
44  |   	﻿�  CPT Pharmacometrics Syst Pharmacol. 2022;11:44–54.www.psp-journal.com

Received: 26 September 2021  |  Revised: 26 September 2021  |  Accepted: 1 October 2021

DOI: 10.1002/psp4.12732  

A R T I C L E

Pharmacometric analysis of seasonal influenza epidemics 
and the effect of vaccination using sentinel surveillance 
data

Yuki Otani1,2  |   Hidefumi Kasai1  |   Yusuke Tanigawara1

This is an open access article under the terms of the Creat​ive Commo​ns Attri​butio​n NonCo​mmercial License, which permits use, distribution and reproduction in any 
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and 
Therapeutics.

1Laboratory of Pharmacometrics and 
Systems Pharmacology, Keio Frontier 
Research and Education Collaboration 
Square at Tonomachi, Kanagawa, Japan
2Keio University Graduate School of 
Medicine, Tokyo, Japan

Correspondence
Yusuke Tanigawara, Laboratory 
of Pharmacometrics and Systems 
Pharmacology, Keio Frontier Research 
and Education Collaboration Square 
(K-FRECS) at Tonomachi, Keio 
University, Research Gate Building 
TONOMACHI 2-A, 3-25-10 Tonomachi, 
Kawasaki-ku, Kawasaki, Kanagawa 
210-0821, Japan.
Email: tanigawara@keio.jp

Funding information
No funding was received for this work.

Abstract
The identification of influenza epidemics and assessment of the efficacy of vac-
cination against this infection are major challenges for the implementation of 
effective public health strategies, such as vaccination programs. In this study, we 
developed a new pharmacometric model to evaluate the efficacy of vaccination 
based on infection surveillance data from the 2010/2011 to 2018/2019 influenza 
seasons in Japan. A novel susceptible-infected-removed plus vaccination model, 
based on an indirect response structure with the effect of vaccination, was applied 
to describe seasonal influenza epidemics using a preseasonal collection of data 
regarding serological H1 antibody titer positivity and the fraction of virus strains. 
Using this model, we evaluated Kin (a parameter describing the transmission rate 
of symptomatic influenza infection) for different age groups. Furthermore, we 
defined a new parameter (prevention factor) showing the efficacy of vaccination 
against each viral strain and in different age groups. We found that the prevention 
factor of vaccination against influenza varied among age groups. Notably, chil-
dren aged 5–14 years showed the highest Kin value during the 10 influenza sea-
sons and the greatest preventive effect of vaccination (prevention factor = 70.8%). 
The propagation of influenza epidemics varies in different age groups. Children 
aged 5–14 years most likely play a leading role in the transmission of influenza. 
Prioritized vaccination in this age group may be the most effective strategy for 
reducing the prevalence of influenza in the community.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
A traditional susceptible-infected-removed (SIR) model using sentinel surveil-
lance data has been applied to the analysis of influenza epidemics and the effect 
of preventive measures, such as social distancing. However, quantitative analysis 
has not been performed.
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INTRODUCTION

Seasonal influenza is a respiratory infectious disease 
caused by the influenza virus, which is associated with 
significant morbidity and mortality and poses a great 
threat to public health. In Japan, the annual prevalence 
of seasonal influenza is >10%.1 Considering its extensive 
effect on the community, the National Epidemiological 
Surveillance of Infectious Diseases (NESID) program 
(under Infectious Disease Control Law executed in 1999) 
listed seasonal influenza as a target illness.2 Moreover, 
specific medical facilities (termed influenza sentinel sites) 
are required to report the weekly number of cases to the 
public health center. The weekly sentinel surveillance 
data are based on medically attended influenza cases, 
mostly diagnosed microbiologically through a rapid influ-
enza diagnostic test (RIDT).

The sentinel surveillance data for influenza (free-
access, real-world surveillance data) are widely available 
worldwide.3–5 Previous studies developed risk assessment 
models using these epidemiological surveillance data. 
The models were mainly focused on the (1) prediction 
of future influenza activity and (2) evaluation of the ef-
fect of preventive measures (e.g., respiratory protective 
device, handwashing, social distancing, and vaccination) 
and treatment interventions (e.g., antiviral treatment). 
Stochastic (probabilistic) and deterministic (compartmen-
tal) models are the most common epidemiological model-
ing techniques.6 Deterministic models have been widely 
used for the construction of respiratory disease trans-
mission models; the susceptible-infected-removed (SIR) 
and susceptible-exposed-infected-removed models are 
the most notable.7,8 This SIR model has also been exten-
sively in physical sciences literature to explain influenza 
dynamics9–11 by coupling the changes in the population 

of susceptible (S), the population of infection cases (I), 
and the population of recovery to an immune state (R).12 
Although numerous previous studies investigated the 
transmission and prevention of influenza using the SIR 
and related models, a major knowledge gap remains with 
regard to the effect of preventive measures and treatment 
interventions.13–15

The World Health Organization recommends vacci-
nation against seasonal influenza as the most effective 
approach to preventing infection and severe outcomes 
caused by the virus.16 However, the effect of vaccina-
tion varies between age groups. In 2019, the Centers for 
Disease Control and Prevention (CDC) conducted a meta-
analysis of the 2018/2019 season data, when the strain had 
been predicted accurately a priori. The results showed that 
vaccination against influenza was effective in preventing 
medically attended, laboratory-confirmed infection in 60% 
(95% confidence interval [CI], 43%–71%) of children aged 
<17 years compared with 37% (95% CI, 9%–56%) and 24% 
(95% CI, −15% to 51%) in those aged 18–49 and ≥50 years, 
respectively.17

Most developed countries have implemented vacci-
nation policies for seasonal influenza, targeting older in-
dividuals and those at higher risk of disease.18 However, 
the epidemics of influenza in the total population may 
be mainly driven by children; consequently, the United 
Kingdom introduced universal vaccination for children 
since 2013.19–24

Considering the experience and observations noted 
thus far, a quantitative evaluation of the effect of vac-
cination against influenza with a particular focus on 
age is urgently warranted. Interpreting the incidence 
data of medically attended influenza with respect to the 
weekly time course is analogous to the nature of data 
on the dose concentration–effect relationship in clinical 

WHAT QUESTION DID THIS STUDY ADDRESS?
Can we evaluate the efficacy of vaccination for seasonal influenza over different 
strains of virus using a quantitative modeling approach? Which age group is the 
most important in the preventive strategy for seasonal influenza?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
An incorporation of a pharmacometric modeling approach to the epidemiologi-
cal data was done to address the dynamics of influenza infection and effect of 
vaccination. During the 2010–2019 seasons, children aged 5–14 years showed the 
highest transmission rate of influenza and preventive effect of vaccination.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
By using the current SIR plus vaccination model, we quantitatively analyzed the 
transmission of influenza and the efficacy of treatment modalities (e.g., vaccine). This 
may lead to more effective strategies for preventing the rapid transmission of seasonal 
influenza and contribute to decision-making in infection control and public health.
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pharmacology. In addition, the SIR and related models 
can be quantitatively revised using pharmacometric mod-
eling techniques. In this study, we incorporated a phar-
macometric approach using the SIR framework to create 
a novel SIR plus vaccination (SIR + V) model for Tokyo, 
Japan, based on the sentinel surveillance data collected by 
the NESID. The parameters of the developed model were 
related to the basic reproductive number (R0), a widely ac-
cepted measure of transmissibility of the virus, for each 
influenza season.25 Using this model, we evaluated the 
efficacy of vaccination against seasonal influenza using 
local epidemiological and virological data, focusing on the 
effect of age.

METHODS

Symptomatic influenza population 
surveillance and virological data

In Japan, the Infectious Disease Surveillance Center of 
the National Institute of Infectious Diseases (NIID) is 
notified by prefectural public health institutes regard-
ing the number of cases of infectious diseases. The num-
ber of patients diagnosed with symptomatic influenza 
population (SIP) is determined on a weekly basis from 
>400 sentinel sites in Tokyo. The data are aggregated by 
means of SIP cases per sentinel (CPS) population diag-
nosed with RIDT at the NIID into the weekly total num-
ber based on the national and prefectural numbers of 
cases.26 The surveillance data are published on the web-
site of the Infectious Disease Weekly Report.1 In Japan, 
the aggregated SIP CPS data comprise cases mostly diag-
nosed microbiologically using a RIDT. The SIP CPS are 
the combined data of multiple influenza virus strains 
diagnosed with RIDT with a sensitivity of 73%–86% and 
a specificity of 97%–100%27; thus, the SIP CPS numbers 
are an appropriate proxy for the total number of symp-
tomatic influenza cases.

In this study, the influenza season ranged from week 36 
in September each year up to week 35 in August of the fol-
lowing year according to the structure of data in the NESID. 
Considering the importance of the pandemic influenza A 
H1N1/09 virus (type A/H1pdm09) strain discovered in 2009, 
data obtained before 2009 were excluded from the analy-
sis.28 Moreover, data collected after 2019 were also excluded 
because of the extraordinary decrease in the influenza epi-
demic influenced by the concurrent COVID-19 pandemic, 
which arose in January 2020, complicating the mathemat-
ical modeling.29 Therefore, we used the SIP CPS data from 
week 36 of 2010 to week 35 of 2019, covering a total of 10 
influenza seasons (Figure S1). The NIID also reports viro-
logical test results weekly as well as the absolute number 

and types of influenza strains.30 These data were used to 
estimate the prevalence of each strain per season.

Age-stratified data collection for virus  
strain population and viral 
antibody positivity

For each of the 10 seasons of the study, age-stratified data 
of influenza virus strains and the fraction of H1 antibody 
positivity were obtained from the NIID data set.30,31 Using 
these data, we were able to determine the isolated influ-
enza virus strain proportion per season (VirusFrac)30 
and age-stratified proportion of seropositive H1 antibody 
titer per influenza virus strain per season (PositiveAb).31 
We considered four age groups accordingly to com-
pare the age group representation in the Morbidity and 
Mortality Weekly Report (MMWR) from the CDC17: infants 
(≤4 years), children and adolescents (5–14 years), adults 
(15–69  years), and elderly adults (≥70  years) (Figure 
S2). The MMWR data used to calculate the vaccination 
effect were separated into the following three  groups: 
6 months–14 years, 15–49 years, and 50 years and older. 
The Japanese surveillance data in the NIID are composed 
of 5-year increments until age 20 and 10-year increments 
until age 70, and the rest are summed as 70  years and 
older. The pediatric populations were divided to focus on 
the differences of social relationship dependence, and the 
elderly adult population was represented by the 70 years 
and older group as a pure elderly age population in a lon-
gevity country.

Pharmacometric modeling for SIP CPS

The pharmacometric model applied to the present study 
aimed to calculate the change in SIP CPS over time using 
the following pharmacometric model:

A(t) accounts for the patients potentially becoming SIP 
CPS (i.e., potential SIP CPS [PSIP CPS]) and B(t) is equiv-
alent to SIP CPS. Kin (1/week) accounts for the transmis-
sion rate from A(t) to B(t) and is dependent on B(t). Kout 
(1/week) defines the elimination of B(t). To set the initial 
condition in the dB(t)/dt equation, we assumed that at the 

dA (t)

dt
= − Kin × A (t)

dB(t)

dt
= Kin × A (t) − Kout × B (t)

Kin = Slope × B (t)
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beginning of the epidemic, a small fraction of individu-
als in each age group were in B(t), whereas the remaining 
individuals were in A(t). Therefore, the very beginning 
of A(t) is initialized to “A0” and after Tlag (week), which 
is the interval time until the onset of the epidemic. B(t) 
is initialized to “Baseline,” where “A0” is estimated from 
the data and “Baseline” was arbitrarily fixed to the low-
est possible measured value, which was 0.01 in this study. 
A0, Slope, and Tlag were unknown parameters to be esti-
mated. The random effects of inter-seasonal variability on 
A0, Slope, and Tlag were described using an exponential 
error model.

Because the fundamental model structure is equivalent 
to that of the SIR model, we tested three different resid-
ual error models (i.e., additive, proportional, and com-
bined additive–proportional) as a base structural model. 
Model selection was guided by plausible parameter esti-
mates, precision of the parameters, visual diagnostics, and 
the minimum objective function value (OFV) calculated 
as proportional to minus twice the log-likelihood. A re-
duction in OFV ≥3.84 denoted significant improvement 
(p < 0.05) in model description. Based on the significant 
and lowest OFV value, as well as adequate model param-
eters and visual diagnostics, the indirect response model 
equivalent to the SIR model with the combined additive–
proportional error model was selected as the most appro-
priate structure.

Determination of the covariate model to 
determine the virus strain and effect of 
vaccination

Clinical factors were screened as potential covariates that 
could affect SIP CPS using a stepwise covariate modeling 
approach with forward selection (p < 0.05) and backward 
elimination (p < 0.01). Potential factors were the fractions 
of isolated influenza virus strain per season (VirusFraci) 
and seropositive H1 antibody titer per influenza virus 
strain (PositiveAbi). Influenza virus strains are divided 
into four  major types (types A to D) and types A and B 
are the major influenza virus types that cause seasonal 
epidemic of the disease. Influenza A virus is subdivided 
based on the following two proteins on the surface of 
the virus: hemagglutinin (HA) and neuraminidase (NA). 
Although there are potentially 198 different influenza A 
subtype combinations, viruses that routinely circulate are 
A/H1pdm09 and A/H3N2. Influenza B is not divided into 
subtypes but classified into the following two lineages: B/
Victoria and B/Yamagata. Therefore, we chose four major 
strains (i = 1: A/H1pdm09; i = 2: A/H3N2; i = 3: B/Victoria; 
i = 4: B/Yamagata) as the circulating strains included in 
the study in the 10 influenza seasons in Japan.

Because the vaccine against seasonal influenza is not 
completely effective, only a proportion of the vaccinated 
population was assumed to be protected. We assumed that 
the effect of vaccination on each circulating strain can be 
described as multiplication of VirusFraci and PositiveAbi 
with an exponent of �virusi for each strain. We defined a 
new parameter as follows:

where VirusFraci represents the proportion of the i-th type 
of virus found in each influenza season (

∑4
1 VirusFraci = 1) , 

PositiveAbi represents the proportion of seropositive H1 an-
tibody titer for the i-th type of virus (0 ≤ PositiveAbi ≤1), and 
θvirusi accounts for the effect of vaccination against the i-th 
type of the virus.

To assess the preventive effect of vaccination, we inves-
tigated two models from the possible mechanism of action: 
the preventive inhibitory effect on Kin and the stimulated 
recovery effect on Kout. The preventive inhibitory effect on 
Kin is self-explanatory from the nature of the vaccine to 
prevent from infection. Concerning the stimulated recov-
ery effect on Kout, a recent study explained the mechanism 
of B cell immune response induction with influenza vac-
cination through HA, NA, and M2 protein upregulation.32 
B cell immune response stimulates apoptosis of infected 
cells, which results in decreasing the influenza symptom-
atic patient number. This is equivalent to the stimulated 
recovery effect on Kout.

Univariate analysis revealed that both models were 
statistically significant, and the preventive inhibitory ef-
fect model was superior to the stimulated recovery effect 
model. However, when both effects were simultaneously 
implemented in the model, the model did not reach statis-
tical significance compared with the preventive inhibitory 
effect model alone. Therefore, we selected the preventive 
inhibitory effect model to describe the preventive effect. 
The following is the final model (Figure 1):

Preventive effect =
∑4

1
(VirusFraci× (1−PositiveAbi))

�virusi ,

dA (t)

dt
= − Kin × A (t)

dB(t)

dt
= Kin × A (t) − Kout × B (t)

Kin = Slope × B (t) × Preventive effect

Preventive effect =

⎧
⎪⎪⎨⎪⎪⎩

�
VirusFrac1× (1−PositiveAb1

�
)�virus1

+
�
VirusFrac2× (1−PositiveAb2

�
)�virus2

+ (VirusFrac3×
�
1−PositiveAb3

�
)�virus3

+
�
VirusFrac4× (1− PositiveAb4

�
)�virus4

⎫⎪⎪⎬⎪⎪⎭
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Because VirusFraci × (1 − PositiveAbi) is in the range of 
zero to unity, and θvirusi indicates the inhibitory effect exerted 
by vaccination on Kin. We compared the estimates of θvirusi 
to quantitatively evaluate the effect on each virus strain.

Model evaluation

Goodness-of-fit plots were used to evaluate the model. 
The stability and performance of the final model was 
investigated by a nonparametric bootstrap analysis. The 
final model was refitted to each of the randomly sampled 
replicates of the original data one at a time; this process 

was repeated 500 times with different random draws. The 
means, standard errors, and 95% confidence intervals 
(CIs) for the parameters were obtained. The model was 
further validated using an external data set of a different 
prefecture in Japan (Hokkaido) and the parameter esti-
mates obtained by the data obtained in Tokyo.

Susceptibility according to age

The estimation of differences in susceptibility based on 
the age was conducted by calculating parameters shown 
for each age group. Differences in Kin observed in vari-
ous age groups represent the variability in the likelihood 
of influenza infection among the corresponding age 
groups. Hence, a higher Kin value indicates larger relative 

Slope ≥ 0 ,
∑4

1
VirusFraci = 1, 0 ≤ PositiveAbi ≤ 1

F I G U R E  1   The modeling diagram of the spread of influenza in Tokyo, Japan, and the effect of vaccination on the spread of patients 
with symptomatic influenza. Final model: dA(t)

dt
= − Kin × A (t), dB(t)

dt
= Kin × A (t) − Kout × B (t) , Kin = Slope × B (t) × Preventive effect, 

Preventive effect =

⎧
⎪⎪⎨⎪⎪⎩

�
VirusFrac1× (1− PositiveAb1

�
)�virus1

+
�
VirusFrac2× (1− PositiveAb2

�
)�virus2

+
�
VirusFrac3×

�
1−PositiveAb3

���virus3
+
�
VirusFrac4× (1− PositiveAb4

�
)�virus4

⎫
⎪⎪⎬⎪⎪⎭

 , Slope ≥ 0,
∑4

1 VirusFraci = 1, 0 ≤ PositiveAbi ≤ 1.A(t) denotes potential 

symptomatic influenza population cases per sentinel (PSIP CPS; patients with a positive rapid influenza diagnostic test [RIDT] without any 
symptoms). B(t) denotes symptomatic influenza population cases per sentinel (SIP CPS). VirusFraci denotes the fraction of the i-th virus. Kin 
denotes the transmission rate from A(t) to B(t). Kout denotes the elimination rate of B(t). PositiveAbi denotes the fraction of the positive antibody 
titer in i-th virus. �inhibidenotes the inhibitory effect caused by flu vaccination on the i-th virus. In Japan, the cumulative infection rate in the 
total population is approximately 10%.2 This population is defined as the total infected population. Seasonal influenza results in asymptomatic 
and subclinical (i.e., with symptoms not diagnostic for influenza, such as being afebrile) infection with moderately high probability. There is 
approximately 30% chance for those who actually consult a doctor to have a positive RIDT.41 This population is defined as the potential 
symptomatic influenza population (PSIP). This population was divided into sentinel in Tokyo (PSIP CPS A(t)). In this model, PSIP CPS and SIP 
CPS were connected with a rate constant Kin. Following the recovery of a patient, we assume that the person will remain immune (i.e., will not 
return back to A(t) or B(t)) for the rest of that influenza season). The B(t) represents observed (dependent) values obtained from the original 
National Epidemiological Surveillance of Infectious Diseases data set. In addition to this structural model, we assumed that the preventive 
effect for each circulating strain can be written as multiplication of the fraction of the i-th virus (VirusFraci) and fraction of positive antibody 
titer in the i-th virus (PositiveAbi), with the inhibitory effect caused by vaccination against influenza (�inhib) as an exponent
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impact on the basic reproduction number (R0) of the epi-
demic,33,34 corresponding to the peak incidence in the 
community.

Calculation of prevention factor

We defined the preventive effect as the following:

There are four different virus subtypes in the source data. 
Thus, we calculated the preventive effect against each of those 
subtypes in the following two scenarios: (1) PositiveAbi was 
substituted by 1 assuming 100% antibody titer positivity in the 
allotted i-th virus subtype (Scenario Ai) and (2) PositiveAbi 
was substituted by 0, assuming 0% antibody titer positivity in 
the allotted virus subtype (Scenario Bi). Subsequently, using 
the preventive effect, we further defined the prevention factor 
for the i-th virus subtype in the following:

The four different scenarios for calculation were as 
follows:

100% antibody titer positivity for the A/H1pdm09 strain 
(PositiveAb1 = 1). (Versus Scenario B1: PositiveAb1 = 0)

100% antibody titer positivity for the A/H3N2  strain 
(PositiveAb2 = 1). (Versus Scenario B2: PositiveAb2 = 0)

100% antibody titer positivity for the B/Victoria strain 
(PositiveAb3 = 1). (Versus Scenario B3: PositiveAb3 = 0)

100% antibody titer positivity for the B/Yamagata strain 
(PositiveAb4 = 1). (Versus Scenario B4: PositiveAb4 = 0)

Of note, in the calculation of the preventive effect for 
the i-th virus subtype, the other PositiveAbj values for 
the j-th subtype (j ≠ i), were fixed to the estimated val-
ues. Calculation of the prevention factor for each sub-
type allowed us to estimate the relative inhibitory effect 
of vaccination, which prevented infection by each strain 
during the influenza epidemics. The same calculation was 
performed for different age groups to estimate the age-
dependent inhibitory effect of the vaccination against the 
A/H1pdm09 strain.

R0 estimation

The R0 in the SIR model is described as follows16:

N accounts for the total influenza-susceptible popula-
tion, β defines the disease transmission rate constant, and 
1/ɣ denotes the mean infectious period; ɣ > 0 is the recov-
ery rate.35 Typically, R0 is a threshold value determining the 
potency of the disease. The mean R0 of seasonal influenza 
in three countries (United States, France, and Australia) 
was 1.3 (range, 0.9–2.1),36 whereas the R0 range for the 2009 
H1N1 influenza infection in Japan was 2.0–2.4.37 The pres-
ent pharmacometric model is related to the original SIR 
model, and both parameters can be associated as follows:

Therefore, the R0 can be expressed using the following 
formula:

We calculated the R0 using this equation and the ob-
tained parameter estimates.

Software

The pharmacometric analysis for SIP CPS was per-
formed using the Phoenix NLME software Version 8.1 
(Certara) with a Hewlett-Packard Z640 workstation (Intel 
Xeon E5 processor, 2.60 GHz, 28 cores). The First-Order 
Conditional Estimation Extended Least Squares computa-
tional algorithm was used.

RESULTS

Evaluation of the final model

Table 1 summarizes the characteristics of seasonal in-
fluenza epidemics from 2010/2011 to 2018/2019, esti-
mated using the present pharmacometric model. The 

Preventive effect =

⎧
⎪⎪⎨⎪⎪⎩

�
VirusFrac1× (1−PositiveAb1

�
)�virus1

+
�
VirusFrac2× (1−PositiveAb2

�
)�virus2

+
�
VirusFrac3×

�
1−PositiveAb3

���virus3
+
�
VirusFrac4× (1−PositiveAb4

�
)�virus4

⎫⎪⎪⎬⎪⎪⎭

Prevention factor = 100% × (1 −
Preventive effect in ScenarioAi

Preventive effect in ScenarioBi
)

R0 =
�N

�

� = Slope

�I (t) = Kin⋯transmissionof influenza infection

N = A0

� = Kout

R0 =
Slope × A0

Kout
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developed model accurately reproduced the detailed 
epidemiological patterns of observed surveillance data, 
and the model fitting was confirmed by goodness-of-fit 
plots (Figure S3). The stability and robustness of the 
obtained parameters were confirmed using a bootstrap 
method. A total of 486/500 bootstrap runs reached suc-
cessful convergence, and the ratios of the bootstrap 
mean/final estimate were within an acceptable range 
(Table  1). The estimated mean of Tlag (week) was 
16.51  weeks, and the standard deviation for the inter-
seasonal variability of Tlag (ωTlag) was 3.36  weeks. 
The interseasonal variability of Tlag indicated that the 
onset of each of the influenza seasons differed annually, 
rendering the uniform comparison between prediction 
and observation for all seasons challenging. Therefore, 

individual prediction and individual weighted residuals 
were selected for comparison (Figure S3).

Across 10 seasons, it was estimated that the baseline PSIP 
CPS was 540.9 (= A0), which was slightly lower than that 
expected from the estimation in Figure 1. The estimated in-
terval until the onset of the epidemic was 16.51 weeks. This 
was compatible with the previously reported onset of the 
epidemic (mean, 15.2 weeks) based on the empirical thresh-
old method. According to this method, a weekly number of 
influenza-like illness CPS exceeding the prespecified thresh-
old of 1.0 for 3 consecutive weeks denotes an epidemic.38

The same model and parameter estimates shown in 
Table 1 were used to predict the SIP CPS of Hokkaido, Japan, 
as an external evaluation. The goodness-of-fit plots (Figure S4) 
showed good agreement with the observed SIP CPS data set.

T A B L E  1   Parameter estimates from the SIR + V model

Parameter (units) Estimate

Bootstrap

ShrinkageMean SE
95% CI (2.5th percentile, 
97.5th percentile)

�Kout (/week) 0.1786 0.1789 0.02180 0.1239, 0.2256

�Tlag (week) 16.51 16.06 2.305 9.854, 20.12

�VirusA/H1pdm09 1.794 1.815 0.1168 1.594, 2.100

�VirusA/H3N2 1.797 1.821 0.1389 1.533, 2.132

�VirusB/Victoria 1.921 1.939 0.1349 1.657, 2.216

�VirusB/Yamagata 1.917 1.935 0.1348 1.672, 2.272

�A0 (PSIP CPS baseline) 540.91 558.86 86.94 412.52, 794.60

�Slope 0.5475 0.5659 0.07983 0.4208, 0.7855

�prop 0.6244 0.5379 0.1188 0.3207, 0.7450

�add 0.1317 0.1244 0.01517 0.08560, 0.1490

�2Kout 9.291 9.460 1.131 0.6919

�2Tlag 11.30 11.46 1.363 0.7683

�2�VirusA/H1pdm09 4.401 4.513 0.5658 0.8647

�2�VirusA/H3N2 4.364 4.466 0.5546 0.8515

�2A0 10.65 10.89 1.370 0.5707

�2Slope 9.145 9.395 1.272 0.8207

Note: Final model: dA(t)
dt

= − Kin × A (t) ,dB(t)
dt

= Kin × A (t) − Kout × B (t)

Kin = Slope × B (t) × Preventive effect

Preventive effect =

⎧⎪⎪⎨⎪⎪⎩

�
VirusFrac1× (1−PositiveAb1

�
)�virus1

+
�
VirusFrac2× (1−PositiveAb2

�
)�virus2

+
�
VirusFrac3×

�
1−PositiveAb3

���virus3
+
�
VirusFrac4× (1−PositiveAb4

�
)�virus4

⎫⎪⎪⎬⎪⎪⎭∑4
1 VirusFraci = 1, Slope ≥ 0, 0 ≤ PositiveAbi ≤ 1

Abbreviations: A/H1pdm09, pandemic influenza A H1N1/09 virus; A/H3N2, influenza A H3N2 virus; A(t), PSIP CPS according to time; baseline, the beginning 
of B(t); B(t), Symptomatic Influenza Patients Cases Per Sentinel (SIP CPS) according to time; CI, confidence interval; Kin (1/week), the spreading rate from A(t) 
to B(t) and is dependent on B(t); Kout (1/week), the elimination of B(t); PositiveAbi, the proportion of seropositive H1 antibody titer for the i-th (i = 1,2,3,4) type 
of virus (0 ≤ PositiveAbi ≤ 1 ); PSIP CPS, Potential Symptomatic Influenza Patients Case Per Sentinel (patients with a positive rapid influenza diagnostic test 
[RIDT] without any symptoms); SIR+V, Susceptible-Infected-Removed plus Vaccination; Slope, coefficient of Kin; Tlag (week), interval till the epidemic onset; 
VirusFraci, the proportion of the i-th (i = 1: A/H1pdm09, i = 2: A/H3N2, i = 3: B/Victoria, i = 4:B/Yamagata, respectively) type of virus found in each influenza 
season (

∑4
1 VirusFraci = 1); �virusi, the inhibitory effect caused by flu vaccination for the i-th (i = 1,2,3,4) type of virus; ω2, omega squared (variance); σ, sigma 

(standard deviation); σprop, σadd, standard deviations of proportional and additive error of the combined intraindividual error model, respectively.
The B(t) represents observed (dependent) values obtained from the original National Epidemiological Surveillance of Infectious Diseases data set.
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Virus strain effect

The θvirusi values of the five virus strains were similar 
(1.794–1.921) (Table  1). However, when the final model 
was compared with the model assuming commonly 
shared θvirusi value, the difference of OFV was 12.87. This 
accounted for p = 0.012 and resulted in significantly dif-
ferent θvirusi values in the final model. A significant dif-
ference in θvirusi value of 1.794 (A/H1pdm09: preventive 
effect, 0.169) and 1.921 (B/Victoria: preventive effect, 
0.144) was observed, which accounted for 0.025 difference 
in the preventive effect (0.169 and 0.144 for A/H1pdm09 
and B/Victoria, respectively). Therefore, slight signifi-
cance was observed in the effect of different virus strains 
on Kin; however, the magnitude of the effect was minimal.

Susceptibility according to age

Figure  2 provides the estimated Kin for four age groups 
(≤4 years, 5–14 years, 15–69 years, and ≥70 years) for 10 in-
fluenza season epidemics. We have performed a parametric 
normal test (Z test) between the highest Kin estimate group (5–
14 years) and the second highest Kin estimate group (≤4 years) 
using mean/standard error (SE). The p value of the Z test was 
<0.001, and therefore children aged 5–14 years showed the 
highest estimates of Kin among all age groups. Thus, this age 
group may be susceptible to influenza infection, causing a 
large increase in SIP CPS in the whole population.

Preventive efficacy of vaccination among 
different virus strains and age groups

Prevention factor of vaccination for four virus strains and 
different age groups were calculated (Tables 2 and 3). The 
highest and lowest values of the prevention factor were 
noted for influenza type A/H3N2  strain (82.7%, Table  2) 

and type B/Victoria strain (6.3%, Table  2), respectively. 
Within the A/H1pdm09  strain, the largest and smallest 
impact were observed in groups aged 5–14 years (70.8%) 
and 0–4 years (41.8%), respectively (Table 3).

Calculation of the R0

Table  4 presents the results of the R0  calculation. The 
calculated values for R0 ranged 1.29–3.87, indicating a R0 
> 1 in all previous 10 influenza seasons. The average R0 
was 2.12 ± 0.95, which was trending higher than those 
observed in three countries (United States, France, and 
Australia), with a mean value of 1.3 (range, 0.9–2.1).36 

F I G U R E  2   Estimate of the Kin mean for various age groups. 
The graph represents the mean Kin value of the population estimate 
in 10 influenza seasons (i.e., from 2010 to 2019) with its standard 
deviation. For epidemics associated with influenza A and B in total, 
children aged 5–14 years had the highest estimates of Kin among all 
age groups for the 10 influenza season epidemics. Kin, a parameter 
describing the transmission rate of symptomatic influenza infection

Virus type

0% Antibody titer 
(Scenario B)

100% Antibody titer 
(Scenario A)

Prevention 
factorb

Preventive effecta Preventive effecta

Mean SD Mean SD

A∕H1pdm09 0.272 0.144 0.119 0.088 56.1

A∕H3N2 0.389 0.186 0.067 0.072 82.7

B∕Victoria 0.176 0.075 0.165 0.074 6.3

B∕Yamagata 0.198 0.065 0.156 0.080 21.0
aPreventive effect =

∑4
i=1

�
VirusFraci×

�
1−PositiveAbi

���virusi.
b
Prevention factor(% ) = (1 − Prevention effect 100% (Scenario A)

Prevention effect 0% (Scenario B)
) × 100 .

T A B L E  2   Prevention factor according 
to antibody positivity per virus strain
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Nevertheless, it was highly compatible with the previously 
calculated R0 values for H1N1 seasonal influenza infection 
in Japan (range, 2.0–2.4).

DISCUSSION

In this study, a newly developed mathematical SIR + V 
model successfully described the patterns of influenza 
epidemics in addition to the quantification of the effi-
cacy of vaccination among different virus strains and age 
groups. This is the first model to achieve this objective. 
The model-based simulations in designated strains and 
age groups identified the most influential group for the 
transmission of influenza. Furthermore, we newly de-
rived converting formulas between our parameters (Kout, 
A0, and β) and traditional index (R0) for each influenza 
season. The calculation using our parameters matched 
the actual R0 values.

The relative impact of different age groups on influ-
enza epidemics was not fully elucidated. Furthermore, 
there is no clear understanding of the importance of age 
in the transmission of influenza virus and the mechanism 
through which vaccination may compensate for this in-
fluence. A previous study22 suggested that children aged 
5–17 years were at the highest relative risk for an influ-
enza A outbreak in the United States. Because Kin is re-
written as βI(t), which is equivalent to the transmission of 
infection in the SIR model, the relative changes in Kin in 
the present model and the prevention factor could reliably 
identify the age group and the key viral strain that plays 
the most important relative role in transmission during a 
particular epidemic. A key utility of Kin lies in the fact that 
it can be readily estimated from appropriate epidemic data 
(in our case, SIP CPS data) serving as a surrogate measure 
for age-specific differences in the incidence of influenza 
epidemics.

Moreover, even if groups differ in the proportion of 
incident cases of influenza infection and viral strain frac-
tions, the ordering of groups by Kin and prevention factor 
reflects the ordering of the proportional change in the in-
cidence of infection in these groups.

The present analysis indicates that for the past 10 in-
fluenza seasons, children and adolescents aged 5–14 years 
and elderly individuals aged ≥70  years had the highest 
and lowest Kin value, respectively. Although the data set 
did not provide insight into living environments, such as 
schools, this result is consistent with the notion supported 
by several studies.22,39,40 Therefore, children and adoles-
cents are most susceptible to influenza infection in the 
whole community.

Tables 2 and 3 show the estimated prevention factors 
of vaccination for four virus strains and different age 
groups. The findings revealed that the current vaccine is 
more effective against influenza type A. This is because 
type A was the dominant fraction of influenza virus for 
the past 10 seasons. In the 2018–2019 MMWR published 
by the CDC, the estimated fraction of prevention of 

A∕H1pdm09

0% Antibody titer 
(Scenario B)

100% Antibody titer 
(Scenario A)

Prevention 
factorbAge group, years

Preventive effecta Preventive effecta

Mean SD Mean SD

≤4 0.365 0.113 0.213 0.130 41.8

5–14 0.216 0.171 0.0629 0.0542 70.8

15–69 0.274 0.143 0.121 0.0931 55.8

≥70 0.289 0.150 0.136 0.116 52.9
aPreventive effect =

∑4
i=1

�
VirusFraci×

�
1−PositiveAbi

���virusi.
b
Prevention factor(% ) = (1 − Preventive effect 100% (Scenario A)

Preventive effect 0% (Scenario B)
× 100.

T A B L E  3   Prevention factor according 
to different age groups for influenza type 
A/H1pdm09

T A B L E  4   Seasonal estimation of basic reproduction number R0

Seasons R0

2010–2011 1.29

2011–2012 2.09

2012–2013 3.87

2013–2014 1.32

2014–2015 3.57

2015–2016 1.64

2016–2017 1.35

2017–2018 1.39

2018–2019 2.56

Average ± SD 2.12 ± 0.95

Note: R0 =
Slope×A0

Kout

Abbreviation: A0, Potential Symptomatic Influenza Population Cases Per 
Sentinel (PSIP CPS) baseline; Kout, the elimination rate of B(t) (Symptomatic 
Influenza Population Cases Per Sentinel (SIP CPS)); R0, basic reproduction 
number.
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positivity for A/H1pdm09 and A/H3N2 among the vacci-
nated population was 46% (95% CI, 30%–58%) and 44% 
(95% CI, 13%–64%), respectively. Information concerning 
the percentages of the vaccinated population and positive 
RIDT among patients who are symptomatic is essential to 
accurately calculate the efficacy of vaccination, as in the 
MMWR. However, by implementing the SIR + V model 
together with a new parameter, prevention factor, we were 
able to calculate the magnitude of the vaccination effect 
without requiring actual percentage data.

We sought to explore the role of a higher value of Kin in the 
SIP CPS data as a driver of influenza epidemics for a partic-
ular age group. We also attempted to determine the potential 
impact of increased vaccination efforts in a group with a high 
Kin on the dynamics of influenza transmission in the popula-
tion. For this purpose, we evaluated antibody titer positivity 
among different age groups. We found that, for epidemics as-
sociated with influenza A/H1pdm09, the group with the high-
est Kin value in the data also showed the highest prevention 
factor (Table 3, Figure 2). However, this correlation was not 
observed in the elderly possibly because of the relative high 
fraction of antibody positivity for the A/H1pdm09 virus.

It is uncertain to what extent the proposed simulation 
framework reflects the reality of influenza transmission 
in the community. Our primary aims using the simulation 
were to (1) examine the effect of vaccination against in-
fluenza on each viral strain, (2) investigate whether vac-
cination would be most effective in age groups with the 
highest Kin values, and (3) assume the relative effect size 
of the vaccination against influenza. The calculated value 
of the prevention factor depends on the fraction of each 
virus strain and the seropositivity data against influenza 
virus strains from the previous year. Therefore, the pre-
vention factor does not always indicate absolute values of 
actual efficacy. Because of the lack of direct comparison 
data of influenza infection between vaccinated and unvac-
cinated populations, such as the MMWR from the CDC, 
similar types of data are strongly warranted to ensure di-
rect comparisons of the efficacy of vaccination.17

The present method has some additional limitations. 
The model was based on single peaked influenza infec-
tion data. The 2019/2020 influenza SIP CPS graph in Japan 
showed two-peak observation data. The same multiple 
peak phenomena were also observed in other countries 
such as the United States, Canada, and Australia. In the 
2019/2020 season, the precedent influenza infection began 
with type AH1pdm09 infection followed by type B Victoria 
infection in many counties. The concurrent circulation of 
multiple subtypes of seasonal influenza infection possibly 
resulted in multiple peak infection. The current model is 
unable to describe the two-peak trends and requires fur-
ther refinement. Moreover, we have fixed the baseline ini-
tial transmission dynamic phase value to 0.01, the lowest 

measurable SIP CPS value, instead of estimating by an or-
dinary least squares method. This assumption of baseline 
initial transmission value did not alter the accuracy to eval-
uate the vaccination effect for each viral strain.

Despite these limitations, this analysis provides in-
sight into the dynamics of cross-seasonal influenza infec-
tion using the novel SIR + V model. The proposed model 
and simulation results revealed variability in the effect of 
vaccination among different virus strains and age groups 
during influenza epidemics. The present results indicate a 
critical role of vaccination to school-age children for the 
effective prevention of influenza transmission.
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