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The central nervous system is responsible for an array of cognitive functions such

as memory, learning, language, and attention. These processes tend to take place

in distinct brain regions; yet, they need to be integrated to give rise to adaptive

or meaningful behavior. Since cognitive processes result from underlying cellular and

molecular changes, genomics and transcriptomics assays have been applied to human

and animal models to understand such events. Nevertheless, genes and RNAs are not

the end products of most biological functions. In order to gain further insights toward

the understanding of brain processes, the field of proteomics has been of increasing

importance in the past years. Advancements in liquid chromatography-tandem

mass spectrometry (LC-MS/MS) have enabled the identification and quantification of

thousands of proteins with high accuracy and sensitivity, fostering a revolution in

the neurosciences. Herein, we review the molecular bases of explicit memory in the

hippocampus. We outline the principles of mass spectrometry (MS)-based proteomics,

highlighting the use of this analytical tool to study memory formation. In addition, we

discuss MS-based targeted approaches as the future of protein analysis.

l
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INTRODUCTION

Memory is one of the most important components of cognition and it refers to the capacity to store
and retrieve new information about the physical world (Kandel et al., 2014). Memory emerged very
early in the evolutionary history of the nervous system, and has played a central role in helping
organisms to adapt and survive the challenges faced in their environments (Emes et al., 2008; Ryan
and Grant, 2009). This cognitive process has reached one of its most complex forms in humans,
where deficits can have devastating consequences for the individual. In Alzheimer disease, for
example, the build-up of misfolded proteins in the brain disrupts the connectivity between nerve
cells, leading tomemory impairments and dementia (Ross and Poirier, 2004;Musunuri et al., 2014).
In Huntington’s disease, the expansion of a CAG triplet in the huntingtin gene leads to motor
abnormalities and cognitive decline such as memory loss (Paulsen, 2011). As a result, memory
has been the focus of intensive investigation in different research fields such as neurobiology,
psychology, and anthropology (Zola-Morgan et al., 1986; Rempel-Clower et al., 1996; Tronson and
Taylor, 2007).

The first scientific studies attempting to understand the cellular and molecular basis of memory
formation date back to the earliest neuroscientists like Santiago Ramón y Cajal, who formulated
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the idea that information storage occurs by the physical
rearrangement in the connections between nerve cells (Mayford
et al., 2012; Bailey et al., 2015). To this day, a plethora of studies
in organisms ranging from the nematode Caenorhabditis elegans
to humans have established that this postulation is correct; hence,
Ramón y Cajal’s hypothesis has been used as a major conceptual
framework for the understanding of memory formation (Rongo
and Kaplan, 1999; Tsai et al., 2005; Cooke and Bliss, 2006;
Groszer et al., 2008). However, a complete comprehension of the
mechanisms underlying information storage is still lacking, since
(1) we do not know all the molecular processes that happen at the
synapses and (2) how they are related to one another.

Several techniques have been employed to address such
questions (Tsien et al., 1996b; Wang et al., 2003; Boyden et al.,
2005; Whitlock et al., 2006; Grover et al., 2009; Zheng et al.,
2015). For instance, restricted gene knockout, which consists in
the deletion of a gene by homologous recombination in a specific
region or tissue, has been extensively used in the past few years
(Gu et al., 1994; Li et al., 1994; Tsien, 2016). One common type of
restricted gene knockout exploits the Cre/loxP system, where the
bacteriophage P1 enzymeCre recombinase catalyzes homologous
recombination between the loxP recognition sequences (Tsien
et al., 1996a). In a typical experiment, a line of mice having
a gene of interest flanked by the loxP sequences is generated.
Next, a second line of transgenic mice is created, where the Cre
recombinase is expressed under the control of a neural promoter
sequence that is activated only in specific brain regions. By
crossing the two lines of animals, the targeted gene will be deleted
in those cells that express the Cre recombinase (McHugh et al.,
1996; Gong et al., 2007; Taniguchi et al., 2011). Because this
system is restricted to a particular tissue and region, it became
a powerful tool to investigate the underlying mechanisms of
memory formation. Nevertheless, this assay tends to be extremely
laborious, expensive and confined to a specific sequence of
interest.

Recently, high-resolution mass spectrometry (MS) has
emerged as an alternative to classical assays such as restricted
gene knockout. MS has a high-throughput capability and
can identify thousands of proteins and their post-translational
modifications (PTMs) in a single experiment (Low et al., 2013;
Lin et al., 2015). Notably, the power of this analytical tool has
been used to identify novel proteins that participate in important
cellular activities and disease states (Old et al., 2005; de Godoy
et al., 2008; Azimifar et al., 2014; Tyanova et al., 2016). In
this review, we present an overview of the cellular processes
responsible for memory formation in the hippocampus. In
addition, we highlight how MS-based approaches can be used to
study the molecular processes encompassing memory formation.

MOLECULAR BASIS OF EXPLICIT
MEMORY

Memory has always been of great interest to the scientific
community. Early studies on animal models and patients with
lesions on specific brain regions revealed that this cognitive
function is not an unitary cerebral faculty, but can be organized

into at least two general forms: implicit and explicit memory
(Barco et al., 2006; Kandel, 2012). Implicit or non-declarative
memory stores information that does not rely on conscious effort,
like habits and motor skills (Lynch, 2004). This type of memory
has been widely studied on the marine mollusk Aplysia califorica,
and, in mammals, many neural structures have been associated
with it, such as the amygdala, the cerebellum, and reflex pathways
(Barzilai et al., 1989; Hawkins et al., 2006; Voss and Paller, 2008).
Explicit or declarative memory, on the other hand, deals with the
storage and recall of knowledge about facts and events, which
depend on conscious awareness. Here, the main neural substrates
are the neocortex and the hippocampus (Eichenbaum, 2000;
Kandel, 2001).

The hippocampus, a seahorse-shaped structure located in the
medial temporal lobe of the vertebrate brain, has long been used
as a model system to understand the mechanisms of explicit
memory formation (Bliss and Collingridge, 1993; Moser et al.,
1993; Whitlock et al., 2006). It can be anatomically divided into
three distinct regions: the dentate gyrus (DG), the hippocampus
proper—composed of the CA1, CA2, and CA3 areas—and the
subiculum (Strange et al., 2014). Each of these sections harbors
different populations of cells that communicate through two
main pathways, namely the direct perforant pathway and the
trisynaptic circuit, also known as the indirect perforant pathway
(Kandel et al., 2012). The former transmits multimodal sensory
and spatial information directly from the entorhinal cortex
(EC) to the CA1 area, a major output of the hippocampus. By
contrast, in the trisynaptic circuit, information is sent from the
EC to the CA1 area following this route: EC–DG–CA3–CA1
(Figure 1) (Neves et al., 2008; Deng et al., 2010; Suh et al.,
2011). Experiments carried out in those distinct populations of
cells have demonstrated that they work as cellular engrams (i.e.,
cells that are the loci of information storage) (Ryan et al., 2015;
Tonegawa et al., 2015).

The molecular mechanisms underlying memory formation
only began to be comprehended after the discovery of long-term
potentiation (LTP), which is a form of experience-dependent
plasticity and is believed to be the major cellular correlate of
learning and memory (Govindarajan et al., 2011; Nabavi et al.,
2014). Induction of LTP occurs throughout the hippocampus
via distinct signaling cascades, which can differ greatly based on
the animal age and region of the hippocampus (Yasuda et al.,
2003; Malenka and Bear, 2004). N-methyl-D-aspartate (NMDA)-
dependent LTP is the best-characterized type of LTP (Lüscher and
Malenka, 2012). This type of LTP occurs at the major excitatory
synapses and follows the Hebbian model of neural selectivity,
which postulates that synaptic plasticity is dependent on the
simultaneous association of pre and postsynaptic neurons (Bi
and Poo, 2001; Lu et al., 2001). Furthermore, NMDA-dependent
LTP can be divided into two distinct phases: an early phase that
facilitates the transmission of action potentials and lasts from
minutes to hours, and a late phase, which is dependent on protein
synthesis and lasts from hours to a life time (Abel et al., 1997;
Govindarajan et al., 2011; Granger et al., 2013).

The early phase of NMDA-dependent LTP, also referred as
the induction phase, begins by the release of glutamate from
the presynaptic terminal into the synaptic cleft. Glutamate,
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FIGURE 1 | The two main pathways to the CA1 area of the hippocampus on the left, and early-phase NMDA dependent-LTP on the right. The red arrows

in the picture on the left show the trisynaptic circuit of the hippocampus, where multimodal sensory and spatial information coming from the entorhinal cortex (EC) is

relayed to the CA1 area following this route: EC–DG–CA3–CA1. In blue, we illustrated the direct perforant pathway, which directly connects the EC to the CA1 region.

On the picture in right, we show an illustration of the early-phase LTP. Here, (1) glutamate from the presynaptic neuron is released into the synaptic cleft. (2) This

neurotransmitter reaches ionic channels of the postsynaptic cell causing depolarization of this neuron by the influx on sodium and calcium cations. (3) Calcium, in its

turn, activates CaMKII that (4) phosphorylates ionic channels in the PSDs and (5, 6) induces the addition of AMPA receptors to the postsynaptic membrane, increasing

synaptic efficiency.

the main excitatory neurotransmitter in the brain, diffuses
through the cleft and reaches the post-synaptic neuron, where
it binds to ligand-gated ion channels. The interaction between
the neurotransmitter and the ionotropic NMDA receptor results
in the influx of Ca2+ and Na+ into the cell (Schiller et al.,
1998; Dingledine et al., 1999; Castillo, 2012). The Na+ helps
to bring about a depolarization of the postsynaptic neuron
that last a few milliseconds, while the Ca2+ promotes the
activation of protein kinases such as calcium/calmodulin-
dependent protein kinase (CaMKII) (Lisman et al., 2012;
Lüscher and Malenka, 2012). CaMKII and other kinases prompt
the introduction of other ionotropic channels called α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptors into the postsynaptic density (PSD)—a structure
located in the tip of the dendritic spine of postsynaptic cells
composed of ionic receptors and a dense network of proteins
that regulate synapse strength (Hayashi et al., 2000; Chen et al.,
2008; Lu et al., 2010). This traffic of new AMPA receptors to
the membrane ultimately leads to an improvement in synaptic
communication (Figure 1).

If the activation of the pre and postsynaptic neurons
persists for longer periods of time—something that can also
be accomplished in vitro by repeated stimulation of the cells
by high frequency tetanus pulses of 100 Hz, a number of

signaling cascades are activated, leading to protein synthesis and
synapse rearrangement (Nguyen et al., 1994; Hölscher et al.,
1997; Ryan et al., 2015). This is known as the late phase
LTP, also called the expression phase. In this stage, the rise
in Ca2+ ions inside the cell, caused by the constant release
of glutamate by the presynaptic cell, induces the increase in
the production of cyclic adenosine monophosphate (cAMP) by
adenyl cyclase (Wong et al., 1999; Poser and Storm, 2001).
cAMP, in turn, activates protein kinase A (PKA) that switches
on mitogen activated protein kinase (MAPK) (Abel et al., 1997;
Roberson et al., 1999). This kinase is translocated to the nucleus
and phosphorylates cAMP response element binding protein 1
(CREB-1), an important transcription factor (Viola et al., 2000;
Patterson et al., 2001). The phosphorylation activates CREB-1,
resulting in increased transcription of a number of target genes
and their subsequent translation into proteins responsible for the
formation of new synaptic connections (Figure 2) (Deisseroth
et al., 1996; Ahmed and Frey, 2005; Benito and Barco, 2010).

The signaling pathways outlined above provide a broad
understanding about the order and timing of molecular events
governing the early and late phase of NMDA-dependent LTP.
However, this model lacks information about regulatory changes
that might be occurring translationally and post-translationally.
In addition, this picture only focuses on a limited number
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FIGURE 2 | Late-phase NMDA dependent-LTP. In this stage, (1, 2) Ca2+ ions inside the cell recruit adenyl cyclase to produce cAMP. (3, 4) Cyclic adenosine

monophosphate, in turn, activates PKA that switches on MAPK. (5) This kinase is translocated to the nucleus and phosphorylates CREB-1, an important transcription

factor. (6, 7) The phosphorylation activates CREB-1, resulting in increased transcription of a number of target genes and their subsequent translation into proteins

responsible for the formation of new synaptic connections.

of molecular players and little or no information on their
stoichiometry is known. In the next sections, we describe the
use of mass spectrometry-based proteomics as a tool to help to
elucidate those questions.

MASS SPECTROMETRY (MS)-BASED
PROTEOMICS

Proteomics is a system-wide analysis of the proteins expressed
in a specific cell, tissue, or organism at a given time (Anderson
and Anderson, 1996; Zhang et al., 2013). Although the term
proteomics relates to the use of any technology that seeks
to interrogate a large number of proteins, it is nowadays
used to refer to works where the central platform is mass
spectrometry. Currently, the gold standard strategy in MS-based
proteomics is shotgun proteomics (Mann and Kelleher, 2008;
Domon and Aebersold, 2010). Here, a complex mixture of
proteins is digested into peptides with a protease of interest,
usually trypsin, which cleaves on the C-terminal side of lysine
and arginine. Subsequently, the peptides are separated online

by reverse-phase liquid chromatography (LC) and analyzed by
mass spectrometers such as quadrupole/time-of-flight (QTOF),
ion trap (IT), orbitrap (OT), or ion cyclotron resonance (ICR)
(Marshall et al., 1998; Michalski et al., 2011; Thakur et al., 2011;
Beck et al., 2015).

In a typical shotgun experiment, the LC-MS/MS run takes
up to 120 min and is composed of thousands of cycles, each
one made of a MS1 scan—also known as a full scan—that
measures the peptides’ mass to charge ratio (m/z) and intensity,
and a MS2 or MS/MS scan. During the MS2 scan, the 20 most
intense peptides in each cycle are fragmented in a collision cell,
usually filled with an inert gas such as nitrogen or helium, and
their spectra are again measured to obtain sequence information
(Geiger et al., 2011; Thakur et al., 2011). Once acquired,
the LC-MS/MS data are used in searches against databases
containing peptides digested in silico to identify the proteins
present in the sample(s) (Figure 3) (Sadygov et al., 2004).

In addition to protein identification, mass spectrometry can be
used to extract quantitative information from samples. Protein
quantification can be absolute, if known amounts of a heavy
analog of the analyte of interest is added prior to the analysis in
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FIGURE 3 | Workflow of the gold standard strategy in shotgun proteomics. Here, peptides are separated online in a reverse-phase liquid chromatography and

electrosprayed into the mass analyzer. The mass spectrometer measures the peptides’ m/z and intensity in the MS1 cycle. Upon fragmentation, the product ions of

each peptide are reanalyzed to obtain sequence information of the analyte in the MS2 cycle. Once this experimental data is acquired, information is searched against

a database of the organism of interest to identify the proteins in the sample.

a mass spectrometer, or relative, if samples in different states are
compared (e.g., brain tissue from rodents trained in a behavioral
paradigm vs. controls) (Kettenbach et al., 2011; Bantscheff et al.,
2012). The most popular strategies for relative quantification are
label-free, metabolic labeling, and chemical labeling (Figure 4).

In label-free quantification, as the name suggests, no label is
added to the samples, which are digested and run individually
in the mass spectrometer—being the results computationally
combined after the acquisition of the data (Filiou et al., 2012). In
this strategy, quantification takes advantage of the area plotted
over time for each ion as it elutes from the chromatographic
column. Later, this extracted ion chromatogram (XIC) is aligned
across different samples, and a ratio for each peptide is obtained.
Another mode of quantification in label-free experiments is
spectrum counting. Here, quantification is based on the number
a particular peptide is fragmented during a LC-MS/MS run,
which serves as a proxy for abundance and can be compared
between conditions (Bantscheff et al., 2007; Hernández et al.,
2012). Label-free is regarded as the least accurate strategy of
relative quantification, but it has gained momentum due to
its low cost, improvements in sample handling, refinement of
the chromatographic setup, and development of software for
accurate data analysis (Ong and Mann, 2005; Altelaar and Heck,
2012).

By contrast, in metabolic labeling, prior to protein extraction
at least one of the conditions is labeled with a heavy stable isotope
such as 15N or heavy amino acids such as lysine, arginine, or
both (Ong, 2002; Rauniyar et al., 2013). The use of a heavy
analog prevents the variation usually encountered in label-free
experiments, since the samples are mixed, digested and analyzed
simultaneously in the LC-MS/MS run. This can be accomplished
because heavy (labeled) and light (non-labeled) peptides retain
the same physicochemical properties (e.g., retention time during
the LC), but a mass shift between them enables their distinction
latter in the data analysis. The only exception to this rule is
deuterium (2H), which is more hydrophilic than hydrogen; this
creates a delay in the retention time between the labeled and
non-labeled conditions (Yi et al., 2005). Here, as it is also the case
in label-free experiments, quantification is acquired by the peak
area ratios of the heavy and light peptides in the XIC (Ong, 2002;
Bantscheff et al., 2007).

Even though metabolic labeling is the most accurate relative
quantification strategy, it has a restricted capacity to multiplexing

due to the limitation on the isotopes that can be added to
an amino acid and the increase in sample complexity in the
MS1 (Hebert et al., 2013). Chemical labeling, in its turn, is able
to circumvent those limitations. To this day, many chemical
labeling reagents have been developed, but the most used are
isotope-coded affinity tags (iCAT), tandemmass tags (TMT), and
isobaric tags for relative and absolute quantification (iTRAQ)
(Gygi et al., 1999; Thompson et al., 2003; Ross, 2004). iCAT,
which labels samples at the protein level, uses the tags that are
composed of a reactive group that binds to reduced cysteine
residues, a linker group that incorporates isotopes in the heavy
reagent, and a biotin affinity group for the isolation of the iCAT-
labeled peptides. In a typical experiment using iCAT, the reagent
labels protein samples at two different conditions (the light
and heavy version of the tags), which are then mixed together
and enzymatically cleaved. Next, the peptides with the tags are
enriched by avidin affinity chromatography and analyzed in a
LC-MS/MS run. Here, quantification is obtained by the peak area
ratios of the heavy and light peptides (Yi et al., 2005).

iCAT possesses the same limitation in multiplexing as
metabolic labeling, yet iTRAQ and TMT enables from 8 to 10
samples, respectively, to be analyzed in a single experiment.
iTRAQ and TMT are isobaric tags that label analytes at the
peptide level. Their tags are composed of a reactive group that
binds to the N-terminal of peptides and lysine residues, a balance
group—which ensures that the same peptides in the different
conditions elute together and are indistinguishable in the MS1
scan—and a reporter group. Unlike other quantitative strategies,
quantification on iTRAQ and TMT is based on the intensity
signal of the reporter group that is released from the analytes
upon fragmentation in a collision cell. Nevertheless, chemical
labeling also has limitations and some considerations have to be
taken to get around these drawbacks (For in depth information
on iTRAQ and TMT strategies see Bantscheff et al., 2008; Karp
et al., 2010; Ting et al., 2011; Wenger et al., 2011).

PROTEOMIC STUDIES OF MEMORY

The shotgun quantitative strategies described above have
fostered a revolution in many fields of biology such as cancer,
immunology, and neuroscience by improving our understanding
of the systemic cellular response of stimulated or disease states
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FIGURE 4 | Different strategies to quantify peptides. In label free experiments, samples are digested and ran separately in a mass spectrometer; they are

combined only in the data analysis. In metabolic labeling, on its turn, one of the conditions is grown in medium containing amino acids labeled with heavy isotopes or

heavy nitrogen. Here, the samples are combined very early, and sample handling and analysis are done concomitantly. Lastly, in chemical labeling, tags are

incorporated at the protein level, as is the case of iCAT, or at the peptide level with iTRAQ and TMT. In these strategies, the samples are combined early in the

workflow of the experiment without increasing the complexity of the samples in the MS1, since the tags of iTRAQ and TMT are isobaric—being distinguished only

upon fragmentation in a collision cell.

vs. control (Krüger et al., 2008; Dahlhaus et al., 2011; Geiger
et al., 2012; Boersema et al., 2013; Meissner and Mann, 2014;
Nascimento and Martins-de-Souza, 2015). Yet, when it comes to
the proteomic study of memory, very few MS-based experiments
have been carried out so far. Some authors believe that such
discrepancy is due to the difficulty to characterize proteins that
are genuinely associated with this cognitive process due to high
biological variability among individuals within areas related to
memory such as the hippocampus (Dieterich and Kreutz, 2015).
Nevertheless, this explanation falls short, since transcriptomics

assays to investigate memory have been conducted before with
success (Ponomarev et al., 2010; Bero et al., 2014).

In addition, two recent proteomic studies have demonstrated
that those kinds of experiments are feasible. In the first one,
Borovok et al. used a radial arm maze (RAM) paradigm
to understand the process of memory consolidation in the
hippocampus of mice (Borovok et al., 2016). In summary, the
RAM behavioral task works as follows: a central circular chamber
is connected to eight long arms, which are open to the animal
upon the removal of a guillotine door. In the end of four of the
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arms, for example, visual clues are set to mark where the food are
placed. During the experiment, the animals are positioned in the
central chamber and learn to associate the visual clues to where
the baits are (Götz and Ittner, 2008). Hence, using this paradigm,
Borovok and colleagues extracted proteins at different time
points during the learning period and quantified those samples
by the label-free strategy. They showed the protein abundance
profiles during spatial memory formation in the hippocampus,
and demonstrated a clear correlation between temporal memory
formation and proteins belonging to specific functional groups
using gene ontology and signaling pathways analysis.

In the other study, Rao-Ruiz et al. used contextual fear
conditioning to understand membrane protein dynamics of mice
at 1 and 4 h after training (Rao-Ruiz et al., 2015). Contextual
fear conditioning is a form of associative learning, which works
as this: mice are placed inside a chamber with a stainless steel
grid floor, so that a foot shock can be administered after the mice
have explored the box (called delayed-shock paradigm) or as soon
as the animal has been placed into the cage (called immediate-
shock paradigm) (Rao-Ruiz et al., 2011). Using both training
protocols, in addition to untrained control mice, Rao-Ruiz et al.,
2015 compared the groups using iTRAQ at 1 and 4 h after
conditioning. They found no difference in protein abundance
between the experimental groups at 1 h after training; however,
164 proteins in the delayed-shock group and 273 proteins in
the immediate-shock group exhibited different abundances at
the 4 h time point. Functional protein group analysis of those
analytes were carried out, which showed that the most prominent
proteins are linked to endocytosis, glutamate signaling and
neurotransmitter metabolism (For other proteomic studies on
memory see Henninger et al., 2007; Piccoli et al., 2007; Freeman
et al., 2009; Zheng et al., 2009; Rosenegger et al., 2010; Li et al.,
2011; Monopoli et al., 2011; Kähne et al., 2012; Monje et al., 2012;
Lee et al., 2013; Matsuura et al., 2013; Trinidad et al., 2013; Végh
et al., 2014; Zhang et al., 2014).

TARGETED PROTEOMICS

The shotgun strategy has been considered the gold standard
approach to identify and quantify proteins in complex proteomes
(Aebersold and Mann, 2003; Smith et al., 2013). However, this
discovery-based method has inherently poor reproducibility due
to its stochastic selection of parent ions and its modest dynamic

range, which renders the information acquired incomplete or
biased toward a subset of proteins (Domon and Aebersold,
2006). These drawbacks have lead to the maintenance of
immunochemical assays such as antibody arrays and ELISA—
techniques that quantitatively measure a small set of targets with
high accuracy and reproducibility—very popular in the scientific
community (Edwards et al., 2011). However, advancements
in targeted proteomic approaches such as selected reaction
monitoring (SRM), also known as multiple reaction monitoring
(MRM), will likely change this scenario (Picotti et al., 2013).

Selected reaction monitoring (SRM) is a strategy that dates
back to the development of quadrupole mass analyzers (Yost
and Enke, 1979). However, only in the last few years this
method has reached its full potential as a high precision
analytical tool (Kuhn et al., 2004). As in shotgun proteomics,
SRM uses peptides as surrogates to protein identification and
quantification, but this approach is not a discovery assay. SRM is
a hypothesis-driven strategy like other classical techniques, and
prior information about the analytes being interrogated need to
be known, regardless if its sources are from previous discovery
experiments, proteomic data repositories such as PeptideAtlas
and PRIDE or predicted by using computational algorithms
(Deutsch et al., 2008; Jones et al., 2008; Lange et al., 2008; Gallien
et al., 2011; Picotti and Aebersold, 2012).

The classical SRM experiment is carried out in triple
quadrupole instruments, where the three analyzers are aligned in
tandem. The first and third mass analyzers, also known as Q1
and Q3, respectively, function as ion filters, selecting only the
analytes with a specific m/z value. The second quadrupole (Q2),
on the other hand, is used as a collision cell to fragment the parent
ions selected in the Q1; the combination of parent ion and its
fragments is called a “transition” (Figure 5) (Gallien et al., 2011).
In addition, such experiments usually use an isotopic-labeled
internal analog for all the peptides under investigation. This
confers SRM assays quality control for the sample preparation
procedures as well as compensation for discrepancies that can
arise through ion suppression and spray instability (Brun et al.,
2007; Carr et al., 2014). Quantification per-se is obtained through
the peak area ratios of the transition ions from the endogenous
peptide and its heavy analog (Brun et al., 2007).

Those features confer targeted proteomics with the high
accuracy and reproducibility usually required in the biological
and clinical sciences. A number of recent studies have

FIGURE 5 | Selected reaction monitoring (SRM) pipeline. In a typical SRM experiment, a triple quadrupole instrument is used. Here, the first and third mass

analyzers, also known as Q1 and Q3, respectively, function as ion filters, selecting only the analytes with a specific m/z value at a predetermined retention time. The

second quadrupole (Q2), in its turn, works as a collision cell to fragment the parent ions selected in the Q1. In this strategy, quantification per-se is obtained through

the peak area ratios of the transition ions from an endogenous peptide and a reference analog.
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taken advantage of the power of SRM to provide a deeper
understanding of mechanisms and structures related to memory
(Munton et al., 2007; Trinidad et al., 2013; Lowenthal et al.,
2015). For example, Cheng et al. compared purified postsynaptic
densities of the forebrain and cerebellum (Cheng et al., 2006).
Employing the ICAT strategy, they identified 43 proteins
displaying statistically significant abundance change between the
PSDs and monitored 32 of them using synthetic isotopic-labeled
analogs in a SRM pipeline. Measuring their molar abundances,
Cheng et al. demonstrated that these postsynaptic regions possess
unexpected stoichiometric differences, something that might also
be true to hippocampal PSDs.

CONCLUSION

The study of the molecular mechanisms of memory is an
area of great interest to the scientific community, where the
first studies date back to Santiago Ramón y Cajal and the
experimental psychologists such as the behaviorists (Moser et al.,
2015). Nonetheless, much of the work carried out until the
present time has concentrated in the use of classical methods
of molecular biology, genetics, and biochemistry, which target
a limited number of analytes, and are time consuming and
laborious. On that account, we have a restricted understanding
about the processes that happen in the brain cells and how they
are related to one another during memory formation (Dieterich
and Kreutz, 2015).

Shotgun and targeted proteomics approaches might be able to
speed up this process. Discovery proteomics allows thousands
of proteins, including PTMs such as phosphorylation, to be
identified and quantified in a single experiment (Wu et al.,
2011; Weekes et al., 2014; Humphrey et al., 2015; Peshkin
et al., 2015; Sharma et al., 2015; Wühr et al., 2015). The
SRM strategy, on its turn, is able to determine with high
accuracy and reproducibility the stoichiometry of proteins in a
sample, multiplexing up to 100 peptides per experiment (Kuhn
et al., 2011; Ebhardt et al., 2015). Moreover, as the number of
discovery experiments increase, improving our understanding
of the molecular players involved in memory formation, more
accurate measurements will be required to develop models to
understand how proteins work together. Hence, we expect that
soon targeted proteomics will become the flagship of MS-based
proteomics.
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