Heliyon 8 (2022) e10808

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

Evaluating the performance of $Cs_2PtI_{6-x}Br_x$ for photovoltaic and photocatalytic applications using first-principles study and SCAPS-1D simulation

Hadeer H. AbdElAziz^a, Mohamed Taha^a, Waleed M.A. El Rouby^a, M.H. Khedr^a, Laila Saad^{b,*}

^a Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62511 Beni-suef, Egypt ^b Department of Renewable Energy Science and Engineering, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62511 Beni-suef, Egypt

HIGHLIGHTS

• The geometrical structures, electronic, and optical properties of the mixed halide $Cs_2PtI_6-_xBr_x$ (x = 0, 2, 4, and 6) were investigated by DFT calculation.

• Cs_2PtI_6 material is suitable for single-junction solar cells, while other Br^- doping are suitable for top cell in tandem solar cells.

• A device modeling of Cs2PtI6-based all-inorganic solar cells is provided using SCAPS-1D simulator.

• The results can guide more investigation and optimization of lead-free all-inorganic perovskite solar cells.

ARTICLE INFO ABSTRACT Keywords: All inorganic free-lead halide double perovskites are attractive materials in solar energy harvesting applications. Perovskite In this study, density functional theory calculations have been used to predict the structures, band structures, and DFT density of states of $Cs_2PtI_{6-x}Br_x$ with (x = 0, 2, 4, and 6). The optical properties (reflectivity, refractive index, Solar cell absorption, dielectric function, conductivity, and loss function) of these materials have been predicted and dis-Cs₂PtI₆ cussed. The band edges calculations showed that the $Cs_2PtI_{6-x}Br_x$ may be an efficient visible-light photocatalyst Photocatalysis for water splitting and CO₂ reduction. The calculated bandgap value of Cs₂PtI₆ exhibited a great match with the SCAPS-1D reported experimental values. It has been seen that increasing the doping content of Br^- in $Cs_2PtI_{6-x}Br_x$ (x = 0, 2, 2, 3) 4, and 6) increases the bandgaps from 1.4 eV to 2.6 eV and can be applied in single junction and tandem solar cells. Using Solar Cell Capacitance Simulator (SCAPS), a 1D device modelling has been performed on Cs2PtI6 inorganic lead-free solar cells. For the fully inorganic device, the effect of replacing organic hole transport materials (HTL) and electron transport materials (ETL) with inorganic ones is investigated while keeping high efficiencies and stabilities of solar cell devices. From the obtained results, it was found that WS2 as ETL and Cu2O as HTL were the most suitable materials compared to the others. Further investigation studies are performed on the effect of changing metal back contact work function, absorber layer thickness, doping density, and defect density on the power conversion efficiency (PCE) of the solar cell. The optimized suggested structure (FTO/WS₂/Cs₂PtI₆, Cu₂O/Carbon) obtained a PCE of 17.2% under AM1.5 solar illumination.

1. Introduction

The problem of climate change arises from burning fossil fuels which causes the problems of global warming and carbon dioxide (CO_2) evolutions [1]. Fossil fuel is a limited source of energy as it is depleting from the earth [2, 3]. These crises create a demand for research and development of alternative renewable sources of energy like solar energy

harvesting. Solar energy is the cleanest, most abundant, and widely available source of energy. Solar energy is used in photovoltaic (PV) cells to produce electricity and can be consumed by a photocatalysis process to split water into hydrogen (energy vector), oxygen [4, 5], and CO_2 reduction through photo-chemical reactions [6, 7].

Perovskite materials are emerging in the field of solar energy harvesting because of their unique optical and electronic properties

* Corresponding author.

E-mail address: Laila.hamam@psas.bsu.edu.eg (L. Saad).

https://doi.org/10.1016/j.heliyon.2022.e10808

Received 25 March 2022; Received in revised form 31 May 2022; Accepted 22 September 2022

2405-8440/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

[8, 9, 10]. Many efforts are done for searching for visible light solar-driven water splitting photocatalysis [11, 12] and efficient photovoltaic devices [13, 14]. For photocatalysis applications, good photocatalysis for water splitting or CO₂ reduction techniques should meet the requirement of (1) a suitable bandgap for absorption of the solar spectrum; (2) immediate electron-hole separation of the material; (3) high stability in aqueous medium against corrosion; (4) the redox potential of the material is suitable for H_2 generation and CO_2 reduction. Cs₂PtI₆ is also used as a photoanode for the photoelectrochemical (PEC) water oxidation process [15, 16] due to its stability even in an acidic or bases environment. In Jayanthan et al. [15], the heterojunction BiVO₄/Cs₂PtI₆ is used and shows a high quality charge separation from BiVO₄ to vacancy ordered Cs₂PtI₆. The achieved photocurrent density of the BiVO₄/Cs₂PtI₆ junction is 0.92 mA/cm^2 at a potential of 250 mV. The bare BiVO₄ gave 0.6 mA/cm² at a potential of 560 mV at 1.23 V (vs.RHE). In Hamdan et al. [16], the Cs₂PtI₆ was used as a photoanode for water oxidation in PEC cell. The Cs₂PtI₆ photoanode gave a photocurrent density of 0.8 mA/cm² with 12 h of stability. The material also used as an electrocatalyst for hydrogen production at pH~1 and stable for 6 h 1.23 V (vs.RHE).

For solar cell application, in comparison to conventional silicon solar cells, organic-lead halide perovskite solar cells show high performance. The perovskite solar cell PCE begin from 3.8% in 2009 [17] up to 25.5% in 2021 for single junction and 29.15% for perovskite/Si tandem two terminal cells [18]. Organic compounds are degradable which affects the stability of the solar cell. Another problem that limits the spreading of perovskite solar cells is the lead (Pb) element toxicity. Many efforts have been done to replace conventional organic $(CH_3NH_3^+, CH(NH_2)_2^+)$ with inorganic (K⁺, Rb⁺, Cs⁺) [19, 20, 21, 22, 23, 24]. One of the high-efficiency candidates of inorganic solar cells is CsPbI₃ [25, 26] which has an efficiency of around 20% [27] due to the slightly wide bandgap of CsPbI3 ~1.7 eV and the presence of lead. CsSnI3 has a band gap of \sim 1.3 eV which is ideal for capturing solar illumination [28] but suffers from low stability and the Sn⁺² element oxidizes to Sn⁺⁴ forming the air-stable compound Cs₂SnI₆ [29]. This phenomenon attracts researchers to study the A2BX6 family perovskite to tackle the problem of instability and give alternatives for lead element. The drawback of Cs₂SnI₆ in solar cell fabrication is the lack of efficiency [30]. The maximum efficiency of Cs₂SnI₆ based solar cell is around 1.5% and 2.025% for mixed halide Cs₂SnI₄Br₂ based solar cell [31]. One of the promising materials of A2BX6 family is Cs2PtI6. Cs2PtI6 is considered as a fully inorganic lead free double halide perovskite material. Cs₂PtI₆ crystallizes in the form of $Fm\overline{3}m$ K₂PtCl₆ cubic structure form [32]. The stability of Cs₂PtI₆ material is up to 60 days in ambient conditions and 40 days in aqueous solution [33] and at high temperature [34]. It has a relatively high lifetime carrier of 2 µs and a low defect density of 2.5×10^{12} cm⁻³. Two prototypes of full device perovskite solar cell were fabricated with efficiencies of 10% and 13.88% respectively using ethylene diamine treatment [34]. Bromine (Br⁻) doping and substitution applied to many perovskites-based solar cells for tuning bandgap and increasing stability [35, 36, 37]. The Br⁻ doping affects the band gap of the structure and this in return allows the materials to be used in different photocatalysis water splitting and CO₂ reduction applications.

One dimensional solar cell capacitance simulation program SCAPS-1D developed by Burgelman et al. in gent university [38, 39] considered as one-dimensional simulation tool that solves the continuity and Poisson equations for semiconductors. SCAPS-1D can model up to seven layers of solar cell device with the ability to modify the properties of every layer separately. The calculation results output can include current-voltage, capacitance-voltage, capacitance frequency, and quantum efficiency characteristics diagrams. The proper choice of ETL and HTL materials has a good impact on solar cell performance and stability. The most used HTL material for perovskite solar cell is 2,2',7,7'-tetrakis-(N, N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD). Spiro-OMeTAD material suffers from lack of stability due to degradable organic elements besides it is expensive [40]. Other cuprous based HTL materials like cuprous oxide [41] and cuprous iodide [42] are integrated with PSC with high performance. Other HTL materials are investigated like MoO₃ [43] for acquiring high performance, high stability, and low cost. ETL materials are important for the efficient electron collecting process to increase the PCE of solar cell. ETL material should maintain high electron mobility, chemical, and photostability. Another important feature is to be fabricated easily with perovskite materials. Indium gallium zinc oxide (IGZO) [44], zinc selenide (ZnSe) [45], and tungsten disulfide WS₂ [46] attracted many researchers for their high conductivity and high mobility as an n-type semiconductor.

In this work, the structural, electronic, and optical properties of Br⁻ doped Cs₂PtI₆ were performed by density functional theory (DFT) calculations. The suitability of these materials, as its possibility to be used as photocatalyst for water splitting and CO₂ reduction processes was evaluated for the first time based on our best knowledge. The Cs₂PtI₆ material was simulated as the main absorber layer of a solar cell device. An investigation of different suitable inorganic HTL and ETL materials was done. The HTL materials are Cu₂O, CuI, MoO₃, and spiro-OMeTAD organic HTL to compare with inorganic ones. The ETL materials are (IGZO, WS₂, ZnSe, and CdS). The effect of the back contact work function on the performance of PSC is investigated. Furthermore, the change of thickness, doping, and defect density of Cs₂PtI₆ material are optimized for maximum PCE.

2. DFT study

2.1. Computational details

The structure of Cs₂PtI₆ has a face-centered cubic structure with a space group of Fm3m (No. 225) [47]. The studied structures with Brdoping were optimized using the Cambridge Serial Total Energy Package (CASTEP) program, which implements DFT [48]. The bandgap and the lattice parameter constants of Cs₂PtI₆ were calculated with local density approximation (LDA) [49] Perdew and Alex Zunger (CA) [50]-Perdew and Alex Zunger (PZ) [51] functional and the generalized gradient approximation (GGA) functionals (Perdew Burke-Ernzerhof (PBE) [52], revised PBE (RPBE) [53], revised PBE functional for solids (PBESOL) [54], Wu-Cohen (WC) [55], and Perdew-Wang 91 (PW91) [56]), as well as the hybrid Heyd-Scuseria-Ernzerh (HSE06) functional. Norm-conserving pseudopotential was used for the calculation of the interaction between the ionic core and valence electrons. The k-Monkhorst-Pack was set to 3 imes 3×3 along the Brillouin zone of the material structure. The cut-off energy is set to 480 eV for HSE06 calculations and 400 eV for the LDA/GGA functionals. The Broyden Fletcher-Goldfarb Shannon (BFGS) algorithm is used with convergence tolerance energy of 2×10^{-5} eV per atom. The convergence criteria of the interaction forces between atoms were set to 0.05 eV/Å, and the convergence criteria of maximum displacement of atoms are set to 0.002 Å. The optical properties of the $Cs_2PtI_{6-x}Br_x$ were calculated by the RPBE method by energy calculations on the optimized unit cells obtained from the HSE06 calculations. The band gaps of the $Cs_2PtI_{6-x}Br_x$ obtained from the HSE06 method were used in the optical (reflectivity, absorption, refractive index, dielectric function, conductivity, loss function) calculations using the scissors operator, as implemented in the CASTEP code.

The theoretical predictions of the bottom of the conduction band (E_{CB}) and the top of the valence band (E_{VB}) edges of the Cs₂PtI_{6-x}Br_x (x = 0, 2, 4, and 6) were calculated according to Butler and Ginley [57]. The method mainly depends on Mullikens equations, which calculate the

values of electron negativity, electron affinity, E_{VB} and E_{CB} . Mullikens defined the electron affinity of an atom, Eq. (1), as the arithmetic mean of atomic electron affinity A_f tabulated in [58] and the first ionization energy I₁ tabulated in [59].

$$\chi^{M}_{atom} = \frac{1}{2} \left(A_f + I_1 \right) \tag{1}$$

For a compound with 3 elements p, q and r with number of atoms l, m and respectively for each, [60, 61]. The electron negativity for a compound can be calculated using Eq. (2) as: -

$$\chi^{M}_{compound} = \left(\chi^{l}_{p} \cdot \chi^{m}_{q} \cdot \chi^{n}_{r}\right)^{\frac{1}{l+m+n}}$$
(2)

Applying this equation to Cs_2PtI_6 material we obtain Eq. (3):

$$\chi^{M}_{Cs_{2} Pt I_{6}} = \left(\chi^{2}_{Cs} \chi^{1}_{Pt} \chi^{6}_{I}\right)^{\frac{1}{9}}$$
(3)

Electron affinity χ of a compound can be calculated via Eq. (4) as:-

$$\chi = \chi M - \frac{1}{2} E_g \tag{4}$$

the theoretical predictions of E_{CB} and E_{VB} of the $Cs_2PtI_{6-x}Br_x$ (x = 0, 2, 4, and 6) were calculated using Eqs. (5) and (6) [62, 63], respectively.

$$E_{CB} = \chi atom - E^e - 0.5 E_g \tag{5}$$

where $E^{\rm e}$ is the energy of the free-electron on the hydrogen scale (4.44 \pm 0.02 eV), $E_{\rm g}$ is the bandgap energy calculated from the HSE06 method. χ is the Mulliken's electronegativity of the semiconductor. The Mulliken's electronegativity ($\chi^{\rm atom}$) of a neutral atom, is defined as the arithmetic mean of the atomic electron affinity and the first ionization energy:

$$E_{VB} = E_{CB} + E_g \tag{6}$$

2.2. Structure properties

The optimized crystal structures of $Cs_2PtI_{6-x}Br_x$ perovskites are shown in Figure 1. The pure structure is shown in Figure 1(a) $Cs_2PtI_6 x = 0$ and Figure 1(d) $Cs_2PtBr_6 (x = 6)$, respectively. The I to Br ratio in the structure $Cs_2PtI_{6-x}Br_x$ is represented by x = 2 for $Cs_2PtI_4Br_2$ Figure 1(b) and x = 4 for $Cs_2PtI_2Br_4$ Figure 1(c). As shown in Table 1, the bandgap of Cs_2PtI_6 is calculated using different DFT functionals. The GGA functionals used were PBE, RPBE, WC, PBESOL, and PW91 with resultant bandgap values of 1, 1.4, 0.8, 0.8, 1, and 0.5 eV, respectively, and LDA (CA-PZ) with a bandgap of 0.5 eV. These band gap values are not agreed with the experimental band gap (1.4 eV [34]), except for the RPBE functional. It is well known that the GGA/LDA functionals overestimate the band gap value, and probably the obtained band gap by the RPEB functional is just an artifact since it provides the worst lattice parameters among all tested functionals. The hybrid HSE06 has successfully predicted the experimental band gap (1.4 eV).

The reported experimental value of the lattice constant of Cs_2PtI_6 is 8.03 Å [32] which agrees with the HSE06 calculated lattice constant value as shown in Table 2 with an acceptable error of ~1.6 %. The optimized lattice

Figure 1. The crystal structures of (a) Cs₂PtI₆, (b) Cs₂PtI₄Br₂, (c) Cs₂PtI₂Br₄, and (d) Cs₂PtBr₆.

Table 1. The calculated lattice constant and bandgap of Cs₂PtI₆

Tuble 1. The calculated lattice constant and bandgap of 652t dig.									
Functional	GGA					LDA	HSE06	Experimental	
	PBE	RPBE	WC	PBESOL	PW91	(CA-PZ)			
Bandgap (eV)	1	1.4	0.8	0.8	1	0.5	1.4	1.4 [<mark>34]</mark> 1.37 [<mark>33</mark>]	
Lattice A°	8.3	8.9	8.06	8.05	8.2	7.8	7.9	8.03 [47]	

Table 2. The calculated lattice parameter and bandgap of $Cs_2PtI_{6-x}Br_x$ using HSE06 functional versus experimental values.

Material	HSE06		Experimental	Experimental		
Parameter	Lattice	$E_{\rm g}~({\rm eV})$	lattice	$E_{\rm g}~({\rm eV})$		
Cs ₂ PtI ₆	7.9	1.4	8.03 [32]	1.4 [<mark>34</mark>] 1.37 [<mark>33</mark>]		
Cs ₂ PtI ₄ Br ₂	7.7	1.6	-	-		
Cs ₂ PtI ₂ Br ₄	7.4	1.7	-	-		
Cs ₂ PtBr ₆	7.3	2.6	7.54 [64]	-		

constant of Cs_2PtBr_6 is 7.3 Å with an error of 3.2 % from the experimental measured value [64]. It is noticed that the Br^- doping content increase reduces the lattice constant and increases the bandgap gradually.

2.3. Electronic properties

The calculated band structures of $Cs_2PtI_{6-x}Br_x$ are shown in Figure 2 using HSE06 functional. The calculated values of band gap of $Cs_2PtI_{6-x}Br_x$ are listed in Table 1, The calculated bandgap of Cs_2PtI_6 with HSE06 functional is 1.4 eV which agrees well with the experimental bandgap values of (1.4 eV [34] and 1.37 eV [33]). Till date, no

experimental data are provided for the bandgap values of $Cs_2PtI_4Br_2$, $Cs_2PtI_2Br_4$, and Cs_2PtBr_6 . The $Cs_2PtI_4Br_2$ has a bandgap of 1.6 eV, the $Cs_2PtI_2Br_4$ has a bandgap of 1.7 eV and Cs_2PtBr_6 has a bandgap of 2.6 eV.

Figure 3 shows the total density of states (DOS) and partial density of states (PDOS) of $Cs_2PtI_{6-x}Br_x$ using HSE06 functional. Fermi level position is dedicated by the dotted vertical red line at zero energy level. The PDOS of pure halide materials (Cs_2PtI_6 and Cs_2PtB_6) show the dominance of I-5p orbitals for the valence band maximum (VBM) and slight dominance of Cs – 6s and Pt-5d on the conduction band minimum (CBM), as shown in Figure 3(a,d). The PDOS for mixed halide materials ($Cs_2PtI_4Br_2$ and $Cs_2PtI_2Br_4$) show that the dominance in the VBM shared by or I-5p and Br -4p orbitals, while Cs-6s and Pt-5d have slight dominance in the CBM, Figure 3(b,c).

2.4. Optical properties

The dielectric function is expressed as $\varepsilon_{material} = \varepsilon' - i \varepsilon''$ where ε' is the real part of dielectric function and ε'' is the imaginary part. Figure 4(a) shows the real and imaginary part of the dielectric function versus the wavelength of the solar spectrum. The real part of the dielectric function of Cs₂PtI_{6-x}Br_x is relatively high in the visible spectrum. The peaks of Cs₂PtI₆ are at $\lambda = 300$ nm and $\lambda = 550$ nm respectively. Increasing the Br⁻ content causes a blue shift on the dielectric

Figure 2. The band structures of (a) Cs₂PtI₆, (b) Cs₂PtI₄Br₂, (c) Cs₂PtI₂Br₄, and (d) Cs₂PtBr₆ by using the HSE06 functional.

Figure 3. Total and partial densities of states for (a) Cs₂PtI₆, (b) Cs₂PtI₄Br₂, (c) Cs₂PtI₂Br₄, and (d) Cs₂PtBr₆ using the HSE06 functional.

function spectrum. The peak of the real part of the dielectric function of Cs_2PtBr_6 is at $\lambda = 350$ nm. The imaginary part of the dielectric function shows a blue shift increase with increasing Br⁻ content. This means that the absorption of these materials can be tuned by Br⁻ content doping. Figure 4(b) shows the real *n* and imaginary *k* part of the refractive index as a function of wavelength. The real refractive index of Cs₂PtI₆ increases gradually and then saturates for >500 nm with values of 2.5. Increasing Br^{-} content lowers the *n* values with a blue shift. Higher values of *n* indicate a good absorption of the material to the incident spectrum. Extinction coefficient (k) indicates how the incident radiation attenuates through the material. Like the imaginary part of the dielectric function, increasing Br^- content shows a blue shift in the k values versus wavelength. The higher values of k of these materials are for λ between 350 and 450 nm in the middle of the spectrum which means high absorption of radiation by the materials in this region. The absorption coefficient versus wavelength is shown in Figure 4(c). The peak of the absorption coefficient of Cs₂PtI₆ is at $\lambda = 400$ nm. The Br⁻ content has a blue shift on the curve peak so it shifted from 400 nm for Cs₂PtI₆ to 300 nm for Cs₂PtBr₆. Among these materials, Cs₂PtI₂Br₄ shows a strong peak of absorption coefficient at $\lambda = 350$ nm Figure 4(d) shows the reflectivity versus wavelength for the $Cs_2PtI_{6-x}Br_x$ perovskites. The reflectivity is used to study the surface properties of a material, which is equal to the ratio of the reflection to the incident power. These materials show low reflectivity all over the spectrum. The loss functions for Cs₂PtI_{6-x}Br_x were calculated and shown in Figure 4(e). The results obtained show that the loss function of the four materials is smaller than 1 which means low values for the loss function all over the solar spectrum. Figure 4(f) shows the frequency dependent optical conductivity $\sigma(\omega) = \sigma_1 + i \sigma_2(\omega)$. The complex σ (ω) is derived from the complex dielectric function as described in Eqs. (7) and (8) [65].

$$\sigma_1 = \omega \, \varepsilon'' \varepsilon_0 \tag{7}$$

$$\sigma_2 = \omega \, \varepsilon \, \varepsilon_0 \tag{8}$$

where σ_1 and σ_2 are real and imaginary part of optical conductivity, ε_0 is the dielectric constant of free space and ω is the angular frequency. The real part of optical conductivity spectrum shows a blue shift increase with Br⁻ doping. The imaginary part of the optical conductivity shows a red shift increase with Br⁻ doping.

2.5. Evaluation of the $Cs_2PtI_{6-x}Br_x$ materials for photocatalysis and photovoltaic applications

2.5.1. Photocatalytic H₂, O₂ evolution, and CO₂ reduction process

Under solar illumination, the incident photons with energies higher than or equal to the bandgap of the semiconductor, the electrons in the valence band of the semiconductor excited to the conduction band leaving a positive hole. The photo-generated electron-hole pairs will move to the surface of the semiconductor and cause redox reactions. Figure S1 (Supplementary Information) shows the photocatalytic process under solar illumination. The determination of bandgap edges of the semiconductor is a key factor in the photocatalytic operation process. The bandgap edges positions define the thermodynamic limitations of the photochemical reaction caused by the photo-generated electron-hole pair of the semiconductor. The efficient photocatalytic water splitting semiconductor material should meet the criteria of (1) The semiconductor's conduction band minimum should be more negative than the redox potential of H^+/H_2 (0 V vs NHE) and (2) the valence band maximum should be more positive than the potential edge of O_2/H_2O . These criteria apply to the CO2 reduction photocatalytic process. The ECB and EVB values of

Figure 4. The optical properties of $Cs_2PtI_{6-x}Br_x$ (a) real (solid lines) and imaginary part (dashed lines) of dielectric function, (b) real (solid lines) and imaginary part dashed lines of refractive index, (c) Absorption coefficient, (d) Reflectivity, (e) Loss function and (f) real (solid lines) and imaginary part (dashed lines) of conductivity.

Cs₂PtI₆, Cs₂PtI₄Br₂, Cs₂PtI₂Br₄ and Cs₂PtBr₆ are shown in Figure 5. It is noticed that the E_{CB} values are smaller than 0 V (the redox potential of H₂) for the materials and the E_{VB} values are greater than 1.23 V (the potential of O₂). Thus, the Cs₂PtI_{6-x}Br_x materials will be suitable for photo-catalytic water splitting. For CO₂ reduction process, it is shown that all the materials E_{VB} are more negative than the CO₂/CH₄OH and CO₂/CH₄. This means that the materials may be suitable for CO₂ reduction to produce CH₄OH and CH₄. The E_{VB} level of Cs₂PtI₆ is at -0.12 V which means that the material may be suitable for CO₂ reduction to HCHO. Cs₂PtI₄Br₂ material also may reduce CO₂ to HCHO. The estimation of electron negativity, electron affinity and band positions are shown in supplementary information Table S1.

2.5.2. Photovoltaic device

From the DFT study, it is concluded that, All the four materials are direct bandgap semiconductors. Direct bandgap semiconductors are

Figure 5. Band edges of $Cs_2PtI_{6-x}Br_x$ (x = 0, 2, 4, 6) compared to the redox potentials of the water-splitting reaction and CO_2 reduction photodegradation processes at normal hydrogen electrode (NHE) scale at pH = 0.

Figure 6. Band gap alignment of Cs₂PtI₆ material with different ETLs and HTLs.

more efficient to be applied for solar cell devices than indirect band gap semiconductors. According to Shockley–Queisser limit [66], to maintain high power conversion efficiency of a single junction solar cell, the best band gap efficiency of a material should be in the range of 1.3–1.4 eV [67]. The Cs_2PtI_6 has a bandgap of 1.4 eV which is suitable for single junction perovskite solar cell.

3. Numerical analysis of all-inorganic perovskite $\rm Cs_2PtI_6$ solar cell device using SCAPS-1D

To the best of our knowledge, there is no report on the numerical analysis of Cs_2PtI_6 -based all-inorganic perovskite solar cells PSCs. Therefore, further studies are required to figure out the optimum combination of different materials to be used as various layers in the Cs_2PtI_6 -based PSC. In this work, a detailed investigation of Cs_2PtI_6 -based PSCs is conducted. First, the validity of the simulation was verified by comparing experimental results with the simulation results. Since there is much room for further performance enhancement, the effects of different parameters (ETL and HTLlayers, back metal contact, acceptor carrier and defect density concentrations) on the cell performance are investigated. In addition to determining the optimum thickness of the Cs_2PtI_6 active layer. Finally, the optimum PSCs cell structure was elected using the appropriate layers regarding the results of this study.

3.1. The basic simulation parameters

Table S2 (sup. information) summarizes the physical parameters of the simulated Cs_2PtI_6 solar cell device. The working temperature of the device is assumed to be as the actual experimental conditions 298.15 K equivalent to regular room temperature. The series resistant Rs is set to

be 14 (Ω .cm²) and the illumination is based on reference air mass AM1.5 spectra. The range of wavelength of the spectra is set to be in the range of 300–900 nm. The Cs₂PtI₆ based solar cell device is modelled as separate different seven layers. The front contact is modelled as a flat band with surface recombination velocity of electrons and holes are 10^5 cm/s and 10^7 cm/s, respectively. The metal back contact is modelled using different materials with different work functions and surface recombination velocity of electrons and holes are set to 10^7 cm/s and 10^5 cm/s respectively. The simulated device structure consisted of fluorine-doped tin oxide (FTO) as front contact followed by an ETL, perovskite, HTL layers and a metal back contact, as shown in Figure S2 (a). The solar cell device layers are modelled with two embedded interface defect layers (IDL); one between ETL and Cs₂PtI₆ active layer and the other is the back IDL between Cs₂PtI₆ and HTL layer. The front and back IDLs are ultrathin 5 nm layers with the same physical parameters of the absorber active layer and used to determine the effect of the interface recombination. The physical parameters of FTO, IDLs and Cs₂PtI₆ are listed in Table S3. Physical parameters of different HTL and ETL materials are shown in Tables S4 and S5, respectively [34, 43, 47, 68, 69, 70, 71, 72, 73, 74, 75]. Metal contacts work function are shown in Table S6 [76, 77, 78, 79, 80, 81]. The defect density Nt can be calculated from the bulk lifetime model, Eq. (9).

$$N_t = \frac{1}{\sigma \, \tau \, V_{th}} \tag{9}$$

where the V_{th} thermal velocity of electrons and holes is 107 cm/s, The capture cross section of electrons and holes σ are estimated to be 2 × 10–14 cm2. The carrier lifetime τ value of Cs₂PtI₆ is >2 µs. The initial estimated value of Nt is found to be 2.5×1012 cm⁻³, and the energetic distribution is assumed to be single.

Figure 7. (a) J-V measurement and (b) QE curves for Cs₂PtI₆-based solar cells assembled with different HTL materials.

H.H. AbdElAziz et al.

Table 3. Solar cell parameters with different HTL materials.

Structure	J _{sc} (mA/cm ²)	V _{oc} (volts)	FF %	PCE %
FTO/CdS/Cs ₂ PtI ₆ /Spiro-OMETAD/C	20.1	1.12	44	10.16
FTO/CdS/Cs ₂ PtI ₆ /MoO ₃ /C	20.14	1.11	61	13.9
FTO/CdS/Cs ₂ PtI ₆ /Cu ₂ O/C	20.4	1.1	62	14.2
FTO/CdS/Cs ₂ PtI ₆ /CuI/C	20.13	1.12	60	13.7

Figure 8. (a) JV measurement and (b) QE curves for Cs₂PtI₆-based solar cells assembled with different ETL materials.

3.2. Model device verification

Firstly, the model was verified with previously published experimental data reported by Schwartz *et al.* [34]. The typical reference-cell structure is FTO/CdS/Cs₂PtI₆/Spiro-OMETAD/Carbon. The CdS and Spiro-OMETAD are the initial ETL and HTL materials, respectively. The resulted current density-voltage (J-V) characteristics diagram of the solar cell with structure FTO/CdS/Cs₂PtI₆/Spiro-OMETAD/Carbon show a short circuit current density (Jsc) of 20.1 mA/cm², open circuit voltage (V_{oc}) of 1.12 V, power conversion efficiency (PCE) of 10.16 % and fill factor (FF) of 44%, as shown in Figure S2 (b). These results are in a good agreement with the experimental results (the values are Jsc = 20

mA/cm², Voc = 1.12 V, PCE = 10.06 % and FF = 41%) [34]. The difference between numerical and experimental values is in the acceptable range.

3.3. Bandgap alignment for ETL and HTL

The ETL and HTL materials should be chosen with suitable band edges to match the CBM and VBM of the active layers to obtain a highefficiency solar cell. The proposed bandgap alignment schematic diagram for different ETL and HTL materials with respect to Cs_2PtI_6 active layer is shown in Figure 6. All the HTL materials' highest occupied molecular orbital (HOMO) levels aligned well with the valence band level of

Table 4. Solar cell parameters with different ETL layers.							
Structure	J _{sc} (mA/cm ²)	V _{oc} (volts)	FF %	PCE %			
FTO/IGZO/Cs ₂ PtI ₆ /Cu ₂ O/C	22.2	1.13	59.2	14.8			
FTO/ZnSe/Cs ₂ PtI ₆ /Cu ₂ O/C	22.3	1.12	58	14.7			
FTO/WS ₂ /Cs ₂ PtI ₆ /Cu ₂ O/C	23.4	1.13	58.5	15.4			

Figure 10. (a) J-V diagram with varying Cs₂PtI₆ thickness, (b) QE of Cs₂PtI₆ based solar cell with different thickness.

Fable 5	5. Solar	cell	parameters	with	different	Cs ₂ PtI ₆	layer	thickness.
---------	----------	------	------------	------	-----------	----------------------------------	-------	------------

Cs ₂ PtI ₆ layer thickness	J _{sc} (mA/cm ²)	V _{oc} (volts)	FF %	PCE %
200 nm	23.4	1.13	58.5	15.4
400 nm	28.1	1.1	52.4	16.3
600 nm	30.1	1.08	49.6	16.2
800 nm	31	1.07	48.3	16

 Cs_2PtI_6 material and the ETL lowest unoccupied molecular orbital (LUMO) level aligned well with the conduction band of the Cs_2PtI_6 material. The CBM, VBM of used ETL and HTL materials are stated from previously published experimental and theoretical work research. In order to maintain high efficiency PSC the choice of ETL material should meet the criteria.

- (i) The mobility of electrons should be high to maintain fast electron transport within the ETL.
- (ii) CBM alignment with the active material Cs₂PtI₆

For HTL materials it should meet the criteria.

- (i) High chemical stability to environmental conditions
- (ii) The hole mobility is good enough for fast transfer of the holes to the electrode.
- (iii) Blocking the transfer of electrons to the anode.
- (iv) The highest occupies molecular orbital (HOMO) should be higher than the VBM of perovskite layer to ensure the process of photogenerated holes extraction.

3.4. Effect of HTL materials

The ETL layer was fixed to be CdS however, Spiro-OMeTAD was used as a reference HTL materials, in addition to other three different materials namely MoO₃, Cu₂O and CuI were simulated to study the effect of HTL layer properties on the solar cell performance. J-V characteristics diagram and QE measurements with different HTLs are shown in Figure 7(a,b), respectively. The Cu₂O HTL has high hole mobility which in turns gives high performance, the solar cell device using Cu₂O material has PCE values of 14.2%, Voc of 1.12 V, Jsc of 20.4 and FF of 62% as shown in Table 3. The QE values are high all over the spectrum as the assumption of zero reflection at each layer of the device for calculations simplicity. The QE spectrum shows negligible change with different HTL materials. The reason of this is because the HTL materials are placed in the back of the structure and their optical absorptions are not significant.

3.5. Effect of ETL materials on the cell performance

In this section the HTL layer was fixed to be Cu₂O, since it shows the best appropriate performance with Cs2PtI6 active layer, as discussed in the previous section (section 3.4). Regarding to the ETL material, three different promising materials are selected and simulated namely, indium gallium zinc oxide (IGZO), tungsten sulphide (WS2) and zinc selenide (ZnSe). These materials are expected to show good performance as they have a good matching with Cs₂PtI₆ active layer as illustrated in the band alignment schematic diagram, Figure 6. Changing ETL material has a significant effect on the value of both Jsc and Voc. For this type of cells CdS ETL layer has found to have the lowest values of Jsc and Voc compared to other selected ETL materials. However, IGZO and ZnSe ETL layers have similar effect in the Cell performance as described in Figure 8(a). WS₂ ETL layer has a remarkable change over other ETL materials, and this may be due to Ws₂ has high electron mobility value [46], the ability of absorbing wide range of solar light (Eg~1.8 eV) and the good band alignment with Cs₂PtI₆. The QE values are relatively high for all the simulated ETL materials, as we considered zero reflection of the solar cell layers for simplicity. The QE values are the highest using WS₂ as ETL compared to other materials Figure 8(b). For Cs₂PtI₆-based cell using WS₂ as ETL layer has the best effect on the cell efficiency, Jsc of 23.4 mA/cm², Voc of 1.13 V, FF of 58.5% and PCE values of 15.4%, as shown in Table 4.

3.6. Effect of the back metal contact on the cell performance

The metal back contact effect on solar cell device performance is studied. The work functions of the selected back contact metals were ranged from 4.6 to 5.1 eV. The J-V characteristics as a function of metal work function values are presented in Figure 9(a). The J-V increased gradually with work function values increase from 4.6 eV to 5 eV. It is observed that the J-V curves are overlapped when the metal back contact work function equal 5 and 5.1 eV, and it can be explained by the consistency of the band structures of the back contact with Cu₂O HTL material which in turns allows better carriers transfer. In terms of PCE,

Figure 11. (a) N_A, (b) N_t Vs. the PCE of the optimized solar cell structure FTO/WS₂/Cs₂PtI₆/Cu₂O/Carbon with different Cs₂PtI₆.

Figure 9(b) shows the change of PCE with different metal back contacts. It can be observed that the PCE enhanced with metal back contacts with work functions ranged from 4.6 eV to 5 eV. Meanwhile, for the work function of carbon material (5 eV) and noble Au (5.1 eV), there is only a slight change in PCE. The suggested metal back contact is carbon with work function of 5 eV as it is a cheap available material and achieve high PCE. Regarding the above study, it can be concluded that the most optimum structure in terms of materials for Cs₂PtI₆–based solar cell is FTO/WS₂/Cs₂PtI₆/Cu₂O/Carbon.

3.7. Optimization of absorber layer thickness

The thickness of active layer has an important influence on the solar cell device performance. Larger thickness allows for more photo absorption of light: however, the diffusion length of carriers may cause recombination of electron-hole pairs and affect the PCE, therefore a thickness optimization of the absorber layer should be done. Figure 10 shows the effect of changing the thickness of the Cs₂PtI₆ active layer on the performance of the optimized device structure (FTO/WS2/Cs2PtI6/ Cu₂O/Carbon) perovskite solar cell. The simulated thicknesses ranged from 200 to 800 nm. From the J-V curves, increasing the thickness of the active layer lowers the Voc values and enhances the Jsc values as shown in Figure 10(a). Increasing the active layer thickness gradually has a good enhancement on the Jsc of the PSC solar cell. This can be explained by the high photon absorption. As thickness exceeds 400 nm, a high carrier recombination rates will affect the PSC performance. The Jsc will saturate and causes an overall slight change of PCE of solar cell. For QE values, Figure 10(b), the increasing the thickness of Cs₂PtI₆ layer enhances the QE of the device which may be due to the high photon absorption accompanied with large thickness. Table 5 summarizes the solar cell parameters with increasing the thickness of Cs_2PtI_6 layer from 200 nm to 800 nm. The optimum thickness of Cs₂PtI₆ layer is 400 nm in terms of PCE and less material usage.

3.8. Effects of acceptor carrier and defect density concentrations

Figure 11 shows the effect of doping concentration N_A and defect density N_t of absorber layer change in PCE. The optimized structure of Cs₂PtI₆-based perovskite solar cell (FTO/WS₂/Cs₂PtI₆ (400 nm)/Cu₂O/Carbon) is simulated with different N_A , N_t values. The PCE increases from 16.3% to up to 22.2% using N_A of 10^{20} cm⁻³ as shown in Figure 11(a). The impact of N_A on PCE can be explained Eqs. (10) and (11). The increase of N_A decreases the saturation current I_0 and in turns increase Voc. On the other hand, as Voc increase Jsc decrease.

$$I_{0=}qn_i^2\left(\frac{D_n}{L_nN_A}+\frac{D_p}{L_pN_D}\right)$$
(10)

$$V_{oc} = \frac{KT}{q} \ln\left(\frac{I_l}{I_0} + 1\right) \tag{11}$$

The defect density results from the fabrication methods of perovskite solar cell based on one or two step spin on solution methods. Fewer defect density concentrations cause higher power conversion efficiencies of perovskite solar cell [82]. The higher values of defect density concentration in the material cause high recombination rates in the material which influences PCE. For these reasons, the effect of defect density concentration on PCE should be studied. According to Eq. (9), the decrease in N_t value leads to increase in carrier lifetime and diffusion length which will reduce the recombination rates in Cs₂PtI₆ material and increase the PCE of the cell. The impact of defect density of the Cs₂PtI₆ layer on the PCE is shown in Figure 11(b). With the appropriate control of the defect density concentration level, the PCE can exceed 17% with defect density of $1 \times 10^{12} {\rm cm}^{-3}$.

The optimized structure of Cs₂PtI₆ based perovskite solar cell can be assumed from the simulation study as: FTO/WS₂/Cs₂PtI₆ (400 nm)/Cu₂O/Carbon and is shown in Figure S3 (a). The doping acceptor concentration of Cs₂PtI₆ layer can be estimated to be 10^{20} cm⁻³ and the best defect density concentration levels N_t of 1×10^{12} cm⁻³. Figure S3 (b) shows the J-V characteristics diagram of the solar cell structure FTO/WS₂/Cs₂PtI₆ (400 nm)/Cu₂O/Carbon. The device short circuit current density (Jsc) of 28.15 mA/cm², open circuit voltage (V_{oc}) of 1.3 V, power conversion efficiency (PCE) of 22.4 % and fill factor (FF) of 61%.

4. Conclusion

The geometrical structures, electronic, and optical properties of the mixed-halide $Cs_2PtI_{6-x}Br_x$ (x = 0, 2, 4, and 6) were investigated by DFT calculation. The HSE06 functional has successfully predicted the bandgap values of Cs₂PtI₆. The bandgap values range from 1.4 to 2.6 eV by increasing the Br⁻ doping content. An investigation has been done on Cs₂PtI₆, Cs₂PtI₄Br₂, Cs₂PtI₂Br₄, and Cs₂PtBr₆ in the application of photocatalytic water splitting and CO_2 reduction. The calculation results showed that the four materials can split water to H₂ and O₂. For CO₂ reduction, the four materials can effectively convert CO2 to CH4OH and CH₄. Besides, Cs₂PtI₆ and Cs₂PtI₄Br₂ can convert CO₂ to HCHO. For photovoltaic application, Cs₂PtI₆ material is suitable for single-junction solar cells, while other Br⁻ doping materials are suitable for top cell in tandem solar cells with suitable engineering. A device modelling of Cs₂PtI₆ based all inorganic solar cell is provided using SCAPS-1D simulator. Different HTL and ETL inorganic materials are simulated. The selection of different ETLs and HTLs is based on the good band alignment matching between them and the band edges LUMO and HOMO of Cs₂PtI₆ material. Based on the simulation results, Cu₂O HTL material has better performance than other HTL materials, therefore it is deemed as the best HTL material for Cs₂PtI₆ PSC. Different promising ETLs like CdS, IGZO, ZnSe and WS2 were simulated. WS2 as an ETL material shows better performance for the Cs₂PtI₆ PSC. Further device optimization is done on the device with Cu₂O HTL and WS₂ ETL. Different metal work functions are tested for the device simulation. Simulation results showed that the device reveals relatively high PCE with metal work function higher than

4.9 eV. The optimization is expanded to simulate different Cs₂PtI₆ absorber thickness. According to simulation, device with 400 nm absorber layer thickness has the better PCE. The doping concentration of 10^{20} cm⁻³ allows high performance of the device. The smaller values of defect density are essential for high performance device. The device has the best performance with defect density concentration of 1×10^{12} cm⁻³. The best possible efficiency of 17.2% for FTO/WS₂/Cs₂PtI₆ (400 nm)/Cu₂O/Carbon can be achieved. The results can guide for more investigation and optimization of lead free all inorganic perovskite solar cell.

Declarations

Author contribution statement

Hadeer H. AbdElAziz: Performed the experiments; Analyzed and interpreted the data; Wrote the paper.

Mohamed Taha, Laila Saad: Conceived and designed the experiments; Analyzed and interpreted the data.

Waleed M.A. El Rouby, M.H. Khedr: Contributed reagents, materials, analysis tools or data; Revised the paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data availability statement

Data included in article/supp. material/referenced in article.

Declaration of interest's statement

The authors declare no conflict of interest

Additional information

Supplementary content related to this article has been published online at https://doi.org/10.1016/j.heliyon.2022.e10808.

Acknowledgements

The authors would like to thank Prof. Dr. Marc Burgelman, University of Gent, Belgium, for providing the SCAPS-1D simulation software.

References

- [1] T.M. Letcher, in: T.M.B.T.-M.G.W. Letcher (Ed.), 1 Why Do We Have Global Warming?, Academic Press, 2019, pp. 3–15.
- [2] S. Shafiee, E. Topal, When will fossil fuel reserves be diminished? Energy Pol. 37 (1) (2009) 181–189.
- [3] M. Höök, X. Tang, Depletion of fossil fuels and anthropogenic climate change—a review, Energy Pol. 52 (2013) 797–809.
- [4] Z. Zou, J. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature 414 (6864) (2001) 625–627.
- [5] T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev. 43 (22) (2014) 7520–7535.
- [6] M. Ou, et al., Amino-assisted anchoring of CsPbBr₃ perovskite quantum dots on porous g-C₃N₄ for enhanced photocatalytic CO₂ reduction, Angew. Chem. 130 (41) (2018) 13758–13762.
- [7] S. Wan, M. Ou, Q. Zhong, X. Wang, Perovskite-type CsPbBr₃ quantum dots/UiO-66(NH₂) nanojunction as efficient visible-light-driven photocatalyst for CO₂ reduction, Chem. Eng. J. 358 (2019) 1287–1295.
- [8] M.K. Gangishetty, Solar Energy Harvesting for Photovoltaic Cells and Photocatalysis, 2017. Saskatchewan.
- [9] W. Wang, M.O. Tadé, Z. Shao, Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment, Chem. Soc. Rev. 44 (15) (2015) 5371–5408.
- [10] M. Singh, I. Sinha, Halide perovskite-based photocatalysis systems for solar-driven fuel generation, Sol. Energy 208 (June) (2020) 296–311.

- [11] S.Z. Islam, A. Reed, D.Y. Kim, S.E. Rankin, N₂/Ar plasma induced doping of ordered mesoporous TiO₂ thin films for visible light active photocatalysis, Microporous Mesoporous Mater. 220 (2016) 120–128.
- [12] M. Moniruddin, et al., Recent progress on perovskite materials in photovoltaic and water splitting applications, Mater. Today Energy 7 (2018) 246–259.
- [13] Q. Tai, K.C. Tang, F. Yan, Recent progress of inorganic perovskite solar cells, Energy Environ. Sci. 12 (8) (2019) 2375–2405.
- [14] S. Nair, S.B. Patel, J.V. Gohel, Recent trends in efficiency-stability improvement in perovskite solar cells, Mater. Today Energy 17 (2020) 100449.
- [15] J.P. Jayaraman, M. Hamdan, M. Velpula, N.S. Kaisare, A.K. Chandiran, BiVO₄/ Cs₂PtI₆ vacancy-ordered halide perovskite heterojunction for panchromatic light harvesting and enhanced charge separation in photoelectrochemical water oxidation, ACS Appl. Mater. Interfaces 13 (14) (2021) 16267–16278.
- [16] M. Hamdan, A.K. Chandiran, Cs₂PtI₆ halide perovskite is stable to air, moisture, and extreme pH: application to photoelectrochemical solar water oxidation, Angew. Chem. Int. Ed. 59 (37) (2020) 16033–16038.
- [17] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (17) (May 2009) 6050–6051.
- [18] M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Solar cell efficiency tables (version 57), Prog. Photovoltaics Res. Appl. 29 (1) (2021) 3–15.
- [19] M.B. Faheem, et al., All-inorganic perovskite solar cells: energetics, key challenges, and strategies toward commercialization, ACS Energy Lett. 5 (1) (2020) 290–320.
- [20] T. Ghrib, et al., A New Lead Free Double perovskites K₂Ti(Cl/Bt)₆; A promising materials for optoelectronic and transport properties; Probed by DFT, Mater. Chem. Phys. 264 (2021).
- [21] U.G. Jong, C.J. Yu, Y.H. Kye, Computational prediction of structural, electronic, and optical properties and phase stability of double perovskites K₂SnX₆ (X = I, Br, Cl), RSC Adv. 10 (1) (2019) 201–209.
- [22] M. Huma, et al., Physical properties of lead-free double perovskites A₂SnI₆ (A= Cs, Rb) using ab-initio calculations for solar cell applications, Mater. Sci. Semicond. Process. 121 (July 2020) (2021) 105313.
- [23] Q. Mahmood, et al., Optoelectronic and thermoelectric properties of double perovskite Rb₂PtX⁶ (X = Cl, Br) for energy harvesting: first-principles investigations, J. Phys. Chem. Solid. 148 (April 2020) 2021.
- [24] T. Miyasaka, A. Kulkarni, G.M. Kim, S. Öz, A.K. Jena, Perovskite solar cells: can we go organic-free, lead-free, and dopant-free? Adv. Energy Mater. 10 (13) (Apr. 2020) 1902500.
- [25] J. Shi, Y. Wang, Y. Zhao, Inorganic CsPbI₃ perovskites toward high-efficiency photovoltaics, Energy Environ. Mater. 2 (2) (2019) 73–78.
- [26] L. Lin, et al., Simulated development and optimized performance of CsPbI₃ based all-inorganic perovskite solar cells, Sol. Energy 198 (January) (2020) 454–460.
- [27] B. Yu, et al., Efficient (>20 %) and stable All-inorganic cesium lead triiodide solar cell enabled by thiocyanate molten salts, Angew. Chem. Int. Ed. 523808 (2021) 13436–13443.
- [28] B. Wu, et al., Long minority-carrier diffusion length and low surface-recombination velocity in inorganic lead-free CsSnI₃ perovskite crystal for solar cells, Adv. Funct. Mater. 27 (7) (2017).
- [29] X. Qiu, et al., From unstable CsSnI₃ to air-stable Cs₂SnI₆: a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient, Sol. Energy Mater. Sol. Cell. 159 (2017) 227–234.
- [30] F.J. Amaya Suazo, S. Shaji, D.A. Avellaneda, J.A. Aguilar-Martínez, B. Krishnan, Solar cell using spray casted Cs₂SnI₆ perovskite thin films on chemical bath deposited CdS yielding high open circuit voltage, Sol. Energy 207 (March) (2020) 486–495.
- [31] B. Lee, et al., Solution processing of air-stable molecular semiconducting iodosalts, Cs₂SnI₆-: XBrx, for potential solar cell applications, Sustain. Energy Fuels 1 (4) (2017) 710–724.
- [32] E. Kristallstrukturen, O. Hexaiodoplatinates, I.V.M. Pti, Über Hexaiodoplatinate(IV) M₂PtI₆ (M = K, Rb, Cs, NH₄, TI) - Darstellungsverfahren, Eigenschaften und Kristallstrukturen, Z. Naturforsch. B Chem. Sci. 38 (8) (1983) 905–910.
- [33] S. Yang, et al., Novel lead-free material Cs₂PtI₆ with narrow bandgap and ultrastability for its photovoltaic application, ACS Appl. Mater. Interfaces 12 (40) (2020) 44700–44709.
- [34] D. Schwartz, et al., Air stable, high-efficiency, Pt-based halide perovskite solar cells with long carrier lifetimes, Phys. Status Solidi Rapid Res. Lett. 14 (8) (2020) 1–8.
- [35] F. Brivio, C. Caetano, A. Walsh, Thermodynamic origin of photoinstability in the CH₃NH₃Pb(I_{1-x}Brx)₃ hybrid halide perovskite alloy, J. Phys. Chem. Lett. 7 (6) (2016) 1083–1087.
- [36] L. Atourki, et al., Effect of doping on the phase stability and photophysical properties of CsPbI₂Br perovskite thin films, RSC Adv. 11 (3) (2021) 1440–1449.
- [37] I. Ornelas-Cruz, et al., DFT-based study of the bulk tin mixed-halide CsSnI₃-xBrx perovskite, Comput. Mater. Sci. 178 (March) (2020) 109619.
- [38] M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells, Thin Solid Films 361 (2000) 527–532.
- [39] M. Burgelman, K. Decock, S. Kheli, A. Abass, Advanced electrical simulation of thin film solar cells, Thin Solid Films 535 (2013) 296–301.
- [40] A.T. Murray, J.M. Frost, C.H. Hendon, C.D. Molloy, D.R. Carbery, A. Walsh, Modular design of SPIRO-OMeTAD analogues as hole transport materials in solar cells, Chem. Commun. 51 (43) (2015) 8935–8938.
- [41] Z.K. Yu, et al., Solution-processed CuOx as an efficient hole-extraction layer for inverted planar heterojunction perovskite solar cells, Chin. Chem. Lett. 28 (1) (2017) 13–18.
- [42] W.Y. Chen, et al., Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells, J. Mater. Chem. 3 (38) (2015) 19353–19359.

- [43] W.W. Li, W.W. Li, Y. Feng, C. Yang, Numerical analysis of the back interface for high efficiency wide band gap chalcopyrite solar cells, Sol. Energy 180 (December 2018) (2019) 207.
- [44] F. Azri, M. Labed, A.F.M.F. Meftah, N. Sengouga, A.F.M.F. Meftah, Optical characterization of a-IGZO thin film for simulation of a-IGZO(n)/μ-Si(p) heterojunction solar cell, Opt. Quant. Electron. 48 (8) (2016) 1–16.
- [45] X. Li, et al., Low-temperature solution-processed ZnSe electron transport layer for efficient planar perovskite solar cells with negligible hysteresis and improved photostability, ACS Nano 12 (6) (Jun. 2018) 5605–5614.
- [46] K. Sobayel, et al., A comprehensive defect study of tungsten disulfide (WS₂) as electron transport layer in perovskite solar cells by numerical simulation, Results Phys. 12 (December 2018) (2019) 1097–1103.
- [47] D. Sinram, C. Brendel, B. Krebs, Hexa-iodoanions of titanium, zirconium, hafnium, palladium and platinum: preparation, properties and crystal structures of the caesium salts, Inorg. Chim. Acta. 64 (1982) L131–L132.
- [48] M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64 (4) (1992) 1045–1097.
- [49] R.O. Jones, O. Gunnarsson, The density functional formalism, its applications and prospects, Rev. Mod. Phys. 61 (3) (Jul. 1989) 689–746.
- [50] D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45 (7) (1980) 566–569.
- [51] J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23 (10) (1981) 5048–5079.
- [52] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18) (1996) 3865–3868.
- [53] J.P. Perdew, K. Burke, M. Ernzerhof, Perdew, Burke, and Ernzerhof Reply, Phys. Rev. Lett. 80 (4) (1998) 891.
- [54] J.P. Perdew, et al., Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100 (13) (2008) 2–6.
- [55] Z. Wu, R.E. Cohen, More accurate generalized gradient approximation for solids, Phys. Rev. B Condens. Matter 73 (23) (2006).
- [56] J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electrongas correlation energy, Phys. Rev. B 45 (23) (Jun. 1992) 13244–13249.
- [57] M.A. Butler, D.S. Ginley, Prediction of flatband potentials at semiconductorelectrolyte interfaces from atomic electronegativities, J. Electrochem. Soc. 125 (2) (1978) 228–232.
- [58] H. Hotop, W.C. Lineberger, Binding energies in atomic negative ions, J. Phys. Chem. Ref. Data 4 (3) (Jul. 1975) 539–576.
- [59] F.A. White, Mass Spectrometry in Science and Technology, John Wiley & Sons, Inc., New York, 1968.
- [60] F. Sun, P. Wang, Z. Yi, M. Wark, J. Yang, X. Wang, Construction of strontium tantalate homo-semiconductor composite photocatalysts with a tunable type II junction structure for overall water splitting, Catal. Sci. Technol. 8 (12) (2018) 3025–3033.
- [61] A.N. Corpus-Mendoza, P.M. Moreno-Romero, H. Hu, Evaluation of mulliken electronegativity on CH₃NH₃PbI₃ hybrid perovskite as a thought-provoking activity, J. Chem. Educ. 96 (5) (2019) 974–978.
- [62] S.R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, N. p., United States, 1980.
- [63] M.A. Butler, D.S. Ginley, Prediction of flatband potentials at semiconductorelectrolyte interfaces from atomic electronegativities, J. Electrochem. Soc. 125 (2) (1978) 228–232.

- [64] A. Ferrari, L. Coghi, On the existence of hexahalogenoaurates, Gazz. Chim. Ital. 71 (1941) 440–441.
- [65] F. Yakuphanoglu, M. Sekerci, O.F. Ozturk, The determination of the optical constants of cu(ii) compound having 1-chloro-2,3-o-cyclohexylidinepropane thin film, Opt Commun. 239 (4–6) (2004) 275–280.
- [66] W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys. 32 (3) (Mar. 1961) 510–519.
- [67] S. Rühle, Tabulated values of the Shockley-Queisser limit for single junction solar cells, Sol. Energy 130 (2016) 139–147.
- [68] L.I. Nykyruy, R.S. Yavorskyi, Z.R. Zapukhlyak, G. Wisz, P. Potera, Evaluation of CdS/CdTe thin film solar cells: SCAPS thickness simulation and analysis of optical properties, Opt Mater (Amst) 92 (December 2018) (2019) 319–329.
- [69] A.A. Kanoun, M.B. Kanoun, A.E. Merad, S. Goumri-Said, Toward development of high-performance perovskite solar cells based on CH₃NH₃Gel₃ using computational approach, Sol. Energy 182 (June 2018) (2019) 237–244.
- [70] X. Gu, Y. Li, Y. Mu, M. Zhang, T. Lu, P. Wang, FeCl₃ as a low-cost and efficient ptype dopant of Spiro-OMeTAD for high performance perovskite solar cells, RSC Adv. 8 (17) (2018) 9409–9413.
- [71] S. Abdullahi, et al., Optical characterization of fluorine doped tin oxide deposited by spray pyrolysis technique and annealed in open air, Int. J. Recent Res. Phys. Chem. Sci. (JJRRPCS) 1 (2) (2015) 1–7.
- [72] N. Lakhdar, A. Hima, Electron transport material effect on performance of perovskite solar cells based on CH₃NH₃Gel₃, Opt. Mater. 99 (2020), 109517.
- [73] M.I. Hossain, F.H. Alharbi, N. Tabet, Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells, Sol. Energy 120 (2015) 370–380.
- [74] J. Adeyemi Owolabi, M. Yusuf Onimisi, J. Amuchi Ukwenya, A. Bulus Bature, U. Raphael Ushiekpan, Investigating the effect of ZnSe (ETM) and Cu₂O (HTM) on absorber layer on the performance of pervoskite solar cell using SCAPS-1D, Am. J. Phys. Appl. 8 (1) (2020) 8.
- [75] F. Azri, M. Labed, A.F. Meftah, N. Sengouga, A.M. Meftah, Optical characterization of a-IGZO thin film for simulation of a-IGZO(n)/μ-Si(p) heterojunction solar cell, Opt. Quant. Electron. 48 (8) (2016) 1–16.
- [76] E.W.J. Mitchell, J.W. Mitchell, N.F. Mott, The work functions of copper, silver and aluminium, Proc. Roy. Soc. Lond. Math. Phys. Sci. 210 (1100) (Dec. 1951) 70.
 [77] A.W. Dweydari, C.H.B. Mee, Work function measurements on (100) and (110)
- [77] A.W. Dweydari, C.H.B. Mee, Work function measurements on (100) and (110) surfaces of silver, Phys. Status Solidi 27 (1) (Jan. 1975) 223–230.
- [78] P.A. Anderson, A new technique for preparing monocrystalline metal surfaces for work function study. The work function of Ag(100), Phys. Rev. 59 (12) (1941) 1034–1041.
- [79] M. Shiraishi, M. Ata, Work function of carbon nanotubes, Carbon N Y 39 (12) (2001) 1913–1917.
- [80] C. Li, et al., Effect of the work function of gate electrode on hysteresis characteristics of organic thin-film transistors with Ta₂O₅/polymer as gate insulator, Org. Electron. 10 (5) (2009) 948–953.
- [81] E. Stratakis, K. Savva, D. Konios, C. Petridis, E. Kymakis, Improving the efficiency of organic photovoltaics by tuning the work function of graphene oxide hole transporting layers, Nanoscale 6 (12) (2014) 6925–6931.
- [82] A.S. Chouhan, N.P. Jasti, S. Avasthi, Effect of interface defect density on performance of perovskite solar cell: correlation of simulation and experiment, Mater. Lett. 221 (2018) 150–153.