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Motivation: Microscopic images are widely used in basic biomedical research, disease diagnosis and med-
ical discovery. Obtaining high-quality in-focus microscopy images has been a cornerstone of the micro-
scopy. However, images obtained by microscopes are often out-of-focus, resulting in poor performance in
research and diagnosis.
Results: To solve the out-of-focus issue in microscopy, we developed a Cycle Generative Adversarial
Network (CycleGAN) based model and a multi-component weighted loss function. We train and test
our network in two self-collected datasets, namely Leishmania parasite dataset captured by a bright-
field microscope, and bovine pulmonary artery endothelial cells (BPAEC) captured by a confocal fluores-
cence microscope. In comparison to other GAN-based deblurring methods, the proposed model reached
state-of-the-art performance in correction. Another publicly available dataset, human cells dataset from
the Broad Bioimage Benchmark Collection is used for evaluating the generalization abilities of the model.
Our model showed excellent generalization capability, which could transfer to different types of micro-
scopic image datasets.
Availability and Implementation: Code and dataset are publicly available at: https://github.com/jiangdat/
COMI.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The microscopic imaging of cellular and subcellular structures
belongs among the most widely used techniques in biomedical
research and clinical diagnosis. With the improvements of imagery
hardware, the advent of super-resolution microscopy imaging pro-
vides more details and information for related biomedical research.
This led to a surge of interest in super-resolution microscopy tech-
niques, such as Structured Illumination Microscopy (SIM) [5],
Stochastic Optical Reconstruction Microscopy (STORM) [26], Photo
Activated Localization Microscopy (PALM) [1] and Stimulated
Emission Depletion (STED) Microscopy [4]. However, obtaining
high-quality in-focus microscopy images has been a cornerstone
of the microscopy [36]. Images obtained by microscopes are often
out-of-focus, resulting in poor performance in research and diag-
nosis. These low-quality images are usually degraded due to the
diffraction barrier, astigmatism, optical system or camera defects,
and the human error in sample preparation and image acquisition
[7]. Human operator mistakes and autofocus system errors lead to
low-quality out-of-focus, blurry microscopic images with worse
performance in scientific research and clinical diagnosis. Employing
deblurring algorithms in out-of-focusmicroscopic imageswill assist
pathologists in making a better diagnostic decision, and extend the
biological phenomena range observed by microscopy [24].

Various methods have been proposed for microscopic image
deblurring, including probabilistic model [28], L0-regularization
[30] and dark channel prior [22]. Furthermore, the computer-
assisted image processing approaches, such as the nearest neigh-
bor technique, inverse filtering and constrained iterative algorithm
[17,31,33], provide alternative to improve the quality of blurry
microscopic images. With the successful application of deep learn-
ing in biological analysis [3,10,16,35], convolutional neural net-
works (CNN) provide solutions for deblurring microscopic
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images, which circumvent the complicated pre-processing and
achieve better results. CNN can extract prior knowledge from
numerous high-resolution images and produces superior images
from a low-resolution counterpart based on the extracted high-
resolution prior knowledge. Specifically, Schuler et al. developed
a deep learning based image deblurring approach with stacked
multiple CNN [27]. However, the performance of this approach
drops in the case of large blur kernels. To avoid problems related
to blur kernel estimation, Nah et al. designed a multi-scale CNN
with a coarse-to-fine multi-scale loss function [20]. Furthermore,
the Recurrent Neural Network (RNN) is also implemented in the
image reconstruction. A scale RNNwith a simple network structure
and a small number of parameters was proposed to deblur the
image by utilizing multi-scale spatial information [29]. Zhang
et al. proposed a spatial variant RNN with weights generated by a
CNN to dynamically deblur image [34]. Persch et al. utilized an
image enhancement method which combined deconvolution,
denoising and inpainting for 3-D confocal based STED microscopy
imager [23]. Jin et al. applied U-Net to reconstruct the super-
resolution images from limited number of extreme low-light SIM
raw data, but this research lacks the exclusive design of the net-
work structure [11]. Huang et al. proposed a pure-hardware solu-
tion, whole-cell 4Pi single-molecule switching nanoscopy (W-
4PiSMSN), which can output ultra-high-resolution 3D image of
subcellular structure at 10 to 20 nm [8]. Rivenson et al. tried to
reconstruct a high magnification objective through a low magnifi-
cation objective to deblur low-resolution images [25]. This method
provides a new framework in holographic image reconstruction.
However, the limitation is that it was developed for phase recovery
of bright-field microscopy images. The microscopic features in
bright-field and fluorescence microscopes are dissimilar. There-
fore, employing trained neural network for phase recovery does
not align well with the use of fluorescence images.

Advances in the field of generative adversarial networks (GAN),
aiming to translate images from the source domain to the target
domain, have led to great success in image-to-image translation
[9,32,38,47]. Although GAN were originally not designed for micro-
scopic images, image deblurring can be considered a special
image-to-image translation, GAN can therefore be introduced into
image deblurring task [14,15]. Ouyang et al. implemented a GAN
method based on Pix2Pix to reconstruct high-quality super-
resolution images from sparse and rapidly acquired single-
molecule localization data and wide-field images [21]. GAN with
U-Net architecture for generator and Markovian for discriminator
achieves perceptually superior results on image deblurring, suggest-
ing that GAN-based deblurring models need to focus on global style
transfer and local texture synthesis simultaneously [18]. Combalia
et al. used CycleGAN to combine the confocal fluorescence micro-
scopy and reflectance confocal microscopy modes into a digitally
stained hematoxylin and eosin (H&E) slide [2]. Lim et al. proposed
a deep learning model for microscopic image blind deconvolution
based on cycle consistency and point spread function modeling lay-
ers [19]. Different from the above two work, we tried to correct the
out-of-focus microscopic images by establishing a CycleGAN-based
deblurring framework with multi-component weighted loss func-
tion. The proposed model shows superior performance and yield
sharper and more plausible textures compared to other GAN-based
classicmethods. Ourmain contributions are summarized as follows:

� We apply Cycle Generative Adversarial Network with a new
multi-component weighted loss function to solve the out-of-
focus issue in microscopy.

� Two self-collected datasets are used for model training and test-
ing, namely Leishmania parasite dataset captured by a bright-
field microscope and BPAEC dataset captured by a confocal flu-
orescence microscope.
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� We evaluate our trained model in another publicly available
out-of-focus microscopy image dataset and the result shows
that our model has excellent generalization capability.

2. Data collection and evaluation

2.1. Data collection

We collect two datasets for network training and testing, and
make them publicly available in Mendeley Data:

https://data.mendeley.com/datasets/m3jxgb54c9/4. The first data-
set is a protozoan parasite microscopy image dataset of Leishma-
nia, obtained from the preserved slides stained with Giemsa. The
paired blur-sharp images are acquired by employing a bright-
field microscope (Olympus IX53) with 100� magnification oil
immersion objectives (Fig. 1A). We first capture the sharp images
as ground truth, then acquire its corresponding out-of-focus
images. The extent and nature of defocusing are random along
the optical axis, where the degree of out-of-focus is inconsistent
from image-to-image. This dataset includes 764 in-focus and 764
corresponding out-of-focus images, where each image is composed
of 2304 � 1728 pixels in 24-bit JPG format.

The second dataset named bovine pulmonary artery endothelial
cells is collected by a confocal fluorescence microscope (high-
resolution confocal scanning microscope ZEISS-LSM880 incorpo-
rated with a Zyla sCMOS). ZEISS-LSM880 offers high sensitivity
and enhanced resolution in x-, y- and z-axis. The fluorescent signals
emitted by sampleswith different depths on the z-axis are captured.
The slides of mitochondria, actin and nuclei are stained by Mito-
Tracker� Red CMXRos, Alexa Fluor� 488 phalloidin, and blue-
fluorescent DNA stain (DAPI) individually. For each excitation line
(DAPI, Alexa Fluor� 488, and TxRed), a set of in-focus and out-of-
focus images are captured by using z-stack modular with a
100�/1.4-NA objective. The confocal z-stacking typically refers to
a series of images that were acquired at different locations in the
sample along the optical axis. Images acquired at the optimal focal
plane are seldom blurry and are usually considered in-focus images
with sharp edges and clear textures. Images acquired below and
above the optimal focal plane are blurry and out-of-focus images.
In detail, scans were acquired in z-stack of 15 layers spanning the
depth (8.4 lm) with 0.6 lm between each slice, z = 7 is the optimal
focal plane, z = 1–6 are below the focal plane, z = 8–15 are above
the focal plane.Wemake layers fromz=4 to z=10publicly available.
Their visual variations in 3-dimensional structure can be negligible.
In the end, datasets of actin andnucleus contain 100 in-focus images
and 600 out-of-focus images respectively, dataset of mitochondria
contain97 in-focus images and582out-of-focus images. Each image
is composed of 1024� 1024 pixels in 8-bit JPG format. The details of
two dataset parameters are summarized in Table 1. The parameters
and examples of each categories are shown in Fig. 1B.

2.2. Evaluation metrics

Several common image quality evaluation metrics are used to
evaluate the quality of restored images. Specifically, Peak signal-
to-noise ratio (PSNR), Structural similarity (SSIM) and Pearson cor-
relation coefficient (PCC) are calculated as the restored image qual-
ity evaluation metrics. Details of these evaluation metrics are as
follows. The PSNR is defined as:

PSNR X;Yð Þ ¼ 10log10
MAX2 � H �WPH

i¼1

PW
j¼1 X i; jð Þ � Y i; jð Þð Þ2

ð1Þ

Where H, W are the height and width of the image X and Y, while
MAX is the maximum value of image pixel. A higher PSNR value
provides a higher image quality and lower numerical differences
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Fig. 1. Sharp in-focus images from the optimal focal plane and blurred out-of-focus images from outside the focal plane. A. The paired in-focus and out-of-focus images of
Leishmania. B. Bovine pulmonary artery endothelial cells collected by a confocal microscopy. In-focus (layer z = 7) and out-of-focus (layer z = 4, 5, 6, 8, 9, 10) images of
nucleus, actin and mitochondria collected by a confocal fluorescence microscope in z-stack with 0.6 lm distance between each slice. The layer z = 7 is ground truth while
other layers have different degree of out-of-focus.

Table 1
The parameters of two self-collected datasets. The first dataset includes sharp-blur pairs of Leishmania image. The second dataset contains the confocal fluorescence microscopy
images of nucleus, actin and mitochondria of BPAEC, where each clear image corresponds to 6 out-of-focus images with different degree of blurring. In training and testing, each
in-focus image from the layer z = 7 in BPAEC forms a clear-blur image pair with the out-of-focus image from each other layers (z = 4, 5, 6, 8, 9, 10). The in-focus image of the
testing dataset is only used to calculate PSNR, SSIM and PCC. The training and testing dataset proportion is 8:2.

Data types First dataset (Parasite) Second dataset (BPAEC)

Leishmania Nucleus Actin Mitochondria

Out-of-focus (single) 764 600 600 582
In-focus (single) 764 100 100 97
Train dataset (pairs) 611 480 480 466
Test dataset (pairs) 153 120 120 116
Resolution (pixel) 2304 � 1728 1024 � 1024
Bit depth (bit) 24 8
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between ground truth [39]. SSIM can measure the image similarity
in brightness, contrast and structure, which is considered to corre-
late with the quality perception of human visual system [39,45].
SSIM can be calculated as:

SSIM X;Yð Þ ¼ 2lXlY þ c1
� �

2rXY þ c2ð Þ
l2

X þ l2
Y þ c1

� �
r2

X þ r2
Y þ c2

� � ð2Þ

The parameters lX and lY respectively represent the average of
the image X and Y, rX and rY represent the variance of image X and
Y, rXY represents the covariance of image X and Y. Both c1 and c2 are
small positive constants which can keep the denominator non-zero
when either l2

X þ l2
Y

� �
or r2

X þ r2
Y

� �
converges to 0. SSIM value is

greater than 0 and less than 1. The higher SSIM indicates the smal-
ler difference between restored images and ground truth. PCC
reflect the linear correlation degree between restored images and
ground truth. Given image X and Y with N � N pixels, the PCC
between X and Y can be calculated using the following formula:

Pearson X;Yð Þ ¼ E X � lX

� �
Y � lX

� �� �
rXrY

ð3Þ

Where the E[..] represents the mathematical expectation. The PCC
value ranges from �1 to 1, where 0 means the absence of relation-
ship, negative value is negative correlation and positive value is
positive correlation.
3. Methods

3.1. Network architecture

This work applies the GAN structure as backbone network. GAN
try to replicate the probability distribution by employing two
essential components: the discriminator and the generator. The
generator G generates new samples according to the potential data
distribution of target image, and the discriminator D is a binary
classifier used to determine whether the input samples are ground
truth or generated samples [38]. After the alternate optimization
and multiple training, the capabilities of both generator and dis-
criminator are enhanced. The final objective is finding the optimal
generator and discriminator, meaning that generator G can mini-
mize the difference between generated samples and target image
as much as possible, and discriminator D can distinguish the gen-
erated samples from G and target image as much as possible. The
process can be summarized as follows:

min
G

max
D

VðD;GÞ ¼ Ex�PdataðxÞ logDðxÞ½ �
þ Ez�PzðzÞ logð1� DðGðzÞÞÞ½ � ð4Þ

Where the log is the abbreviation of logarithm function. The x repre-
sents target image which follows the distribution Pdata, and z is the
input random noise vector which is sampled from a prior distribu-
tion Pz. Maximize D means that when we input generated image
from G and the target image, the discriminator can identify the tar-
get image as accurately as possible, so that the probability value of
D(x) to be as close to 1 as possible. Minimize G means that the gen-
erated samples G(z) from generator G are supposed to be as close as
possible to the target image, so that the value of 1-D(G(z)) is as close
to 0 as possible. The discriminator tries to maxmize this loss while
generator tries to minimize this loss. Both of them are iteratively
optimized in adversarial mode.

Specially, our method is inspired by the CycleGAN, a derivate
GAN structure that has two mirror-symmetric GAN structures
and each GAN has a generator and a discriminator individually.
The proposed GAN structure is shown in Fig. 2. In this structure,
two mapping functions Gs : source! target and Gt : target! source
1960
are considered simultaneously, and two adversarial discriminators
Ds and Dt are created relatively. The generator architecture used
the style-transfer type [12]. The encoder-decoder structure
contains two stride convolution blocks, 9 residual blocks
(ResBlocks), and two transposed convolution blocks. In ResBlocks,
the global skip connections pass the image details to upper layers
and back-propagation gradients to lower layers, thus successfully
solving the degradation problem [6]. The discriminator employed
the Markovian discriminator in our network, which is purely
composed of convolutional layers and its final output is an n � n
matrix. The discriminate probability is the average value in n � n
matrix.

3.2. Multi-component weighted loss

In order to improve performance of CycleGAN and generate
visually comfortable image, three component weighted losses are
applied to guide training stage, including adversarial loss lGAN ,
content loss lcont , cycle consistency loss lcycle. The adversarial loss
lGAN is applied to generators Gs and Gt, and discriminators Ds and
Dt, which design to capture and minimize the distribution distance
between generated samples and target images. For example,
generator Gs tries to generate in-focus image Gs(Is) that look similar
to the image It from domain t, and Dt tries to discriminate
generated samples Gs(Is) and target image It. The adversarial loss
in CycleGAN can be expressed as:

lGAN ¼ EtP~dataðtÞ logDtðtÞ½ � þ EsP~dataðsÞ logð1� DtðGsðsÞÞÞ½ �
þEsP~dataðsÞ logDsðsÞ½ � þ EtP~dataðtÞ logð1� DsðGtðtÞÞÞ½ � ð5Þ

We apply the content loss lcont to generators Gs and Gt. The con-
tent loss ensures that the reconstructed image has similar features
to the target image, which can be regarded as the Euclidean
distance loss of the feature map between the reconstructed deblur-
ring image and the target image. Classical loss functions like L1 loss
and L2 loss generally lead to blurred images due to the pixel-wise
average of possible solutions in the pixel space. Perceptual loss is
a simple L2 loss which can measure perceptual differences in
content and style between two images. For example, generator Gs

calculates its perceptual loss Icont�GS between the in-focus image
It and generated in-focus image Gs Isð Þ, which can be expressed as:

lcont�GS ¼
1

Wi;jHi;j

XWi;j

s¼1

XHi;j

t¼1

ui;jðItÞs;t �ui;jðGsðIsÞÞs;t
� �2

ð6Þ

Here (W, H) is the image size, ui;j is the feature map obtained by the
j-th convolution (after activation) before the i-th maxpooling layer.
In this work, we use activations from VGG-19 convolutional layer.
Similarly, the generator Gt calculates its perceptual loss lcont�Gt

between the out-of-focus image Is and generated out-of-focus
image Gt It

� �
, which can be expressed as:

lcont - Gt ¼
1

Wi;jHi;j

XWi;j

s¼1

XHi;j

t¼1

ui;jðIsÞs;t �ui;jðGtðItÞÞs;t
� �2

ð7Þ

Wi;j and Hi;j are the dimensions of the respective feature maps.
The total content loss includes losses in both directions and can be
expressed as:

lcont ¼ lcont - GS þ lcont - Gt ð8Þ
Cycle consistency loss allows images to be translated back again

after being translated from one domain to the other, preventing the
learned mapping Gs : source ! t arg et and Gt : t arg et ! source
from contradicting each other [47]. The cycle consistency loss
can be totally expressed as:

lcycle ¼ EsP~dataðsÞ jjGtðGsðsÞÞ � sjj1½ � þ EtP~dataðtÞ jjGsðGtðtÞÞ � tjj1½ � ð9Þ



Fig. 2. Overview of CycleGAN-based deep learning for the correction of out-of-focus microscopy images. The proposed method contains two generators (Gs and Gt) and two
discriminators (Ds and Dt). Generator Gs translates out-of-focus image to in-focus image, and discriminator Dt tries to distinguish real in-focus image and generated in-focus
image. Generator Gt translates in-focus image to out-of-focus image, and discriminator Ds tries to distinguish real out-of-focus image and generated out-of-focus image.

Table 2
Comparison of different methods on Leishmania parasite dataset. The results of
different methods were generated by testing them in the same Leishmania parasite
dataset. PSNR, SSIM and PCC were calculated. The higher the score the better the
result. The highest values are highlighted in bold.

Model PSNR SSIM PCC

L0-regularized 34.97 ± 0.00 0.8034 ± 0.0000 0.9349 ± 0.0000
Pix2Pix 36.18 ± 0.06 0.8868 ± 0.0010 0.9532 ± 0.0004
CycleGAN 32.35 ± 0.10 0.8306 ± 0.0008 0.9098 ± 0.0012
DeblurGAN 36.15 ± 0.15 0.8789 ± 0.0009 0.9513 ± 0.0006
DeblurGAN-V2 36.86 ± 0.08 0.8724 ± 0.0012 0.9597 ± 0.0022
Ours 38.62 ± 0.09 0.8951 ± 0.0006 0.9726 ± 0.0009
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Finally, multi-component weighted loss function is designed.
The loss consists of three components and can be expressed as
follows:

l ¼ k1lGAN þ k2lcont þ k3lcycle ð10Þ

Where lGAN is the adversarial loss, lcont is the content loss and lcycle is
the cycle consistency loss. k1; k2 and k3 are the non-negative hyper-
parameters which constant and adjust different influence on overall
deblurring effects. Same with other methods [42,46,47], these
weights in our multi-components weighted loss function are set
according to the data characteristics for different cases and we
weight each loss item empirically to balance the importance of each
component. In this experiment, we set k1; k2 and k3 to 1, 1, and 0.001
respectively.

3.3. Training

The proposed model is built in Ubuntu 16.04 system configured
with Tesla K40C GPU, and implemented in Keras of Tensorflow.
Rotation, flip, translation, and scale are used for data augmenta-
tion. 5-fold cross validation is used to evaluate the performance
of the models. We use the Adam optimizer [13] with parameters
b1 ¼ 0:5 andb2 ¼ 0:99. The total training iteration times is set as
100,000 times. The learning rate is set initially to 10-4 for both of
generator and discriminator. Then, the learning rate is linearly
decayed to 0 after 50,000 training iterations. The batch size is set
to 1 to train our model. Both Leishmania and BPAEC dataset are
randomly divided into two parts in a proportion of 8:2, which
mean that the testing dataset is unseen to the trained model. We
1961
use the testing set to evaluate the trained model, and repeat three
times to obtain the standard deviation in Table 2 and Table 3. The
codes, implementation details and datasets are available online:

https://github.com/jiangdat/COMI.
4. Results

4.1. Comparison of different models on the parasite dataset

We compare the performance of the proposed method with
GAN-based classic deblurring models in the first self-collected
dataset. We train and test our proposed method along with other
GAN-based deblurring methods, including DeblurGAN,
DeblurGAN-V2, Pix2Pix, CycleGAN. Pix2Pix is a GAN-based model
for pixel-level image translation, which is widely used to recon-
struct high-quality super-resolution images. CycleGAN is the basis

https://github.com/jiangdat/COMI


Table 3
The quantitative evaluation results of our model on the BPAEC dataset. The images coming from layer z = 7 are the in-focus images. PSNR, SSIM and PCC were calculated for each
cellular structure (nucleus, actin and mitochondria). The higher the score the better the result. The highest values are highlighted in bold.

Layer Nucleus Actin Mitochondria

PSNR SSIM PCC PSNR SSIM PCC PSNR SSIM PCC

z = 4 33.56 ± 0.19 0.8293 ± 0.0174 0.9690 ± 0.0006 28.11 ± 0.30 0.4711 ± 0.0027 0.9141 ± 0.0017 30.44 ± 0.43 0.5519 ± 0.0076 0.9138 ± 0.0063
z = 5 31.89 ± 0.09 0.6350 ± 0.0047 0.9361 ± 0.0070 30.82 ± 0.16 0.4925 ± 0.0030 0.9577 ± 0.0057 31.68 ± 0.39 0.3923 ± 0.0132 0.9629 ± 0.0045
z = 6 33.65 ± 0.33 0.6880 ± 0.0242 0.9851 ± 0.0020 30.61 ± 0.16 0.5630 ± 0.0034 0.9596 ± 0.0037 34.45 ± 0.28 0.8310 ± 0.0165 0.9709 ± 0.0071
z = 8 35.44 ± 0.33 0.9432 ± 0.0035 0.9779 ± 0.0031 30.16 ± 0.33 0.7047 ± 0.0101 0.9508 ± 0.0048 32.74 ± 0.55 0.8769 ± 0.0129 0.9538 ± 0.0114
z = 9 32.78 ± 0.13 0.6990 ± 0.0099 0.9673 ± 0.0040 28.05 ± 0.27 0.5745 ± 0.0056 0.9174 ± 0.0102 29.87 ± 0.44 0.4490 ± 0.0061 0.8893 ± 0.0041
z = 10 33.29 ± 0.17 0.8775 ± 0.0053 0.9581 ± 0.0026 26.53 ± 0.42 0.3547 ± 0.0240 0.8718 ± 0.0122 28.09 ± 0.48 0.4362 ± 0.0057 0.8232 ± 0.0092
Average 33.44 ± 0.21 0.7787 ± 0.0108 0.9656 ± 0.0032 29.05 ± 0.27 0.5268 ± 0.0081 0.9286 ± 0.0064 31.21 ± 0.43 0.5896 ± 0.0103 0.9190 ± 0.0071
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of our proposed model. DeblurGAN is a deep learning method
based on conditional GAN and content loss for macroscopic image
deblurring. DeblurGAN-V2 is improved version of DeblurGAN,
which not only improves the deblurred image quality, but can also
design a model with low computational cost. Besides, we also
reproduce L0-regularized, which is a representative of the tradi-
tional algorithm. The sparse L0 approximation scheme consisting
of a family of loss functions to approximate the L0 cost into the
objective to remove blur. The qualitative evaluation results in first
self-collected dataset are shown in Fig. 3. The traditional method
generates image that has some abnormal high-frequency signals,
thus resulting in bad quality image (Fig. 3 B). Deep learning-
based methods achieve better results and the generated image is
smoother, especially when using DeblurGAN and DeblurGANv2
(Fig. 3 E and F). However, Pix2Pix and CycleGAN (Fig. 3, C and D)
were not designed specifically for microscopy images and there
are many blocking artifacts on the edge of Leishmania with inter-
Fig. 3. The qualitative evaluation results in the Leishmania parasite dataset. Red and
different methods were generated by testing them in the same Leishmania parasite dat
image. Our method significantly improves the quality of out-of-focus microscopic image
deblurring methods. (For interpretation of the references to colour in this figure legend
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mittent flagella, as shown in the zoomed-in patches. The image
deblurred by our method has the highest similarity with the in-
focus image with more details in textures (Fig. 3 G). In contrast
with the result of CycleGAN and ours, the effectiveness of our
multi-component weighed loss are verified. Compared with the
result of Pix2Pix, our method can clearly restore sharp and contin-
uous boundaries in flagella of Leishmania. The quantitative evalu-
ation results with standard metrics (PSNR, SSIM and PCC) are
shown in Table 2, which is consistent with the result of qualitative
evaluation result. Our method outperforms other GAN-based clas-
sic models and traditional method in all three evaluation metrics.

4.2. Comparison of different blur-levels on the BPAEC dataset

BPAEC experiment is designed for evaluating the deblurring
capability of our model in confocal fluorescence microscopy image
dataset. The proposed model is trained and tested in the BPAEC
blue zoomed-in regions correspond to two different field of views. The results of
aset. Zoomed-in regions of Leishmania parasites were shown at the bottom of the
s and generates sharp boundaries and clear textures compared to other GAN-based
, the reader is referred to the web version of this article.)
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dataset. Before feeding them into network, all raw images with the
resolution of 1024 � 1024 pixels are resized to 512 � 512 pixels.
Multiple trainings are performed for each layer of mitochondria,
actin, and nuclei, and the unique mapping from the single blurred
layer to the sharp layer is learned by the model. The restored result
is shown in Fig. 4. The first row represents raw data inputted into
the trained model, the second row represents the restored results
by our trained model, and the third row is the ground truth.
Observed from these figures, the fine features of microtubules,
mitochondria and nuclei, which are in agreement with the ground
truth images are enhanced. As shown in Table 3, image quality
metrics (PSNR, SSIM, PCC) are computed to quantitatively evaluate
the model performance. The deviation values of all metrics fluctu-
ate in a small range, which reflects the stability of our method. In
general, the evaluation metrics size restored from the layers z = 6
Fig. 4. The reconstruction results of our method in the BPAEC dataset. The first row rep
images come from layer z = 4. The second row represents the restored results by our train
come from layer z = 7. Line A is nucleus, B is actin and C is mitochondria. The in-focus ima
corrected by our method are very similar to the in-focus images in both boundaries and

1963
and z = 8 are higher than in any other layers. This result denotes
that our model is convergent and the quality of the restored images
is proportional to the quality of the input raw images. The evalua-
tion metrics size of nucleus is significantly better than the metrics
size of actin and mitochondria. Under the premise that the data
instruments, environment and other variables in capturing images
are the same, the only variable is the shape of the target. Compared
with actin and mitochondria, the fixed morphology features of the
nucleus, such as the fixed shape, clear boundaries and weak back-
ground interference reduced difficulty for model to recover images.

4.3. Generalizability of our model on the BBBC006 dataset

We evaluate model generalizability in another publicly avail-
able confocal fluorescence microscopy image dataset. We employ
resents the out-of-focus images inputted into the trained model. The out-of-focus
ed model, and the third row is the ground truth in-focus image. The in-focus images
ge has sharp edges while the out-of-focus images are blurred and noisy. The images
textures.
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the out-of-focus microscopy image set BBBC006 from the Broad
Bioimage Benchmark Collection, which contains a z-stack of
human cell image sets stained by Hoechst and phalloidin [41].
The layer z = 16 is at the optimal focal plane, which was used as
the ground truth. The layers z = 0 to z = 15 are above the optimal
focal plane, and z = 17 to z = 32 are below the optimal focal plane.
We randomly choose images from 6 representative out-of-focus
layers, namely z = 5, 10, 15, 20, 25 and 30. Each layer has resolution
with 696 � 520 pixels. The out-of-focus images of BBBC006 dataset
were directly fed into our model pre-trained on BPAEC without fur-
ther training. The correction results of different field of views
(FoVs) from different layers are displayed in Fig. 5. Compared with
out-of-focus reconstruction in nuclei that using the same dataset
[43], our results are comparable to the autoencoder-based method.
This experiment show that our method are of excellent generaliza-
tion capabilities, which can be transferable to various scenarios of
microscopy images. However, our model restores nuclei better
than actin. Some regions in actin that has the irregular shape were
not recovered well. This conclusion is consistent with the result in
BPAEC, as shown in Fig. 4 B and Table 3. In addition, some layers
were not recovered well which are very far away from the optimal
Out-of-focus_A Corrected_A In-focus_A

Z=5

Z=10

Z=15

Z=20

Z=25

Z=30

Fig. 5. The generalizability of our trained model was evaluated on the BBBC006 dataset
Z = 16, which was used as the ground truth in-focus layer. The results on six representativ
shown. The out-of-focus images were directly inputted into the trained model without
Comparing to the corresponding in-focus images, our model showed generalization capab
Hoechst stained image for labeling nuclei, while ’B’ denotes phalloidin stained image fo
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focal plane (Fig. 5, B and L), suggests this model may need to be
retrained to achieve a better correction result.

5. Discussion and conclusion

Microscopic imaging is widely used in biomedical research and
medical discovery. We design a deep learning based deblurring
method to learn mapping from out-of-focus microscopy images
to in-focus images. Our model performs well in a wide range of
microscopy images ranging from protozoan parasite, to nucleus,
actin and mitochondria of mammalian cells, thus showing its great
potential in the correction of out-of-focus microscopy images. Our
model employs CycleGAN with multi-component weighted loss,
significantly improving image quality in the post-processing of
out-of-focus microscopy images. Our method utilizes multi-layer
CNNs to correct out-of-focus images by learning regression map-
ping functions between in-focus and the corresponding out-of-
focus images. The proposed algorithm is trained on two self-
collected datasets. The testing results on two self-collected data-
sets and one publicly available dataset demonstrate that CycleGAN
combined with multi-component weighted loss can restore images
Out-of-focus_B Corrected_B In-focus_B

. The BBBC006 dataset contains 32 layers of microscopy images. The focal plane is
e out-of-focus layers (Z = 5, 10, 15, 20, 25 and 30) from different field of views were
further training, and the corrected images were generated by our trained model.
ility in the correction of those blurring microscopy images. The character ’A’ denotes
r labeling actin.
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well from both bright-field microscope and confocal fluorescence
microscope. Experiment of generalizability demonsrates that our
proposed method can be applied to various scenarios and fields
where microscope is needed, e.g. diagnosis, where optical micro-
scopy is among the most widely used and deployed techniques.

Although the proposed method is robust for different types of
microscopy image datasets, some limitations remain. As shown
in the zoomed-in patches in Fig. 3, our restored images generate
slight checkerboard artifacts. This is caused by CNN in both of
the two processes: forward-propagation of upsampling layers
and deconvolution layers with non-unit strides [44]. Some meth-
ods successfully alleviate or avoid generating checkboard artifacts
and the effectiveness is verified in natural image and medical
image [37,44]. The idea extending the conventional condition for
linear systems to non-linearity CNNs is worth checking out for
future improvement [44]. Secondly, our model speeds up training
by importing ImageNet pre-trained parameters, but ImageNet is
a natural image dataset with feature different from microscopy
images. Importing pre-trained parameters from a more correlated
dataset may further improve the model performance in restoring
microscopy image. In addition, simultaneously acquiring the
paired blurred-sharp images may not be easy to obtain in some
cases and the quality of the sharp images in training set directly
affect the model performance. Out-of-focus correction based on
unsupervised learning can be considered in the future work. More-
over, empirically setting the hyperparameters k1; k2 and k3 in multi-
components weighted loss function is a difficult and expensive
process. Automatic loss weighting strategies, such as using
homoscedastic uncertainty as a basis for weighting losses in a
multi-task learning may be useful for further improving model
performance [40]. At last, the 3-dimensional structures of nuclei,
actin filaments, and mitochondria are not considered in this study.
Nuclei, for example, are often roughly spheroid/ellipsoid in shape,
suggesting that different cross-sections along the optical axis may
have different areas, depending on the spacing between the z-
stacked images. However, the qualities of the reconstructions are
computed versus the central (‘‘in-focus”) image in the z-stack
without regarding to spatial variation. The spacing of the z-
stacked images should be considered more thoroughly for future
study. The general applicability of our model was tested under dif-
ferent experimental circumstances. But considering instrument-
to-instrument fluctuation, this model may need to be retrained
to be transferable to different types of microscopy images.
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