics are all calcu-
lated using the values from the confusion matrix.
Additionally, metrics such as precision and recall are dir-
ectly related to the ROC curve, as they reflect the TP and
FP rates, which are fundamental in calculating the AUC.
While we did not explicitly plot ROC curves or report
p-values, the chosen metrics are representative of the
same underlying evaluation framework.

Results
We first conducted our experiment based on increasing par-
allelism and then increasing computation per client
approach. The findings are presented below:

Increasing parallelism

In the context of our experiment aimed at increasing
parallelism, we kept the local epoch, E, constant at
10 and varied the local batch size B ∈ {10, 32}.
The client fraction C, representing the proportion of
multi-client parallelism, was manipulated across the
values C ∈ {0.0, 0.1, 0.2, 0.5, 0.8, 1.0}. The impact of
these changes on AD classification using LeNet5 CNN
model is summarized in Table 3. Notably, when using the
smaller local batch size B = 10, we observed significant
improvements in AD classification performance under
various client parallelism conditions, except for cases,

Table 4. Confusion matrix.

Total sample
Predicted

Negative Positive

Actual negative TN FP

Actual positive FN TP

TP: true positives; TN: true negatives;FP: false positives; FN: false negatives.
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where C ∈ {0.2, 0.8} in the IID scenario and C = 0.8 in
the non-IID equal scenario, as well as C ∈ {0.0, 0.5, 1.0}
in all three data distributions. Based on these findings, we
determined that, for most of our subsequent experiments,
a client fraction of C = 1.0 offers optimal performance
for our heterogeneous real-world Alzheimer’s data, result-
ing in a favorable convergence rate.

Increasing computation per client

In this approach of experiment, we fix C = 1.0, and add
more computation per client on each round, either decreas-
ing B, increasing E, or both. The quantitative results are
provided in Table 5 and test set accuracy versus communi-
cation rounds are depicted in Figure 3. From the empirical
results tabulated in Table 5, it is clear that instead of a single
local epoch multiple local epochs increase the performance
of AD detection using LeNet5 CNN model in federated set-
tings which also reduces the communication costs between
central server and clients. Moreover, in comparison with the
existing literature, this study achieved comparatively
similar performance, as outlined in Table 6.

Discussions
Data confidentiality in every field is crucial and highly
demanded in the present world. With that in mind, this
study focuses on the classification of AD using the emer-
ging FL approach. The adopted FL approaches for privacy-
preserving AD classification show comparatively satisfac-
tory performance while keeping data private. The following
explains this in great detail.

Table 5. Empirical results for the classification of AD according to
increasing computation per client fashion.

E B
Performance
Metric

C = 1.0

IID
(%)

Non-IID
equal (%)

Non-IID
unequal (%)

1 32 Accuracy 72.5 72.63 80.69

Precision 79 73 82

Recall 72 73 81

F1-score 63 67 78

5 32 Accuracy 82.06 70.38 83.75

Precision 85 81 83

Recall 82 70 84

F1-score 79 65 82

1 50 Accuracy 73.5 71.12 79.12

Precision 79 73 79

Recall 73 71 79

F1-score 65 67 77

20 32 Accuracy 81.25 58.5 83.38

Precision 83 72 83

Recall 81 58 83

F1-score 78 51 82

1 10 Accuracy 81.06 74.5 84

Precision 86 77 85

Recall 82 74 84

F1-score 79 69 83

5 50 Accuracy 82.67 69.12 84.75

Precision 85 72 86

Recall 83 69 85

F1-score 81 58 84

20 50 Accuracy 81.56 77.81 82.81

(continued)

Table 5. Continued.

E B
Performance
Metric

C = 1.0

IID
(%)

Non-IID
equal (%)

Non-IID
unequal (%)

Precision 83 78 82

Recall 82 78 83

F1-score 79 74 81

5 10 Accuracy 82.38 76.62 83.88

Precision 85 77 83

Recall 82 77 84

F1-score 80 74 83

AD: Alzheimers disease; IID: identical and independently distributed.

Sahid et al. 11



Increasing parallelism

In terms of this approach, the results are presented in
Table 3. By selecting C = 1.0 and B = 10, we achieved
an accuracy of 83.25%, precision of 85%, recall of 83%,
and an F1-score of 81% for the IID data distribution of
AD. However, the minimum accuracy achieved was 80%
when using 20% client participation. With B = 32 and
IID data, almost all client participation ratios yielded
similar performance. In the case of the non-IID equal data
distribution, we reached a maximum accuracy of 74.69%,
precision of 80%, recall of 75%, and an F1-score of 70%
when C = 1.0 and B = 32 were employed. Conversely,
the minimum accuracy reached was 65%, with precision
at 40%, recall at 65%, and F1-score at 48%. On the other
hand, with B = 10, we achieved a maximum accuracy of
74.62%, precision of 80%, recall of 75%, and an F1-score
of 68% with 100% client participation. However, with
10% client participation, the minimum performance
achieved was an accuracy of 67.38%, precision of 70%,
recall of 67%, and an F1-score of 62%. For the non-IID
unequal data distribution, selecting C = 1.0 and B = 32
led to a maximum accuracy of 84.12%, precision of 85%,
recall of 84%, and an F1-score of 82%. With the same

value of B and client participation ratios of 1%, 20%,
50%, and 80%, we obtained roughly the same performance.
However, with B = 10, we achieved a maximum accuracy
of 83%, precision of 85%, recall of 83%, and F1-score of
81%. It is worth noting that our empirical multi-client par-
allelism experiment highlighted that in the dataset with an
extreme data quantity skew, FL performs better when all
clients C = 1.0, participate in each round. Moreover, it
also revealed that extreme data quantity skew significantly
hampers the performance of FL settings.

Increasing computation per client

In our experiment, the result obtained by increasing compu-
tation per client is presented in Table 5. Involving the detec-
tion of AD using an IID data distribution, we attained
optimal performance with 82.67% accuracy, 85% precision,
83% recall, and 81% F1-score when we set E = 5 and
B = 50. This outcome closely resembles the results
obtained under the settings of E = 5 and B = 10.
However, with the values of E = 1 and B = 32, we
obtained a comparatively minimum accuracy of 72.5%, pre-
cision of 79%, recall of 72%, and F1-score of 63%.

Figure 3. Depiction of convergence for the increasing computation per client experiment. (a) Test accuracy versus communication on the
non-identical and independently distributed (IID) data distribution. (b) Test accuracy versus communication on the non-IID equal data
distribution. (c) Test accuracy versus communication on the non-IID unequal data distribution.
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For the scenario of non-IID equal data distribution, we
achieved an accuracy of 77.81%, precision of 78%, recall
of 78%, and an F1-score of 74% by configuring E = 20
and B = 50. Conversely, we achieved a comparatively
minimum accuracy of 58.5%, precision of 72%, recall of
58%, and F1-score of 51% with E = 20 and B = 32.

In the case of a non-IID unequal data distribution, we
obtained exceptional results by selecting E = 5 and B =
50 yielding a maximum accuracy of 84.75%, precision of
86%, recall of 85%, and an impressive F1-score of 84%
in the classification of AD. However, we obtained a
minimum accuracy of 79.12%, precision of 79%, recall of
79%, F1-score of 77 with E = 1 and B = 50.

This study, while providing valuable insights, does
possess several limitations that present opportunities for
further investigation. The experimental results showcased

herein are derived from a singular CNN model.
Consequently, these findings could exhibit variability
when replicated with alternative models or under different
FL configurations. This suggests a potential area for
future research to explore the robustness of our results
across a broader range of models and settings.
Additionally, the noted decline in classification perform-
ance attributed to quantity distribution skew is primarily
based on empirical observations. A more comprehensive
understanding could be achieved through theoretical ana-
lysis, which would provide a deeper insight into the under-
lying mechanisms affecting performance in varied data
distribution scenarios. This dual approach of combining
theoretical explorations with empirical validations could
significantly enhance the generalizability and reliability of
future studies.

In our study, privacy preservation is achieved through
the fundamental structure of FL itself, where the raw data
remains decentralized on the clients’ devices. The only
information shared between the clients and the central
server is the model weight updates (gradients), rather than
the actual data, which ensures that sensitive information
(such as the MRI scans) is not transmitted. This communi-
cation of weights during each training round inherently
addresses privacy concerns by preventing data leakage.
Moreover, while we have not implemented additional
privacy-enhancing techniques like differential privacy or
secure aggregation in this current work, the FL process
alone already mitigates a large portion of privacy risks by
keeping the data localized. The communication of only
the model weights is a key mechanism to ensure privacy,
as it abstracts the raw data from being accessible or
shared across entities. However, we agree that adding
such techniques could further strengthen privacy guarantees
in future work.

Conclusion and future work
In this article, we have conducted an empirical and rigorous
analysis of AD detection while prioritizing privacy preser-
vation. Our study delves into strategies for increasing paral-
lelism and computation per client to mitigate
communication costs, as evidenced by experiments on
AD classification. We have evaluated these methodologies
across different data distributions: IID, non-IID equal, and
non-IID unequal. Across all distributions, our selected
approach has demonstrated satisfactory performance in
AD detection. Note that the choice of the non-convex
LeNet5 model in this article is driven by its established the-
oretical advantages and computational efficiency, which we
believe suited our initial study aims. To support the robust-
ness of our approach, our evaluation is conducted across
diverse datasets, which demonstrated consistent perform-
ance. However, we recognize the need for further validation
using a variety of models to fully ascertain the

Table 6. Comparison with previously conducted research using FL.

Reference Data Model Result

Lei et al.24 MRI Transformer Achieved accuracy rates of
88.75%, 69.51%, and
69.88% for the two-way
classification tasks
differentiating AD versus
HC, MCI versus HC, and
AD versus MCI,
respectively

Huang
et al.26

MRI CNN Attained maximum accuracy
of 91.9%, a recall of
100%, and a specificity of
91.1%

Stripelis
et al.27

MRI CNN Demonstrated a maximum
performance with
accuracies of 86%,
precision of
80.98%, recall of 81.32%,
and an F1-score of
81.14% using ADNI,
OASIS,
and AIBL dataset for five
learners

Proposed MRI CNN Achieved a maximum
accuracy of 84.75%,
precision of 86%, recall
of 85%,
and an impressive
F1-score of 84%

FL: federated learning; AD: Alzheimers disease; CL: centralized learning;
MRI: magnetic resonance imaging; CNN: convolutional neural network; HC:
healthy control; MCI: mild cognitive impairment; ADNI: Alzheimers Disease
Neuroimaging Initiative; OASIS: Open Access Series of Imaging Studies; AIBL:
Australian Imaging, Biomarker and Lifestyle Flagship Study of Aging.
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generalizability and robustness of our findings. Plans are
underway to include additional CNN-based models in our
future work to address these critical aspects comprehen-
sively. In our current study, we focused on a four-class clas-
sification to demonstrate the capabilities of our proposed
methodology in a more complex scenario. We acknowledge
the importance of binary and three-class classifications as
they may be fundamental in many clinical applications.
While these were not included in this article, we are consid-
ering these simpler classification tasks for future work to
provide a comprehensive evaluation of our methodology
across different classification scenarios. This approach
will allow us to further validate the versatility and applic-
ability of our proposed methods. Looking ahead, our
future research endeavors will focus on exploring persona-
lized FL configurations aimed at developing models tai-
lored to individual clients.

Furthermore, we aim to investigate the incorporation of
differential privacy techniques to bolster the security of
communication between the central server and each
client. These directions promise to enhance both the effect-
iveness and privacy assurances of FL-based AD detection
systems. In addition, to enhance the sophistication of AD
detection, it would be beneficial to incorporate multi-modal
data, such as blood-based data, PET scans, EEG, and other
relevant sources. Applying test cases in active learning and
validating the results through biological or medical data
would be an important step in further assessing the scalabil-
ity and robustness of the model in the future.
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