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Abstract

Indirect evidence suggests that endogenous ciliary neurotrophic factor (CNTF) receptor signaling can promote motor neuron (MN)
survival in the adult. If so, proper targeting of this signaling may selectively counteract the effects of adult MN diseases. However,
direct evidence for CNTF receptor involvement in adult MN survival is lacking, presumably because the unconditional blockade of the
mouse CNTF receptor in vivo [through genetic disruption of the essential CNTF receptor a (CNTFRa) gene] leads to uniform perinatal
death of the mice. To overcome this limitation, we have developed a method to selectively disrupt CNTF receptor function in a
targeted subset of adult MNs that are not required for survival. A ‘floxed CNTFRa’ mouse line was generated and characterized. In
addition, an adeno-associated virus (AAV) vector that drives Cre recombinase (Cre) expression was constructed and shown, with
reporter mouse lines, to selectively excise floxed genes in facial MNs following its stereotaxic injection into the facial motor nucleus.
Adult floxed CNTFRa mice were then injected with the AAV-Cre vector to excise the CNTFRa gene in the targeted MNs. The
resulting data indicate that adult CNTF receptor signaling, likely by the MNs themselves, can play an essential role in MN survival.
The data further indicate that this role is independent of any developmental contributions CNTF receptor signaling makes to MN
survival or function.

Introduction

Indirect data suggest that endogenous growth factor mechanisms have
evolved to promote neuronal survival (e.g. White & Krause, 1993;
Cuevas & Gimenez-Gallego, 1997; Kordower et al., 2000; Ozawa
et al., 2000). Like endogenous pain control systems, these mecha-
nisms are not completely effective, given that insults such as trauma
and disease can still have devastating effects. However, selective
enhancement of these mechanisms, to harness their evolved power and
specificity, may lead to valuable therapies. Development of such
targeted interventions will require a better understanding of how these
mechanisms naturally function in vivo.
Ciliary neurotrophic factor (CNTF) is one of the most potent

neuroprotective factors for developmental motor neurons (MNs)
in vitro (Lindsay et al., 1994). In vivo, exogenously administered
CNTF protects MNs following early postnatal axotomy (Sendtner
et al., 1990), in genetic models of MN disease (Sendtner et al., 1992;
Ikeda et al., 1995; Sagot et al., 1995; Pun et al., 2006), and during
developmental naturally occurring MN death (Oppenheim et al.,
1991). These pharmacological data raise the promising possibilities
that endogenous CNTF receptor signaling may promote MN survival
and that manipulating this signaling may be a valuable tool in the
treatment of adult MN diseases.

However, amyotrophic lateral sclerosis (ALS) trials with systemic
CNTF injections were stopped due to unacceptable side effects (Miller
et al., 1996), indicating that any manipulation of CNTF signaling in
MN diseases will need to be more specifically targeted. Unfortunately,
it is not known where exogenous CNTF acts to protect MNs in vivo.
Evidence suggests that the effect need not directly involve MN CNTF
receptors. For instance, skeletal muscle CNTF receptors maintain
muscle (Helgren et al., 1994), thereby raising the possibility that the
CNTF indirectly promotes MN survival by maintaining muscle-
derived MN survival factor(s). The CNTF may also promote MN
survival by increasing muscle-derived, soluble CNTF ⁄ CNTF receptor
a (CNTFRa) complexes that could enhance MN CNTF receptor
signaling (Davis et al., 1993a). In addition, CNTF, at the concentra-
tions employed, can activate leukemia inhibitory factor (LIF) receptors
(Saggio et al., 1995), which have been implicated in MN survival (Li
et al., 1995).
The CNTF receptor consists of CNTFRa, LIF receptor b (LIFRb)

and gp130, with CNTFRa being unique to CNTF receptors and
required for all known forms of CNTF receptor signaling (Davis et al.,
1993b; Elson et al., 2000; Derouet et al., 2004). CNTFRa knockout
mice uniformly die within 24 h of birth, with a 30–50% reduction in
MNs (DeChiara et al., 1995), indicating that endogenous CNTF
receptor signaling is essential for embryonic MN survival ⁄ develop-
ment. However, it is not known whether: (i) this reflects an embryonic
function of CNTF receptors that is not required in the adult; and
(ii) this results from loss of CNTF receptor signaling in MNs or other
cell types. These are critical issues for the development of CNTF
receptor-related therapeutics because most MN disease symptoms
initiate in adulthood and the next generation of treatments will need to
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be designed to reduce side effects by targeting specific cell types. The
present study employed adult-onset CNTFRa gene disruption in MNs
to directly address these questions.

Materials and methods

Mouse lines

Exons 3–5 of the CNTFRa gene (‘exon1’ containing start codon)
were flanked by loxP sites (‘floxed’) using previously described
methods (Wattler et al., 1999), through contract with Lexicon
Genetics. Mice, maintained on a 129 ⁄ SvEvBrd background,
were produced by heterozygote · heterozygote crosses and
genotyped by Southern blot or polymerase chain reaction analysis
of tail biopsy DNA. ROSA26 and Z ⁄ EG mice from Jackson
Laboratories and Corrinne Lobe (Sunnybrook and Women’s
College, Toronto, Canada), respectively, were backcrossed onto
the 129SvEvBrd background. Animal procedures were approved by
the University of Cincinnati IACUC in accordance with NIH
guidelines.

Adeno-associated virus (AAV)-Cre recombinase (Cre)

Adeno-associated virus (AAV)-Cre was generated with previously
described procedures (Zolotukhin et al., 1999). Mice were anesthe-
tized with ketamine ⁄ xylazine i.p. and received aseptic, bilateral
stereotaxic facial nuclei injections (coordinates from Bregma: AP –
5.5, ML ± 1.1, DV )5.7) with a 33-guage Hamilton needle. Each side
received 1.5 lL of AAV-Cre [1 · 108 infectious particles ⁄ lL in
phosphate-buffered saline (PBS) = ‘AAV-Cre’; 1 · 107 infectious
particles ⁄ lL in PBS = ‘1 ⁄ 10 AAV-Cre’] or PBS at 0.25 lL ⁄ min
(with 1 min between each 0.25 lL injected and a 10-min wait before
needle removal).

Anatomical procedures

Mice were overdosed with Avertin and transcardially perfused with
cold saline followed by 4% para formaldehyde (PFA). Brains were
post-fixed overnight in 4% PFA followed by cyroprotection in 30%

sucrose with 2.5 mM sodium azide. Coronal, cryostat sections
(30 lm) from throughout the facial nucleus were stained with either
Cresyl violet (CV), standard Xgal histology or previously described
immunohistochemistry (MacLennan et al., 1996). Antibodies
recognizing CNTFRa (‘3·’; MacLennan et al., 1996), green
fluorescent protein (GFP; Millipore, Temecula, CA, USA) or Cre
(Covance, Denver, PA, USA) were visualized through either ABC
amplification (Vector Laboratories, Burlingame, CA, USA) and
cyanine-3 tyramide (Perkin-Elmer, Waltham, MA, USA), or
AlexaFluor-conjugated secondaries (Invitrogen, Carlsbad, CA,
USA).

MN counting

Cresyl violet-stained facial MNs were counted in every fourth section.
To correct for cells potentially split in the z-dimension, all neurons in
focus at the top border of the sections were excluded (optical dissector;
Hyman et al., 1998; Hatton & Von Bartheld, 1999). Counts were
multiplied by four to estimate total MNs (‘fractionator’). This
procedure was validated by counting all facial MNs in two mice
and obtaining values, in each case, that were within 3% of the
fractionator estimate. As with all processing and analysis, MN
counting was conducted by individuals unaware of experimental
conditions, including genotype. Statistical analysis consisted of
Student’s t-tests (when only two groups were involved) or anova

followed by Bonferroni post hoc tests.

Results

Characterization of floxed CNTFRa mice

Floxed CNTFRa mice were generated in which Cre-induced removal
of the targeted sequence functionally inactivates the CNTFRa gene,
based on both the unconditional CNTFRa knockout (DeChiara et al.,
1995) and structure–function relationships for related cytokine
receptors (Bazan, 1990). Matings of heterozygote floxed mice yielded
24.7% homozygous floxed mice (i.e. 53 of 215; not significantly
different from predicted Mendelian frequency). Homozygous floxed
mice (referred to simply as floxed mice here) survive with no apparent
abnormalities or decrease in CNTFRa expression relative to wild-type
mice. Moreover, while embryonic MN survival ⁄ development is
highly dependent on CNTFRa function, as demonstrated by the loss
of these cells in unconditional CNTFRa knockout mice (DeChiara
et al., 1995), the floxed mice display no loss of MNs, even at several
months of age (see below; Fig. 4). Therefore, as expected, the
insertion of the loxP sites into introns of the CNTFRa gene has no
noticeable effect on CNTFRa function.
Crossing the floxed mice with a ‘deleter’ line that produces

floxed gene excision in all cells (protamine 1-Cre mice) resulted in:
(i) Southern bands corresponding to the designed Cre-dependent
CNTFRa gene excision (Fig. 1); (ii) the expected perinatal death of
all homozygous floxed mice, but not heterozygous or wild-type
littermates; and (iii) the expected loss (approximately 30%; Lee
et al., preliminary data) of facial MNs in homozygous floxed mice,
all as seen with universal CNTFRa gene disruption (DeChiara
et al., 1995).

A recombinant AAV vector excising floxed gene sequence
in adult MNs

An AAV-2 vector driving Cre expression was constructed (AAV-Cre;
Fig. 2A). AAV-2 vectors efficiently transduce neurons leading to long-

Fig. 1. Cre expression leads to CNTFRa gene disruption in floxed CNTFRa
mice. Breeding floxed CNTFRa mice with protamine-1-Cre ‘deleter’ mice
leads to the designed excision of floxed CNTFRa sequence as indicated by
Southern blot bands of predicted size (DNA from tail biopsies). Wild-type (lane
1), homozygous floxed (lane 2), heterozygous floxed (lane 3) and progeny of a
heterozygous excised x heterozygous excised cross (lanes 4–10). ex, excised;
flx, floxed; wt, wild-type.
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term, vector-directed expression while eliciting little if any immune
response, presumably due to the lack of any viral genes (Muzyczka,
1992). Because AAV-Cre is unable to replicate, Cre is expressed
specifically in cells transduced by the injected virus particles.
In initial pilot studies, AAV-Cre was injected into the facial nuclei

of adult, wild-type mice. Cre was immunohistochemically detected in
1 ⁄ 2–2 ⁄ 3 of the MNs at 1-month post-injection. The expression was
confined to the facial MNs and small, scattered subpopulations of
other neurons along the needle tract. Almost all the facial MNs in or
near sections with needle tracts expressed Cre, while progressively

Fig. 3. Facial motor nucleus AAV-Cre injection leads to MN-selective
expression of Cre. Facial MNs immunohistochemically labeled for expression
of either the MN marker, choline acetyltransferase (red in A) or the neuronal
marker, NeuN (red in B), and Cre (green in both A and B; yellow where both
signals are approximately balanced). The Cre is found in the MNs, consistent
with the reporter data. Arrows designate MNs with higher levels of Cre
immunoreactivity, while arrowheads designate MNs with lower levels. Scale
bars: 10 lm (A); 15 lm (B).

Fig. 2. Facial motor nucleus AAV-Cre injection leads to excision of floxed
gene sequence in facial MNs. (A) AAV-Cre vector containing a Cre-IRES
element-GFP cassette driven by a CMV ⁄ chicken b-actin (CBA) promoter and
incorporating the woodchuck post-transcriptional regulatory element (WPRE)
followed by the rabbit b-globin polyadenylation signal. The whole cassette is
flanked by terminal repeat sequences (TR) of AAV-2. (B and C) Adult
ROSA26+ ⁄ ) reporter mice injected with AAV-Cre 2 weeks prior to perfusion
and Xgal histology. The blue reaction product indicating floxed gene excision is
primarily confined to facial MNs [e.g. the cluster of large cells in the bottom
center of (B) and in the CV counterstained section in (C)]. Higher magnification
indicates that the many small blue specks result from labeling of MN processes
(supplementary Figs S1–S4). In contrast, gene excision in facial nucleus
astrocytes, through a GFAP-Cre gene construct, does not produce the many
small blue specs, but clearly labels CV-stained small cells (presumptive
astrocytes) that are not seen with AAV-Cre injection of the nucleus
(supplementary Fig. S5). (D) GFP immunohistochemistry of an adult
Z ⁄ EG+ ⁄ ) reporter mouse perfused 2 weeks after AAV-Cre injection. The
reporter signal is once again primarily confined to facial MNs (oval cluster of
large cells). It is important to note that any GFP expression from the weak IRES
element of AAV-Cre was undetectable in facial MNs following AAV-Cre
injection of Z ⁄ EG) ⁄ ) (wild-type) mice, even with GFP immunohistochemical
enhancement. Scale bars: 100 lm (B); 50 lm (C); 75 lm (D).
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less MNs expressed Cre as the distance from the needle tract
increased. This ability of AAV-Cre to very selectively infect neurons
(e.g. Fig. 3) agrees with our experience using related AAV-2 vectors,
and reports from other groups using AAV-2 constructs (e.g. Bartlett
et al., 1998; Kaspar et al., 2002; Klein et al., 2002).

To confirm that the Cre can excise floxed gene sequence in infected
MNs, we used reporter mice in which active Cre leads to expression of
beta-galactosidase (ROSA26 mice; Soriano, 1999) or GFP (Z ⁄ EG
mice; Novak et al., 2000). Both reporter signals were present in 1 ⁄ 2–
2 ⁄ 3 of the facial MNs, and scattered neurons along the needle tract, by
2 weeks post-injection (Fig. 2B–D). The same fraction of MNs was
also reporter-positive at 1 month post-injection (data not shown)
suggesting that, as expected, essentially all MNs infected by the AAV-
Cre injection are infected and expressing active levels of Cre by
2 weeks post-injection. As with the Cre immunohistochemistry, the
percentage of MNs labeled in any given section was dependent on the
section’s proximity to the needle tract. No reporter signals were
observed in: (i) non-neuronal cells [e.g. Supplementary material,
Figs S1–S5 (note: both reporters can detect Cre activity in all non-
neuronal cell types; e.g. supplementary Figs S5 and S6)]; (ii) wild-type
mice identically injected with AAV-Cre; or (iii) uninjected reporter
mice (data not shown).

CNTFRa-dependent survival of adult facial MNs

There was no floxed vs. wild-type difference in facial MN number in
uninjected mice (Fig. 4), consistent with the loxP sites not interfering
with CNTFRa gene function. These naı̈ve mice were all 7 months old
when killed, while the injected mice described below ranged from 3 to
7 months old. Therefore, the floxed vs. wild-type differences in the
injected mice do not reflect a differential age-related loss of MNs.

Facial nuclei of adult, floxed CNTFRa mice and age-matched
(generally littermate), wild-type controls were injected with AAV-Cre
or the PBS vehicle, and were perfused 1 week, 2 weeks or 1 month
later. While no effect of AAV-Cre injection was observed at 1 or
2 weeks post-injection, at 1 month floxed mice contained significantly
less facial MNs than the identically injected, wild-type controls
(Fig. 4). In contrast, no floxed vs. wild-type difference was detected in
vehicle-injected controls (Fig. 4). Therefore, AAV-Cre, which excises
floxed genes in the MNs, leads to preferential loss of MNs containing
floxed CNTFRa genes. At 1 month post-injection, AAV-Cre-injected

Fig. 4. Adeno-associated virus (AAV)-Cre recombinase (Cre) injection into the
facial motor nucleus of floxed CNTFRa mice leads to genotype-dependent loss
of facial MNs. The mean (±SEM) number of facial MNs in wild-type (open
bars) and floxed CNTFRa (solid bars) mice following the indicated treatments.
N per condition presented in bars. Less than identically treated wild-type
controls *P < 0.05; **P < 0.001; less than vehicle (phosphate-buffered saline;
PBS)-injected wild-type controls �P < 0.01.

Fig. 5. Cre and CNTFRa in facial MNs after AAV-Cre injection. Cre
immunohistochemistry of wild-type (A) and floxed CNTFRa (B) mice
perfused 1 month after AAV-Cre facial motor nucleus injection. Nuclear
counterstaining (not shown) indicates that the label is primarily in the nuclei
of the facial MNs (e.g. arrows), some of which are only partially in the plane
of section. The examples illustrate the lower number of Cre-positive MNs
remaining in floxed mice. Insets present arrowed nuclei at higher magnifi-
cation. Broken lines delineate approximate facial motor nucleus borders. (C–
H) While most Cre-expressing floxed MNs die by 4 months after AAV-Cre
administration, almost all of the remaining few display no significant
CNTFRa immunoreactivity (i.e. labeling equivalent to no primary antibody).
CNTFRa immunohistochemistry (C, E, G) combined with Cre immunohis-
tochemistry (D, F, H). Arrows designate Cre-positive wild-type (C and D) and
floxed (E–H) MNs. Unlike the non-specific speckled Cre background, which
does not correspond to cells, the larger and more intense Cre signals (arrows)
correspond to MN nuclei. Scale bars: 100 lm (A and B); 25 lm (C–H).
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wild-type mice contained less MNs than vehicle-injected wild-type
mice (Fig. 4). Although not statistically significant at this time point,
this effect reached significance by 4 months post-injection (Fig. 4).
These results are consistent with previous reports of cellular toxicity
associated with long-term exposure to Cre (e.g. Loonstra et al., 2001;
Kaspar et al., 2002). As discussed below, they raise the interesting

possibility that endogenous CNTF receptor signaling may promote the
survival of MNs challenged by insult.
Cre immunohistochemistry of wild-type mice perfused 1 week,

2 weeks or 1 month after AAV-Cre injection indicated that Cre
expression rises in infected facial MNs during this period such that
by 1 month post-injection about half of the MNs expressed

Fig. 6. Examples of decreased CNTFRa immunoreactivity in Cre-expressing floxed facial MNs 2 weeks after AAV-Cre injection. Sections from wild-type (A, D, G)
and floxed (B, E, H and C, F, I) mice immunohistochemically labeled for CNTFRa (red; in cytoplasm and processes of MNs) and Cre (green; in MN nuclei and, to a
lesser extent, cytoplasm). Merged and individual signals from the same field are presented as columns with arrows designating examples of corresponding Cre-
positive MNs. As quantitatively illustrated in Fig. 7, the Cre-expressing MNs in general display significantly reduced levels of CNTFRa immunoreactivity, but some
still fall within the range seen with most wild-type MNs. The Cre signal includes an artifactual ‘smear’ that does not co-localize with other cells (based on
counterstain) and, given its unidirectional nature in each field, presumably results from cell fragment displacement produced by the tissue sectioning. Scale bar,
20 lm.
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detectable levels of Cre [366 ± 75 (mean ± SEM) at 1 week
(n = 6); 470 ± 45 at 2 weeks (n = 6); 990 ± 75 at 1 month
(n = 4)]. Comparison of these data to the reporter results (above)
suggests that, while the reporters are more sensitive than the Cre
immunohistochemistry at detecting the low-level Cre expression at
2 weeks post-injection, most, and possibly all, infected MNs
eventually display both Cre immunohistochemical and reporter
indicators by 1 month post-injection. At 1 and 2 weeks post-
injection floxed mice displayed the same number of Cre-positive
facial MNs as wild-type controls [351 ± 41 at 1 week (n = 6);
468 ± 72 at 2 weeks (n = 6)]. However, at the 1 month interval,
when MN death is first detected (see above), the floxed mice
displayed a 68% decrease in Cre-positive MNs relative to the
controls [wild-type: 990 ± 75 (n = 4); floxed: 322 ± 102 (n = 4);
P < 0.002; e.g. Fig. 5A and B]. The number of Cre-negative facial
MNs in the same 1-month mice was calculated by subtracting the
number of Cre-positive facial MNs from the number of total facial
MNs obtained from counting CV-stained sections. In contrast to the
number of Cre-positive MNs, the number of Cre-negative MNs was
unaffected (wild-type: 618 ± 292; floxed: 734 ± 138), indicating
that Cre-expressing MNs are selectively lost in the floxed mice.

We next quantified CNTFRa immunoreactivity in Cre-expressing
MNs at 2 weeks post-injection in an effort to ‘catch’ some of the
floxed neurons after their CNTFRa levels are detectably depleted but
before the neurons die and are lost from the analysis. Examination of
over 150 Cre-positive wild-type MNs (n = 4) and over 150 Cre-
positive floxed MNs (n = 4) revealed a 43% decrease in average
CNTFRa levels in the floxed MNs (P < 0.0001) that resulted from
many of the floxed MNs expressing little if any significant CNTFRa
and others still expressing CNTFRa levels in the range of the wild-
type MNs at this time point (Figs 6 and 7), consistent with the

asynchronous initiation of Cre expression in the MNs. In contrast,
4 months after AAV-Cre injection few Cre-positive floxed MNs were
found and almost all of these were CNTFRa-negative (n = 2; e.g.
Fig. 5C–H). Considered together, the above data indicate that the
AAV-Cre-infected floxed MNs begin to lose CNTFRa by 2 weeks
after injection, and many selectively die by 1 month, with few MNs
surviving long-term without CNTFRa.
Finally, in order to examine the longer-term, CNTFRa-dependent

survival of MNs in a context involving less Cre-related insult, we
decreased the concentration of AAV-Cre by 90% and examined mice
4 months after AAV-Cre injection. As with the earlier experiments,
floxed mice injected with ‘1 ⁄ 10 AAV-Cre’ contained significantly less
MNs than identically injected wild-type controls (P < 0.001; Fig. 4).
There was no significant effect of 1 ⁄ 10 AAV-Cre on wild-type MNs
(P > 0.05), and the anova interaction term confirmed that 1 ⁄ 10 AAV-
Cre led to significantly more MN loss in the floxed mice than in the
wild-type controls (P < 0.01).

Discussion

The present studies developed a floxed CNTFRa mouse line to
conditionally disrupt the CNTFRa gene in vivo. In addition, an
AAV-Cre vector was constructed and shown, with Cre immunohis-
tochemistry and reporter mouse lines, to efficiently and selectively
infect adult facial MNs in vivo, leading to MN Cre expression,
excision of floxed gene sequence and decreased CNTFRa expres-
sion. AAV-Cre injection of floxed CNTFRa mice led to MN loss
that was significantly greater than that in identically treated control
mice, thereby revealing a role for endogenous CNTF receptor
signaling in adult MN survival.
The use of AAV-Cre and floxed CNTFRa mice has several

advantages. Most importantly, it avoids the perinatal death seen with
unconditional CNTFRa knockout mice. Consequently, effects of
CNTFRa gene disruption can be examined in the adult. By targeting
facial MNs, that are not essential for the survival of the mice, MN loss
can be followed over an extended period, while not confounded by
mouse death. In contrast, the extent of MN loss observed in
unconditional CNTFRa knockout mice (DeChiara et al., 1995) may
have been limited by the premature death of the mice. Therefore, it is
not possible to meaningfully compare the extent of MN loss seen with
the two models. It would be interesting to directly compare the adult
and embryonic requirements for CNTF receptor signaling by selec-
tively disrupting the CNTFRa gene in facial MNs as they are born
embryonically. Unfortunately, to the best of our knowledge, this is not
technically feasible at this time.
By initiating gene disruption in the adult, one can exclude potential

development effects of gene disruption that are unrelated to ongoing
adult functions. The present data indicate a role for CNTF receptor
signaling in adult MN survival that is independent of any role it has in
MN development or survival prior to adulthood. This promising
finding is relevant to the design of any therapeutic interventions to
treat adult MN diseases through manipulation of adult MN CNTF
receptor signaling.
Consistent with previous reports showing neuron-selective infection

by other AAV-2 vectors (e.g. Bartlett et al., 1998; Kaspar et al., 2002;
Klein et al., 2002), the present experiments with multi-label immu-
nohistochemistry and those with two independent reporters indicate
that AAV-Cre injection of the facial nucleus leads to floxed gene
excision, which is highly restricted to neurons. Therefore, these data
suggest that the preferential loss of MNs in CNTFRa floxed mice does
not result from indirect effects of disrupting CNTF receptor signaling

Fig. 7. Decreased CNTFRa expression in Cre-expressing floxed CNTFRa
MNs. MetaMorph software was used to analyze CNTFRa immunoreactivity
levels in Cre-positive facial MNs of floxed (solid bars) and wild-type (open
bars) mice killed 2 weeks after AAV-Cre injection. Cre-positive MNs were
randomly selected while blind to genotype, and the average intensity of
cytoplasmic CNTFRa labeling was determined for each cell. Background
values (obtained from sampling adjacent tissue) were subtracted to produce a
measure of CNTFRa expression (in arbitrary MetaMorph-generated units). The
histogram presents the percentage of MNs in each labeling intensity category. It
illustrates that the overall decrease in average CNTFRa immunoreactivity seen
in the floxed mice (see text) results from decreased CNTFRa immunoreactivity
in at least a large fraction of the cells. The wide range of labeling intensities
observed in both floxed and wild-type mice may reflect real cell to cell
differences in in vivo CNTFRa expression, but other factors, such as the
different antibody concentrations encountered by MNs at different depths from
the section surface, likely also contribute significantly.
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in non-neuronal cells. Instead, it appears most likely that CNTF
receptor signaling by the MNs themselves plays a role in adult MN
survival. This conclusion is further supported by the Cre immunohis-
tochemistry results that indicate that most infected, floxed MNs die
while uninfected floxed MNs are not affected, contrary to what would
be expected if the critical CNTF receptor signaling occurred in
non-neuronal cells. In other words, it is highly unlikely that any rare,
undetected, non-neuronal cells with disrupted CNTF receptors would,
with the vast majority of such non-neuronal cells still functioning
normally, somehow lead to the death of most of the infected MNs but
not affect the uninfected MNs. This realization that CNTF receptor
signaling of adult MNs is likely critical to their own survival should be
another important contribution to the design of therapeutic interven-
tions targeting CNTF receptor signaling in the adult.
The CNTFRa-depleted MNs may die because CNTF receptors

play an essential role in their survival even in the absence of insult,
similar to what is observed in the embryo with the unconditional
CNTFRa knockout (DeChiara et al., 1995). However, reports that
exogenous CNTF can protect MNs from traumatic and genetic
insults (Sendtner et al., 1990, 1992; Ikeda et al., 1995; Sagot et al.,
1995; Pun et al., 2006) raise the additional possibility that CNTF
receptor signaling may serve as an endogenous neuroprotective
mechanism. The present data are also consistent with this possibility.
The trauma associated with the AAV-Cre injection procedure, while
insufficient to kill a significant number of normal MNs [as indicated
by the PBS-injected mice (Fig. 4)], may lead to death of MNs
lacking neuroprotective CNTF receptors. Similarly, chronic exposure
to high Cre concentrations can be toxic (Loonstra et al., 2001;
Kaspar et al., 2002). Although the wild-type mice perfused either
1 month after AAV-Cre administration or 4 months after 1 ⁄ 10 AAV-
Cre did not display a statistically significant decrease in MNs relative
to vehicle-injected wild-type mice, the data, including the values
from the wild-type mice 4 months after AAV-Cre injection, suggest
that the long-term exposure to Cre can challenge MNs sufficiently to
kill some. The greater loss of MNs in AAV-Cre-injected floxed mice
relative to that in AAV-Cre-injected controls may result from an
increased vulnerability of the floxed MNs due to the loss of CNTF
receptors that would otherwise help protect the cells from toxic
effects of Cre.
We targeted CNTFRa because CNTFRa disruption is the most

comprehensive approach to determining the in vivo functions of
endogenous CNTF receptor signaling. Thus, CNTFRa is essential
for all known forms of CNTF receptor signaling, regardless of the
participating ligands and signaling pathways (Davis et al., 1993b;
Elson et al., 2000; Derouet et al., 2004). Consequently, the present
data do not address the individual ligand(s) or pathways involved in
the CNTF receptor signaling that promotes adult MN survival. The
CLC ⁄ CLF CNTF receptor ligand, which plays a substantial role in
embryonic MN survival (Forger et al., 2003), may play a similar
role in adult MN survival. CNTF may also contribute, given that
unconditional disruption of the CNTF gene leads to modest MN
loss with aging (Masu et al., 1993). Of course, multiple ligands
may act together. Regardless, adult-onset disruption of individual
ligands and pathways will be required to definitively address this
issue.
Multiple endogenous growth factor systems function in a complex

interaction to promote MN survival during development (Gould &
Oppenheim, 2004). This is likely also the case in adulthood. In the
present experiments most AAV-Cre-infected, floxed facial MNs died,
such that no other endogenous growth factor mechanisms were able to
save them. Therefore, it appears that, at least with the conditions and
MN class involved here, adult endogenous CNTF receptor signaling

plays an essential (i.e. non-redundant) role in the survival of most of
the neurons.
In vitro work and unconditional knockout studies have identified

many signaling proteins that are involved inMN survival. The approach
characterized here should help reveal which of these candidates play an
essential role in adult MN survival, in vivo. As discussed above, the
selective genetic manipulation of adult facial MNs, which are not
required for mouse survival, allows one to identify genes critical in
adult MN survival independent of developmental effects, indirect
effects of other cell types and premature death of the mice.

Supplementary material

The following supplementary material may be found on http://
www.blackwell-synergy.com.
Fig S1. AAV-Cre-infected facial MNs in ROSA26+ ⁄ ) reporter mice
display discontinuous ‘specs’ of Xgal reporter staining in their
processes, in addition to the much more intense soma labeling. High-
magnification photomicrograph of an AAV-Cre-infected facial MN
(from experiment as in Fig. 2C).
Fig S2. Similar to Fig. S1.
Fig S3. Similar to Fig. S1.
Fig S4. Similar to Fig. S1.
Fig S5. Cre expression in non-neuronal facial nucleus cells of
ROSA26+ ⁄ ) reporter mice is clearly detected as distinctive Xgal
staining.
Fig S6. Floxed gene excision detected in presumptive oligodendro-
cytes of ROSA26+ ⁄ ) reporter mouse.
Please note: Blackwell publishing are not responsible for the content
or functionality of any supplementary materials supplied by the
authors. Any queries (other than missing material) should be directed
to the correspondence author for the article.
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