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Abstract. A comprehensive intervention (CI) on patients with Alzheimer’s disease was assessed by measuring plasma
brain-derived neurotrophic factor (P BDNF) and ADAS-Cog score (ADAS-Cogg.ore) before, immediately after (FU1), and
6 (FU2) and 24 months (FU3) after the CI. Baseline pPBDNF was higher in patients with moderate AD (but not mild AD) than
in healthy controls. At FU1, pBDNF and ADAS-Cog,.. decreased significantly. At FU2 and FU3, patients’ cognitive status
worsened and pBDNF further increased versus baseline, suggesting that CI interruption may be a stress event that prevents
return to homeostasis. CI exerted positive short-term effects, but more information is needed on long-term consequences.
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INTRODUCTION

Over 46 million individuals were estimated to suf-
fer from dementia in 2015; their number is expected
to soar to 74.7 million in 2030 and 131.5 million
in 2050 [1]. Alzheimer’s disease (AD) accounts for
50-56% of all dementia cases [2]. Since no effective
pharmacological treatments are available [3], non-
pharmacological strategies are urgently needed.

Cognitive stimulation is a promising approach.
Epidemiological studies have shown the beneficial
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effects of a cognitively active life, where stimula-
tion is due to leisure activities [4—7] rather than to
the complexity of occupational tasks [8—10]. Cog-
nitive stimulation protocols have also been seen to
improve patients’ mood and mental function [11-16].
However, the mechanisms underlying such benefits
remain elusive.

Brain-derived neurotrophic factor (BDNF) may
be involved in the effects of cognitive stimulation,
since evidence from animal models of AD suggests
that its modulation might contribute to the bene-
fit achieved by environmental enrichment [17-20].
Testing these findings in humans requires a sim-
ple, non-invasive, and inexpensive biological matrix.
Blood is the ideal candidate. Circulating BDNF

ISSN 1387-2877/17/$35.00 © 2017 — IOS Press and the authors. All rights reserved

This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0).


mailto:m.balietti@inrca.it

38 M. Balietti et al. / Comprehensive Intervention and BDNF in AD

comes from a number of peripheral sources [21-23],
but may also derive from neurons and glial cells.
Indeed, some experimental work suggests that the
blood-brain barrier is permeable to the neurotrophin,
although the agreement is not unanimous [24, 25].
A significant correlation has been documented in
rats between BDNF concentrations in brain tissue
and serum [26, 27]; more importantly, peripheral
BDNF seems to reflect neural viability and integrity
in healthy humans [28] as well as widespread brain
amyloidosis [29], although Laske and colleagues [30]
failed to find a correlation between BDNF concentra-
tion in serum and cerebrospinal fluid in AD patients.

The above findings prompted us to test the effects
of a comprehensive intervention (CI) on plasma
BDNF (pBDNF) in AD patients, to assess the poten-
tial involvement of the protein in the effects exerted
by the CI and explore the possibility of its biomarker
use. The CI aimed primarily at cognitive enhance-
ment through the improvement of some cognitive
functions and of patients’ motivation to remain
active—for instance via adoption of mnemonic strate-
gies to compensate for deficits and/or participation
in leisure activities and socialization—and also pro-
vided advice on lifestyle and psychological support
to patients and caregivers.

MATERIALS AND METHODS

Participants were 85 healthy subjects (HE) and 80
patients with early AD. The study protocol complied
with the principles of the Declaration of Helsinki
(code SC/12/301) and was approved by the local
ethics committee (INRCA Bioethics Advisory Com-
mittee, Ancona, Italy). The main characteristics of
the two populations are summarized in Supplemen-
tary Table 1. AD staging was based on the Clinical
Dementia Rating Scale (CDR) [31]: only patients
with mild or moderate dementia (CDR 1 and 2) were
included. The criteria for AD diagnosis and patient
inclusion/exclusion in the study are described in the
Supplementary Material.

The CI consisted of 10 once weekly sessions of
about 1h. Its effect on pBDNF levels was tested
immediately after the training sessions (FU1) and
then at 6 (FU2) and 24 (FU3) months. Values were
then compared to baseline.

The possible influence of acetylcholinesterase
inhibitors, benzodiazepines, antidepressants, lipid-
lowering medications, non-steroidal anti-inflamm-
atory drugs, anticoagulants, antihypertensives,

antidiabetics, and corticosteroids on pBDNF levels
was taken into account. In particular, the use/non-use
(dichotomous variable) of each drug class was
established at baseline (HE group) and at baseline
and FUI1, FU2, and FU3 (AD patients). For each
drug class, pPBDNF levels were compared in subjects
taking/not taking the medication. Smoking habits
and alcohol consumption were assessed as described
by Gagliardi et al. [32].

Patients were randomly assigned to the experi-
mental group (EG, n=38) or the control group (CG,
n=42). Any further bias was excluded by compar-
ing EG and CG patients for age, gender, marital
status, years of schooling, and their scores on the
Mini-Mental State Examination (MMSE), Geriatric
Depression Scale (GDS), Activities of Daily Living
(ADL), Instrumental ADL (IADL), and CDR. Signif-
icant differences were found for age (EG versus CG,
78.67+£0.92 versus 76.11 +£0.72 years, p=0.034)
and ADL (4.95 £0.20 versus 5.53 £0.11, p=0.015),
leading to data adjustment for the two variables in
all analyses. The CI was applied as described previ-
ously [33]. Performance on the Alzheimer’s Disease
Assessment Scale-Cog test corrected for schooling
(ADAS-Coggcore) Was the outcome measure.

Lithium heparin whole blood was collected at base-
line and then at FU1, FU2, and FU3.

The pBDNF assay, CI, and statistical analyses are
described in detail in the Supplementary Material.

RESULTS
Baseline pBDNF

Baseline pBDNF was significantly higher (p=
0.001) in AD than HE subjects (1.464 [1.25-1.72]
versus 0.984 [0.83-1.16] [back-transformed mean
and 95% confidence interval]), but the difference
ceased to be significant after adjustment for age and
schooling. When AD patients were divided by dis-
ease stage, pPBDNF was significantly higher in CDR
2 (n=38) than HE subjects, also after the adjustment
for age and schooling (p <0.001), whereas the differ-
ence between HE and CDR 1 (n=42) subjects was
not significant (Fig. 1A).

pBDNF exhibited a significant, positive correla-
tion with the MMSE score (p =0.002) in HE subjects
(Fig. 1B) and with the ADAS-Coggcore (2 <0.001) in
AD patients (Fig. 1C), whereas it was unrelated to
age, schooling, GDS score, smoking habits, alcohol
intake, and medications and, for AD patients, disease
duration and age at disease onset.
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Plasma BDNF concentration at baseline
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Fig. 1. A) Baseline pBDNF was significantly higher in patients with moderate AD (CDR 2) than in healthy subjects (HE). B) In healthy
subjects, a better cognitive status (higher MMSE score) was associated to a higher pPBDNF. C) In AD patients, more impaired cognition (higher
ADAS-Cogscore) Was associated to higher pBDNF. In A, columns and error bars represent back-transformed means and 95% confidence
interval. In B and C, a constant was added to the log-transformed data to avoid showing negative values.

Effect of the CI

AtFU1, the ADAS-Coggcore (Fig. 2A) and pPBDNF
(Fig. 2B) were significantly reduced in EG patients
(both p<0.001), whereas in controls the difference
was not significant. A significant, negative correla-
tion was found in EG patients between the baseline
ADAS-Coggcore and pBDNF changes from baseline
and FU1 (r=-0.460, p=0.005). No significant cor-
relation was found in controls, indicating that the
phenomenon is training-induced.

Follow-up

In CG patients, the ADAS-Coggcore showed sim-
ilar values from baseline through FU3, whereas in
EG patients values fell significantly from baseline
to FU1 (p=0.010), they reverted to baseline at FU2
(p=0.016 vs FU1), and then increased further at
FU3 (p=0.001 and p<0.001 vs baseline and FU1,
respectively) (Fig. 2C). In CG patients, pBDNF
was unchanged from baseline to FU3, whereas in
EG patients FU2 values were significantly higher
compared to both baseline (p<0.001) and FUI
(»<0.001), while a slight reduction was seen at FU3
versus FU2 (p <0.001 vs FU1) (Fig. 2D).

Medications did not influence pBDNF at any
follow-up point.

DISCUSSION

The major findings of this study are i) that base-
line pBDNF was significantly higher in patients
with moderate AD than in healthy individuals;

ii) that baseline pPBDNF was not significantly differ-
ent in patients with mild AD compared with healthy
individuals; and iii) that the CI exerted a positive
short-term and a potentially negative long-term effect
irrespective of disease stage.

Reports of blood BDNF in AD are conflicting
[34—45]. A possible explanation for the incon-
sistency is the lack of AD cohort overlap. The
suggestion that changes in peripheral BDNF concen-
tration may depend on AD stage [46] has not been
widely explored; however, even the studies that have
addressed the issue have applied non-uniform criteria
to define disease severity (i.e., use of MMSE rather
than CDR score), preventing comparison of their find-
ings. The possible difference between plasma and
serum BDNF may provide another source of bias
[47]. Serum BDNF derives mainly from the thrombo-
cyte storage pool, which is artificially released during
experimental clotting [48, 49]. Platelets undergo sev-
eral alterations during AD, including changes in
membrane fluidity and cholesterol levels, abnormal-
ities in cellular signal transduction, and atypical
amyloid-f3 protein precursor metabolism [50]. By
influencing thrombocyte functioning these phenom-
ena may exert different, even opposite effects on
serum and plasma BDNF, especially considering
thrombocyte hyperactivation [51].

Although the inconsistent findings regarding circu-
lating BDNF require further investigation, the present
study provides information on the ability of pBDNF
to be used to monitor AD progression, especially
since it applied the CDR score for disease staging,
excluded specific lifestyle influences, and investi-
gated a broad medication panel including drugs that
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Effect of the comprehensive intervention in AD patients
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Fig. 2. A, B) Immediately after the intervention (FU1), ADAS-Coggcore and pBDNF values fell significantly in the experimental group (EG)
but were not significantly changed in control patients (CG). C, D) In EG patients, the ADAS-Cogscore reverted to baseline at 6 months (FU2)
and showed a further significant increase at 24 months (FU3) compared to baseline, while pPBDNF increased significantly at FU2 compared to
FU1 as well as baseline and fell at FU3 versus FU2. In CG patients, ADAS-Cogscore and pBDNF values were virtually unchanged throughout
follow-up. In A and C, columns and error bars represent means and standard error of the mean; in B and C, columns and error bars represent
back-transformed means and 95% confidence interval. Data were adjusted for age and ADL.

are commonly prescribed to the elderly but are not
routinely evaluated, such as statins and antidiabetics
[52, 53]. Although the mechanism underlying such
stage dependence is unclear, it is conceivable that
pBDNF increases as a consequence of advancing
neuronal alteration. Support for the notion seems to
come from the correlations, of different sign, detected
between pBDNF level and cognitive status in our
study participants, since higher pPBDNF concentra-
tions were associated to a better cognitive status in
healthy controls and to a worse cognitive status in
AD patients. The hypothesis has been advanced that
increased circulating BDNF during physiological
aging may be a neural reactive mechanism directed
at preserving overall cognitive performance [54],
whereas in AD it could reflect an attempt to counter-
act the deficits induced by amyloid-3 accumulation
[55, 56] and/or to provide a trophic stimulus to com-
pensate for neuronal loss [57]. BDNF is known to
play a key role in synaptic plasticity and neuronal sur-

vival [58] and to be involved in several functions that
undergo age- and dementia-related impairment such
as learning, memory, and stress adaptation [59-61].
In a recent study, gene delivery of BDNF in P301L
transgenic mice has ameliorated several pathologi-
cal features in this animal model of AD, suggesting
a potential protective role for BDNF also in tauopa-
thy [62]. It is thus reasonable to hypothesize that
structural/functional impairment worsens as AD pro-
gresses, triggering a greater demand for BDNF, thus
establishing a vicious circle.

As regards the CI, an improved cognitive status (a
significantly decreased ADAS-Coggcore) and a sig-
nificant pPBDNF reduction were measured in AD
patients immediately after the 10-week CI. Moreover,
the significant negative correlation between base-
line ADAS-Cogscore and pBDNF changes, detected
in EG patients, suggests that the CI may exert
a stronger effect on patients with more severe alter-
ations, since higher baseline ADAS-Coggcore values
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were associated to a greater pPBDNF reduction follow-
ing the CI. Studies conducted in AD animal models
show that environmental enrichment can reduce the
amyloid-3 burden, promote neurogenesis and cell
survival, and improve synaptic transmission [63-66].
The CI tested in the present study may have induced
similar effects in our patients. This would at least
partly explain the pPBDNF modulation exerted by the
(I, since a positive effect on neural dysfunction may
conceivably involve a reduced BNDF demand.

However, the positive effect of the CI was transient.
The ADAS-Coggcore reverted to baseline at FU2 and
exhibited a further increase at FU3, while pPBDNF
showed a rebound effect at FU2. These findings sug-
gest that CI interruption may involve a risk. Indeed,
whereas control patients showed constant ADAS-
Cogscore and pBDNF values throughout the study,
the experimental group suffered a deterioration of the
cognitive status and a further increase in pPBDNF con-
centration compared to baseline. The frailty of AD
patients’ brain may at least partly explain these data,
since a frail system exposed to a stressor usually fails
to regain homeostasis after its end, and undergoes
further deterioration [67]. CI interruption, and the
default of the trigger that induced functional (ADAS-
Cogscore) and molecular (pBDNF) changes at FU1
may have provided this type of stress event and have
involved a worsening of the initial condition rather
than a return to the previous equilibrium. This phe-
nomenon, and the possible role of peripheral BDNF
sources, deserve further investigation, since it can-
not be excluded that the CI exerted secondary effects
on circulating cells, which produce as well as store
BDNF.

In conclusion, the present study showed that
pBDNEF, which is the “active” form of the molecule—
i.e., the fraction that is available for crossing the
blood-brain barrier through a saturable transport sys-
tem [24, 68]—may serve as a peripheral biomarker to
assess the effects of CIs in AD patients and indicated
that more exhaustive information on the long-term
consequences of CIs is needed before they can be
introduced into clinical practice.
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