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Distinct clinical and biological characteristics of acute myeloid
leukemia with higher expression of long noncoding RNA KIAA0125
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Abstract
Expression of long non-coding RNA KIAA0125 has been incorporated in various gene expression signatures for prognostic
prediction in acute myeloid leukemia (AML) patients, yet its functions and clinical significance remain unclear. This study aimed
to investigate the clinical and biological characteristics of AML bearing different levels of KIAA0125. We profiled KIAA0125
expression levels in bone marrow cells from 347 de novo AML patients and found higher KIAA0125 expression was closely
associated with RUNX1 mutation, but inversely correlated with t(8;21) and t(15;17) karyotypes. Among the 227 patients who
received standard chemotherapy, those with higher KIAA0125 expression had a lower complete remission rate, shorter overall
survival (OS) and disease-free survival (DFS) than those with lower expression. The prognostic significance was validated in
both TCGA and GSE12417 cohorts. Subgroup analyses showed that higher KIAA0125 expression also predicted shorter DFS
and OS in patients with normal karyotype or non-M3 AML. In multivariable analysis, higher KIAA0125 expression remained an
adverse risk factor independent of age, WBC counts, karyotypes, and mutation patterns. Bioinformatics analyses revealed that
higher KIAA0125 expression was associated with hematopoietic and leukemic stem cell signatures and ATP-binding cassette
transporters, two predisposing factors for chemoresistance.
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Introduction

Long non-coding RNAs (lncRNAs) are non-protein coding
RNAs that are longer than 200 nucleotides. Comparing to
other classes of ncRNAs, lncRNAs exhibit a wide range of
structures and functions [1]. Recently, lncRNAs have
emerged as important regulators for gene expression via re-
modeling nuclear architecture, modulating mRNA stability
and translation, and post-translational modifications [1–4].
Besides, some lncRNAs are dysregulated and harbor prognos-
tic relevance in several types of cancers [5–8]. However, the
roles of lncRNAs in tumorigenesis are still largely unknown.

In recent years, research on lncRNAs has increased drasti-
cally, and the results are robust. Although the functions of
lncRNAs have not been elusive, recent studies suggested the
expressions of lncRNAs could be used as prognostic factors,
predictors of response, and potential therapeutic targets in
acute leukemia [9–18]. Moreover, several gene expression-
based prognostic scores have been developed for better risk
stratification of acute myeloid leukemia (AML) patients
[19–24]. Among those high-risk genes, lncRNA gene
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KIAA0125 (also named as FAM30A), a hematopoietic stem
cell gene localized on chromosome 14, is unique because it
is the only non-coding gene and is expressed in humans but
not in mice (From the UniProt database, https://www.uniprot.
org/uniprot/Q9NZY2). Additionally, KIAA0125 expression
was integrated into a recently proposed 17-gene stemness
score, which could predict outcomes in AML patients [19].

This study aimed to investigate the association of
KIAA0125 expression with clinical and biological character-
istics in AML patients. We first profiled the expression levels
of KIAA0125 in bone marrow (BM) cells from AML patients
and normal controls and demonstrated that AML patients had
higher KIAA0125 expression than normal controls. Higher
expression of KIAA0125 was associated with distinct clinical
and biological characteristics and served as an independent
poor prognostic biomarker for AML patients in ours and two
other publicly annotated cohorts. Further bioinformatics anal-
yses showed that higher expression ofKIAA0125 in AMLwas
closely associated with hematopoietic stem cell (HSC) and
leukemic stem cell (LSC) signatures and several important
ATP-binding cassette transporters (ABC transporters); these
factors are regarded responsible for chemoresistance in AML.
Further functional studies are needed to unravel its underlying
mechanism and pathogenetic role in AML.

Materials and methods

Patients

We recruited 347 adult patients with de novo AML diagnosed
in the National Taiwan University Hospital (NTUH) from
1996 to 2011 who had enough cryopreserved BM cells for
tests. The diagnoses were based on the French–American–
British (FAB) and the 2016 World Health Organization clas-
sifications [25, 26]. Among them, 227 patients received stan-
dard chemotherapy. Non M3 (acute promyelocytic leukemia,
APL) patients received idarubicin 12 mg/m2 per day days 1–3
and cytarabine 100 mg/m2 per day days 1–7, and then consol-
idation chemotherapy with 2–4 courses of high-dose
cytarabine 2000mg/m2 q12h for total 8 doses, with or without
an anthracycline (Idarubicin or Mitoxantrone), after achieving
complete remission (CR) as described previously [27]. APL
patients received concurrent all-trans retinoic acid and chemo-
therapy. The remaining 120 patients received supportive care
and/or reduced-intensity anti-leukemia therapy due to under-
lying comorbidities or based on the decision of the physicians
or patients. BM samples from 30 healthy donors of hemato-
poietic stem cell transplantation (HSCT) were collected as
normal controls. This study was approved by the Research
Ethics Committee of NTUH with informed consent obtained
from all participants.

Microarray and genetic alteration analysis

We profiled the global gene expression of BM mononuclear
cells from 347 AML patients and 30 healthy transplant donors
by Affymetrix GeneChip Human Transcriptome Array 2.0 as
described previously [21, 28, 29]. The raw and normalized
microarray data reported in this article have been deposited
in the Gene Expression Omnibus database (accession number
GSE68469 and GSE71014) [21, 28, 29]. For external valida-
tion, we analyzed two publicly annotated datasets, the micro-
array dataset of GSE12417-GPL96 cohort, which includes the
gene expression profile of 163 patients with cytogenetically
normal AML, and the RNAseq dataset of the TCGA cohort
(n = 186) [20, 30]. Cytogenetic analyses were performed and
interpreted as described previously [31]. We also analyzed the
mutation statuses of 17 myeloid-relevant genes, including
ASXL1, IDH1, IDH2, TET2, DNMT3A, FLT3-ITD,
FLT3-TKD, KIT, NRAS, KRAS, RUNX1, MLL/PTD,
CEBPA, NPM1, PTPN11, TP53, and WT1 by Sanger se-
quencing as previously described [27, 28, 31–34].

Analysis of gene expression in next-generation se-
quencing datasets

We analyzed gene expression data of 141 AML samples pro-
filed with Illumina Genome Analyzer RNA Sequencing in the
TCGA database [30] to investigate the absolute gene expres-
sion levels.

Gene set enrichment analysis

The preranked Gene Set Enrichment Analysis (GSEA) imple-
mented by R package clusterProfiler was performed using the
stem cell-related gene sets from the MSigDB databases. The
genes were ranked based on the Spearman’s correlation coef-
ficient between the given gene and KIAA0125.

Statistical analysis

We used the Mann-Whitney U test and ANOVA test, where
appropriate, to compare continuous variables and medians/
means of distributions. The Fisher exact test or the χ2 test
was performed to examine the difference in discrete variables,
including gender, cytogenetic changes, and genetic alterations
between patients with lower and higherKIAA0125 expression.
Overall survival (OS) was the duration from the date of initial
diagnosis to the time of last follow-up or death from any
cause, whichever occurred first. Disease-free survival (DFS)
was the duration from the date of attaining a leukemia-free
state until the date of AML relapse or death from any cause,
whichever occurred first. The survival prediction power of
KIAA0125 expression was evaluated by both the log-rank test
and the univariate Cox proportional hazards model. We
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plotted the survival curves with Kaplan-Meier analysis and
calculated the statistical significance with the log-rank test.
To find the optimal cutoff for separating patient groups, we
used maximally selected rank statistics implemented in the
maxstat R package. The Cox proportional hazards model
was used in multivariable regression analysis. P values <
0.05 were considered statistically significant. All statistical
analyses were performed with BRB-ArrayTools (version
4.5.1; Biometric Research Branch, National Cancer Institute,
Rockville, MD), and IBM SPSS Statistics 23 for Windows.

Results

The median age of the 347 AML patients was 57 years.
Among the 331 patients who had cytogenetic data at diagno-
sis, 165 (49.8%) had clonal chromosomal abnormalities. Sixty
patients (18.1%) had favorable cytogenetics; 223 (67.2%),
intermediate-risk cytogenetics; and 14.8% unfavorable cyto-
genetics (Supplement Table 1) based on the refined British
Medical Research Council (MRC) classification [35]. The
clinical and laboratory characteristics of these patients at di-
agnosis are summarized in Table 1.

Comparison of clinical characteristics and genetic
alterations between patients with higher and lower
KIAA0125 expression

The distribution of KIAA0125 expression of 347 AML pa-
tients is shown with dot plots in Supplement Fig. 1. We first
compared the BM KIAA0125 expression between the 30
healthy controls and 347 AML patients. The expression of
KIAA0125 was significantly higher in AML samples than
healthy controls (p < 0.001, Fig. 1a). Then, the 347 AML pa-
tients were divided into two groups by the median value of the
KIAA0125 expression. The comparison of clinical and labora-
tory features between the two groups is shown in Table 1. The
higher-KIAA0125 group had higher circulating blasts at diag-
nosis (p = 0.021) and higher incidence of FLT3-ITD in the
absence of NPM1 mutation (NPM1-/FLT3-ITD+) (p =
0.002) and RUNX1 mutation (p = 0.034), but lower incidence
of t(8;21) and t(15;17) (both p < 0.001), compared with the
lower-KIAA0125 group (Table 1). From another perspective,
patients with t(8;21) or t(15;17) had lower KIAA0125 expres-
sion, whereas those with RUNX1 mutation, ASXL1 mutation,
NPM1-/FLT3-ITD+, or unfavorable karyotypes had higher
expression of KIAA0125 (F = 15.124, p < 0.001, Fig. 1b,
Supplement Table 1 and Supplement Table 2). Furthermore,
the association of higher-KIAA0125with lower frequencies of
t(8;21) and t(15;17) was observed in both the NTUH cohort
(both p < 0.001, Supplement Table 3) and TCGA cohort (p =
0.006 and p < 0.001, respectively, Supplement Table 3). The
higher-KIAA0125 patients more frequently had FLT3-ITD

(p = 0.048) and mutations in DNMT3A (p = 0.015) and
RUNX1 (p = 0.034) (Supplement Table 4). Compatible with
this finding, patients with DNMT3A or RUNX1 mutation had
higher KIAA0125 expression than those without the mutation
(p = 0.019 and 0.045, respectively, Supplement Fig. 2).
Similarly, there was close association between higher
KIAA0125 expression and DNMT3A (p = 0.001) and RUNX1
mutations (p = 0.017) in the TCGA cohort (Supplement
Table 5). Among the 227 patients who received standard che-
motherapy, 165 (72.7%) patients attained a complete remis-
sion (CR), while 42 (18.5%) patients had primary refractory
diseases. Notably, the patients with higher KIAA0125 expres-
sion had a lower CR rate (61.2% vs. 84.7%, p < 0.001) than
those with lower expression. In accordance with this finding,
the patients who achieved CR after induction chemotherapy
had lower expression of BM KIAA0125 at diagnosis than
those who did not (p < 0.001, Fig. 1c).

The impacts of the KIAA0125 expression on OS and
DFS

Next, we divided patients into two groups with high and low
KIAA0125 expression with cut points determined by the max-
imally selected rank statistics (7.72 in the NTUH cohort, 8.56
in the TCGA cohort, and 9.71 in GSE12417 cohort, respec-
tively, Supplement Fig. 3). As expected, patients with higher
KIAA0125 expression had an inferior DFS and OS than those
with lower expression, no matter whether the survival was
censored on the day of hematopoietic stem cell transplantation
(HSCT) (median, 3.2 months vs. 31.7 months, p < 0.001; and
17 months vs. not reached (NR), p < 0.001, respectively; Fig.
2a and b) or not (p < 0.001 and p < 0.001, respectively;
Supplement Fig. 4a and 4b). Subgroup analyses showed that
the prognostic significance of KIAA0125 expression for DFS
and OS remained valid in both non-APL and normal karyo-
type patients (Figs. 2c and d).

In multivariable analysis, we included clinically rele-
vant parameters and variables with a p value < 0.05 in uni-
variate Cox regression analysis (Supplement Table 4) as
covariates, including age, white blood cell counts at diag-
nosis, karyotypes, mutation statuses of NPM1/FLT3-ITD,
CEBPAdouble mutations, RUNX1, MLL-PTD, and TP53, and
KIAA0125 expression. Higher KIAA0125 expression, ei-
ther divided by the selected cut-point (Table 2) or calcu-
lated as continuous values (Supplement Table 5), was an
independent adverse prognostic factor for DFS (p < 0.001
and p < 0.001, respectively) and OS (p = 0.003 and p =
0.001, respectively). To verify the prognostication power
of the KIAA0125 expression, we analyzed the expression
of KIAA0125 and its prognostic significance in the TCGA
cohort and the GSE12417-GPL96 cohort. Consistent with
the findings in the NTUH cohort, patients with higher
KIAA0125 expressions had a significantly shorter OS
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(9.2 months vs. 20.3 months, p < 0.001, and 7.4 months vs.
33.3 months, p < 0.001, respectively, Figs. 2e and f) than
those with lower KIAA0125 expression in the two external
validation cohorts.

Biological impacts of KIAA0125 in AML

To gain biological insights into the underlying mechanism
of unfavorable prognosis related to KIAA0125 overexpres-
sion, we investigated the genes whose expression is strong-
ly correlated with that of KIAA0125. Since KIAA0125 was
reported as an LSC marker [19], we curated several pub-
lished HSC and LSC signatures from different studies

[36–38]. GSEA showed HSC and LSC signatures were
all significantly enriched in the patients with higher
KIAA0125 expression in both the NTUH and TCGA co-
horts (both p < 0.001, Fig. 3a). We next checked the
leading-edge genes whose expression levels were most
positively correlated to KIAA0125 expression in both
NTUH and TCGA cohorts. Among them, SPINK2,
MAP7, HOPX, MMRN1, DNMT3B, TCF4, SLC38A1,
DOCK1, ARHGAP22, MN1, and 4 genes in the ATP-
binding cassette (ABC) superfamily (ABCG1, ABCA2,
ABCB1, and ABCC1) have been reported to be associated
with poor prognosis or chemoresistance in AML (Fig. 3b
and Table 3) [19, 39–58].

Table 1 Comparison of clinical
and laboratory features between
AML patients with lower and
higher BM KIAA0125 expression

Clinical characters Total (N = 347) High KIAA0125
(n = 174)

Low KIAA0125
(n = 173)

P value

Sex 0.174

Male 196 92 104

Female 151 82 69

Age* 57 (15–91) 58 (18–90) 0.830

Laboratory data*

WBC, X 109 /L 21.9 (0.38–423) 21.4 (0.38–417.5) 22.38 (0.65–423.0) 0.872

Hb, g/dL 8.1 (3.3–16.2) 8.1 (3.3–13.2) 8.1 (3.7–16.2) 0.959

Platelet, X 109 /L 45 (2–655) 54 (6–455) 41 (2–655) 0.060

Blast, X 109 /L 9.1 (0–369.1) 12.3 (0–345.9) 5.7 (0–369.1) 0.021

LDH (U/L) 917
(202–13,130)

892.5 (242–7734) 925 (202–13,130) 0.787

Risk groups

t(8;21) 24 0 (0) 24 (14.3) < 0.001

t(15;17) 27 3 (1.8) 24 (14.3) < 0.001

inv(16) 9 6 (3.7) 3 (1.8) 0.332

CEBPAdouble 27 13 (48.1) 14 (51.9) 0.829

NPM1+/FLT3-ITD- 57 32 (18.4) 25 (14.5) 0.385

NPM1-/FLT3-ITD+ 19 3 (1.7) 16 (9.2) 0.002

RUNX1 50 32 (64) 18 (36) 0.034

ASXL1 52 26 (50) 26 (50) 0.982

Unfavorable
karyotypes†‡

49 30 (18.3) 19 (11.3) 0.089

Induction response, n
(%)

227 116 111

CR 165 (72.7) 71 (61.2) 94 (84.7) < 0.001

PR 5 (2.2) 4 (3.4) 1 (0.9) 0.191

Refractory 42 (18.5) 33 (28.4) 9 (8.1) < 0.001

Induction death 15 (6.6) 8 (6.9) 7 (6.3) 0.858

Relapse (%) 72 (31.7) 42 (36.2) 30 (27.0) 0.137

Abbreviations: CR complete remission, Hb hemoglobin, HSCT allogeneic hematopoietic stem cell transplanta-
tion, LDH lactate dehydrogenase, PR partial remission

*Median (range)

†Cytogenetic data at diagnosis were available in 332 patients, including 168 with lowerKIAA0125 expression and
164 with higher KIAA0125 expression

‡Based on the refined Medical research Council (MRC) classification
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Discussion

AML cells have abnormal genetic background, either muta-
tions or aberrant expression of specific genes. In recent years,
several gene expression scores have been proposed for prog-
nostic prediction of AML patients.We previously developed a
11-gene mRNA expression signature, including AIF1L,
CXCR7, DNTT, GPR56, H1F0, IFITM3, KIAA0125, MX1,
STAB1, TM4SF1, and TNS3, for prognostication in AML pa-
tients [21]. Another group built a six-gene leukemia stem cell
(LSC) score with the incorporation of DNMT3B, GPR56,

CD34, SOCS2, SPINK2, and KIAA0125 expressions for pedi-
atric AML [40]. Recently, Ng et al. proposed a 17-gene LSC
score that incorporated expressions of 17 stemness-related
genes, including KIAA0125, and showed the scoring system
was powerful to predict prognosis in AML patients [19].
Among these prognostic-relevant genes, KIAA0125 is the on-
ly non-coding gene and expressed only in the Homo sapiens,
but not in mice.

KIAA0125 is located on chromosome 14 of the human
genome. It was reported to be upregulated in ameloblastoma
but shown as a tumor suppressor gene in colorectal cancer [59,

Fig. 1 Dot plots depicting
expression levels of KIAA0125
in healthy controls and various
AML subgroups. a Patients with
AML had significantly higher
expression of KIAA0125 than
healthy controls; b patients with
karyotypes of t(8;21) or t(15;17)
had significantly lower
expression of KIAA0125 than any
other subgroups while patients
with NPM1-/FLT3-ITD+,
RUNX1, ASXL1, or unfavorable
karyotypes had highest
expression among all subgroups;
and c patients who achieved CR
after induction chemotherapy had
lower expression of BM
KIAA0125 at diagnosis than those
who did not. *Based on the
refined Medical research Council
(MRC) classification
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Fig. 2 Kaplan-Meier survival curves stratified by expression of
KIAA0125. DFS a and OS b of the 227 AML patients receiving
standard chemotherapy in the NTUH cohort; OS of 201 non-APL patients
c and 110 cytogenetically normal AML patients d who received standard

treatment in the NTUH cohort; and OS of 141 patients in the TCGA
cohort e and GSE12417-GPL96 cohort f. Patients with higher
KIAA0125 expression had worse clinical outcomes than those with lower
expression
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60]. Nonetheless, the clinical relevancy and biological role of
KIAA0125 in tumorigenesis were still largely unclear.

In this study, we found that the expression level of
KIAA0125 in BM was significantly higher in AML patients
than normal HSC transplant donors. The expression of
KIAA0125 was lower in patients with t(8;21) and t(15;17)
which are associated with more differentiated AML subtypes,
but higher in patients with RUNX1, ASXL1 mutations,
NPM1-/FLT3-ITD+ or poor-risk karyotypes. It is interesting
that the expression of KIAA0125 was high in patients with
RUNX1 mutation but modest in those with RUNX1/
RUNX1T1 fusion consisting with the fact that AML patients
with a RUNX1 mutation usually had poor outcomes while
those with RUNX1/RUNX1T1 fusion had favorable prognosis.
Recently, Hornung et al. identified that expression of CD109,
HOPX, and KIAA0125 genesmight be responsible for inferior
survival in AML patients with RUNX1 mutations but, on the
other hand, better outcome in RUNX1/RUNX1T1 fusion
through a newly proposed statistical tool “mediation analy-
sis.” The three genes’ expression levels were significantly
higher in patients with RUNX1mutant but lower in those with
RUNX1/RUNX1T1 fusion [61]. Intriguingly, though there has
been no study showing direct evidence that RUNX1 binds to
KIAA0125 till now in the literature, RUNX1 has been reported
to bind to TGTGG core sequences as a heterodimer ofRUNX1

and CBFβ [62]. We downloaded and retrieved the DNA se-
quence of KIAA0125 from the UCSC Genome Browser
(https://genome.ucsc.edu/) and found several sequences of
TGTGG (Supplement Table 8) within the 3000 bp upstream
sequence, which might be the potential binding sites of
RUNX1. Further studies are needed to explore the effect of
the possible interaction between RUNX1 domain and
KIAA0125.

Bioinformatics of the present study showed highly signif-
icant association of KIAA0125 expression with stem cell sig-
natures, either HSC or LSC. We found that expressions of
SPINK2, MAP7, HOPX, MMRN1, DNMT3B, TCF4,
SLC38A1, DOCK1, ARHGAP22, MN1, and 4 genes in the
ATP-binding cassette (ABC) superfamily (ABCG1, ABCA2,
ABCB1, and ABCC1), which have been reported to be asso-
ciated with poor prognosis or chemoresistance in AML, were
positively correlated to higher expression of KIAA0125 (Fig.
3b and Table 3). HOPX, DOCK1, DNMT3B, MMRN1, and
ARHGAP22 genes were reported as important leukemia stem
cell markers [19, 42, 43, 45, 50, 63]. Higher SPINK2 expres-
sion was associated with poor prognosis in adult and pediatric
AML [39, 40]. TCF4 expression could predict outcome in
RUNX1-mutated and translocated AML [47, 48]. MN1 over-
expression could induce AML in mice and predict ATRA
resistance in human AML patients [51, 52]. Current

Table 2 Multivariable analysis
for DFS and OS in 227 AML
patients who received standard
intensive chemotherapy

DFS OS

95% CI 95% CI

Variable HR Lower Upper P HR Lower Upper P

Age* 1.007 0.995 1.019 0.253 1.030 1.014 1.047 < 0.001

WBC* 1.004 1.002 1.007 0.001 1.005 1.001 1.008 0.012

Karyotype† 1.610 1.201 2.160 0.001 1.706 1.158 2.513 0.007

NPM1/FLT3-ITD‡ 0.601 0.332 1.089 0.093 0.895 0.443 1.808 0.757

CEBPAdouble 0.598 0.286 1.252 0.173 0.451 0.137 1.488 0.191

RUNX1 1.532 0.875 2.683 0.136 1.432 0.726 2.821 0.300

MLL-PTD 2.706 1.263 5.799 0.010 2.882 1.077 7.710 0.035

TP53 1.918 0.697 5.283 0.207 3.030 0.956 9.608 0.060

HigherKIAA0125 expression§ 2.300 1.569 3.371 <0.001 2.188 1.317 3.636 0.003

p values < .05 are considered statistically significant

Abbreviations: HR, hazard ratios; CI, confidence interval

*As continuous variable

†Unfavorable cytogenetics versus others. The classification of favorable, intermediate and unfavorable cytoge-
netics is based on the refinedMedical Research Council (MRC) classification [27]. Favorable: t(15;17)(q22;q21),
t(8;21)(q22;q22), and inv.(16)(p13q22)/t(16;16)(p13;q22); unfavorable: abn(3q) (excluding t(3;5)(q25;q34)),
inv.(3)(q21q26)/t(3;3)(q21;q26), add(5q)/del(5q), −5, −7, add(7q)/del(7q), t(6;11)(q27;q23),
t(10;11)(p1113;q23), other t(11q23) (excluding t(9;11)(p21 ~ 22;q23) and t(11;19)(q23;p13)), t(9;22)(q34;q11),
−17, and abn(17p); and intermediate: entities not classified as favorable or adverse. Seven patients without
chromosome data were not included in the analysis

‡NPM1+/FLT3-ITD- versus other subtypes

§High vs. low expression of KIAA0125
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knowledge about the association between theses KIAA0125-
correlated genes and AML is summarized in Table 3.

Interestingly, the expression levels of several ABC trans-
porter genes, including ABCA2, ABCB1, ABCC1, and
ABCG1, were also significantly higher in AML patients with
higher KIAA0125 expression. The ABC transporter family
consists of 48 proteins in subfamilies designated A to G and
some of them are known to be associated with multidrug re-
sistance via ATP-dependent drug efflux [53, 54, 57]. ABCB1,
ABCC1, and ABCG1 were reported to be responsible for
chemoresistance in AML [53, 56]. The translational expres-
sion of ABCA2 was shown to be a prognostic marker for drug

resistance in pediatric acute lymphoblastic leukemia [55, 58].
The underlying mechanistic basis of the high correlation of
these 4 genes to the expression of KIAA0125 warrants further
studies.

This study’s limitations lie in its retrospective nature and,
crucially, the unsorted BM sample, as many cells in BM may
be differentiated cells of myeloid and erythroid lineages. The
study could have been more informative if we could profile
KIAA0125 expression of healthy CD34 + CD38- HSCs and
more mature progenitors (CD34 + CD38- and CD34-
CD117+, respectively) and compare those with leukemia
blasts. Moreover, the putative oncogenic role of KIAA0125

Fig. 3 GSEA enrichment plots of HSC and LSC signatures and
scatter plot of genes positively associated with higher KIAA0125
expression. a GSEA enrichment plots show positive association of
higher KIAA0125 expression with HSC and LSC signatures curated
from several published reports in both the NTUH and TCGA cohorts; b
the scatter plot reveals the genes strongly correlated to KIAA0125

expression in both the NTUH and TCGA cohorts (pink). The
correlation measurement is based on the Spearman’s correlation
coefficient between the given gene and KIAA0125. The strongly
correlated genes are defined as their correlation values at top 5% of all
genes in both cohorts
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could be more strengthened were the expressions of
KIAA0125 investigated in AML stem cells and bulk. Despite
the limitations mentioned, to the best of our knowledge, this is
by far the first study specifically addressing the expression of
lncRNAKIAA0125 and its clinical and biological associations
in AML patients. We found that higher KIAA0125 expression
was closely associatedwithRUNX1 andDNMT3A1mutations
in both the NTUH and TCGA cohorts. Patients with higher

KIAA0125 expression were more refractory to chemotherapy
with a lower CR rate and higher refractory rate (Table 1). They
had shorter OS and DFS among the total cohort and subgroups
of patients with non-APL and those with normal karyotype.
Based on its crucial clinical significance, further experimental
studies are necessary to delineate how KIAA0125 participates
in the stem cell biology of hematopoietic lineages and its role
in the pathogenesis in AML.

Table 3 Summary of the
biological functions of the
KIAA0125-associated genes that
have been reported to be
associated with prognosis or drug
resistance in AML patients and
their correlation values with
KIAA0125 in ours and the TCGA
cohorts

Genes Correlation coefficient (p value) Association with leukemia

NTUH TCGA

SPINK2 0.661 (3.4E-45) 0.5798 (6.2E-15) Serine Peptidase Inhibitor; upregulation is
associated with poor outcomes in adult
patients with AML [30]; integrated into a
6-gene LSC score to identifies high risk pedi-
atric AML [31]

MAP7 0.653 1.0E-43 0.696 (<E-45) Microtubule-associated proteins, overexpressed
in cytogenetically normal AML patients with
dismal outcomes [32]

HOPX 0.619 (2.6E-38) 0.643 (<E-45) The smallest homeodomain protein; higher
expression predicts poor prognosis in de novo
AML [33]

MMRN1 0.609 (9.7E-37) 0.597 (<E-45) A member of the elastin microfibrillar interface
protein; an adverse marker in both pediatric
and adult AML [34]

DNMT3B 0.599 (1.7E-35) 0.631 (<E-45) DNA methyltransferases; an important LSC
marker [35–37]

TCF4 0.556 (1.1E-29) 0.626 (<E-45) A transcription factor; predict outcome in
RUNX1 mutated and translocated AML [38,
39]

SLC38A1 0.536 (2.3E-27) 0.585 (<E-45) A glutamine amino acid transporter,
overexpressed in AML patients with adverse
clinical outcomes [40]

DOCK1 0.530 (1.1E-26) 0.597 (5.9E-16) A novel class of guanine nucleotide exchange
factors; high expression confers poor
prognosis in AML [41]

ARHGAP22 0.519 (1.5E-25) 0.518 (<E-45) Rho GTPase activating protein, incorporated in
the 17-gene LSC score which predicts treat-
ment response in AML [9]

MN1 0.502 (1.1E-23) 0.565 (<E-45) A transcriptional coactivator, overexpression
could induce AML in mice and predict ATRA
resistance in human AML patients [42, 43]

ABCG1 0.504 (6.7E-24) 0.610 (<E-45) Belongs to ATP-binding cassette (ABC) super-
family; responsible for important
chemoresistance mechanism in AML [44–49]

ABCA2 0.367 (1.5E-12) 0.507 (2.3E-11) Belongs to ATP-binding cassette (ABC) super-
family; a strong prognostic biomarker for
multidrug resistance in pediatric acute lym-
phoblastic leukemia [44–49]

ABCB1 0.353 (1.2E-11) 0.364 (5.2E-6) Belongs to ATP-binding cassette (ABC) super-
family; responsible for important
chemoresistance mechanism in AML [44–49]

ABCC1 0.310 (3.2E-9) 0.458 (5.2E-9) Belongs to ATP-binding cassette (ABC) super-
family; responsible for important
chemoresistance mechanism in AML [44–49]
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