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Abstract: Background. Cardiovascular disease is a frequent complication after kidney transplantation
and represents the leading cause of mortality in this population. Material and Methods. We searched
for the relevant articles in the National Institutes of Health library of medicine, transplant, cardiologic
and nephrological journals. Results. The pathogenesis of cardiovascular disease in kidney transplant
is multifactorial. Apart from non-modifiable risk factors, such as age, gender, genetic predisposi-
tion and ethnicity, several traditional and non-traditional modifiable risk factors contribute to its
development. Traditional factors, such as diabetes, hypertension and dyslipidemia, may be present
before and may worsen after transplantation. Immunosuppressants and impaired graft function may
strongly influence the exacerbation of these comorbidities. However, in the last years, several studies
showed that many other cardiovascular risk factors may be involved in kidney transplantation,
including hyperuricemia, inflammation, low klotho and elevated Fibroblast Growth Factor 23 levels,
deficient levels of vitamin D, vascular calcifications, anemia and poor physical activity and quality
of life. Conclusions. The timely and effective treatment of time-honored and recently discovered
modifiable risk factors represent the basis of the prevention of cardiovascular complications in kidney
transplantation. Reduction of cardiovascular risk can improve the life expectancy, the quality of life
and the allograft function and survival.
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1. Background

Cardiovascular disease (CVD) is a frequent cause of morbidity after kidney trans-
plantation (KT) and represents the leading cause of mortality [1–3]. Many cases of early
post-transplant cardiovascular complications are related to a high prevalence of comor-
bidity already present before transplantation, including hypertension, glucose intolerance,
dyslipidemia and ischemic heart disease [4,5]. In addition, because of more liberal criteria
of acceptance in the waiting list, the number of candidates with risk factors for CVD is
increasing and many KT candidates continue to smoke, despite many health campaigns.
Finally, several common risk factors, such as obesity, diabetes, hypertension and dyslipi-
demia, are worsened by the posttransplant effects of immunosuppressive regimens [6], and
uncommon risk factors can develop after transplantation. Thus, a pretransplant cardiovas-
cular risk scoring and an adequate correction of modifiable abnormalities are recommended
during the evaluation and the preparation of a transplant candidate to reduce the risk of
cardiovascular morbidity and mortality. In this review, we report the most important risk
factors involved in post-transplant major cardiovascular events, keeping in mind that CVD
is the result of interaction of genetic, environmental and acquired conditions (Figure 1).
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Figure 1. Factors involved in CVD development in kidney transplant recipients. Non-modifiable 
risk factors are marked in blue, modifiable risk factors are marked in grey. FGF, fibroblast growing 
factor. 

2. Post-Transplant Diabetes Mellitus 
Post-transplant diabetes mellitus (PTDM) develops in 20–30% of KT patients and rep-

resents a frequent cause of cardiovascular events and mortality [7,8]. PTDM includes all 
newly diagnosed diabetes mellitus (DM) in the post-transplant setting, irrespectively of 
the timing of diagnosis or whether DM was present but undetected before transplantation 
[9]. The diagnosis of DM must be performed according to American Diabetes Association 
guidelines [10]. Risk factors for PTDM are the same as type 2 DM: familial predisposition, 
age, overweight, dyslipidemia, hypertension etc. The likelihood of PTDM is higher in pa-
tients with risk factors for DM already present before transplantation [11]. However, a 
major role is also played by immunosuppressive drugs. Glucocorticoids exert diabeto-
genic effects with different mechanisms [12–19]. They increase appetite, promote leptin 
resistance and decrease glucose uptake in myocytes. In vitro studies demonstrated that 
glucocorticoids may alter the functions and induce apoptosis of β-cells. In the liver, they 
upregulate enzymes involved in gluconeogenesis and promote insulin resistance. In adi-
pocytes, glucocorticoids decrease glucose uptake. Moreover, glucocorticoids suppress the 
expression of osteocalcin, which promotes insulin secretion by β-cells, thereby indirectly 
inhibiting insulin secretion [12,13]. Calcineurin inhibitors (CNI) are involved in the devel-
opment of diabetes after KT. They impair insulin secretion and cause insulin resistance 
[14,15]. Tacrolimus is more diabetogenic than cyclosporine [16], probably because tacroli-
mus can exert a direct toxicity on pancreatic cells and can favor glucose reabsorption, as 
shown by experimental studies [17,18]. MammaBlagosklonny19lian target of rapamycin 
(mTOR) inhibitors can induce insulin sensitivity or insulin resistance. They have a mild 
diabetogenic impact in KT [19]. The prevention of PTDM and CVD includes reduced 

Figure 1. Factors involved in CVD development in kidney transplant recipients. Non-modifiable risk
factors are marked in blue, modifiable risk factors are marked in grey. FGF, fibroblast growing factor.

2. Post-Transplant Diabetes Mellitus

Post-transplant diabetes mellitus (PTDM) develops in 20–30% of KT patients and
represents a frequent cause of cardiovascular events and mortality [7,8]. PTDM includes all
newly diagnosed diabetes mellitus (DM) in the post-transplant setting, irrespectively of the
timing of diagnosis or whether DM was present but undetected before transplantation [9].
The diagnosis of DM must be performed according to American Diabetes Association
guidelines [10]. Risk factors for PTDM are the same as type 2 DM: familial predisposition,
age, overweight, dyslipidemia, hypertension etc. The likelihood of PTDM is higher in
patients with risk factors for DM already present before transplantation [11]. However, a
major role is also played by immunosuppressive drugs. Glucocorticoids exert diabetogenic
effects with different mechanisms [12–19]. They increase appetite, promote leptin resistance
and decrease glucose uptake in myocytes. In vitro studies demonstrated that glucocorti-
coids may alter the functions and induce apoptosis of β-cells. In the liver, they upregulate
enzymes involved in gluconeogenesis and promote insulin resistance. In adipocytes, glu-
cocorticoids decrease glucose uptake. Moreover, glucocorticoids suppress the expression
of osteocalcin, which promotes insulin secretion by β-cells, thereby indirectly inhibiting
insulin secretion [12,13]. Calcineurin inhibitors (CNI) are involved in the development
of diabetes after KT. They impair insulin secretion and cause insulin resistance [14,15].
Tacrolimus is more diabetogenic than cyclosporine [16], probably because tacrolimus can
exert a direct toxicity on pancreatic cells and can favor glucose reabsorption, as shown
by experimental studies [17,18]. MammaBlagosklonny19lian target of rapamycin (mTOR)
inhibitors can induce insulin sensitivity or insulin resistance. They have a mild diabetogenic
impact in KT [19]. The prevention of PTDM and CVD includes reduced caloric intake and
physical exercise to maintain a healthy body weight. Hypomagnesemia is an independent
risk factor of PTDM, since magnesium regulates insulin secretion and sensitivity [20]. It is
recommended to closely monitor the magnesium levels in the post-transplant period [21].
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The management of diabetes after renal transplant is challenging. Current evidence
suggests that metformin is the first-line treatment in patients without atherosclerotic cardio-
vascular disease, chronic kidney disease (CKD) and heart failure. However, if one or more
of these comorbidities are present, a sodium glucose cotransporter-2 inhibitor (SGLT2i)
or alternatively a glucagon-like peptide-1 receptor agonists (GLP-1 RA) should be started
together with metformin [22]. In Figure 2, the main advantages and disadvantages of oral
hypoglycemic drugs used in KT are reported.
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Metformin has been shown to exert beneficial effects on the kidney in various clinical 
trials and experimental studies [23]. However, it is still contraindicated in patients with 
glomerular filtration rate (GFR) < 30 mL/minute [24]. Severe hypoglycemia may occur 
with sulfonylureas, because of the drug–drug interaction with azole antifungals or other 
inhibitors of Cytochrome P450 family 2 subfamily C member 9. [25]. SGLT2i reduces the 
reabsorption of glucose in the proximal tubular cells and facilitate its excretion in urine. 
As glucose is excreted, its plasma levels fall, leading to an improvement in all glycemic 
parameter. SGLT2 inhibition has been shown to reduce cardiovascular mortality and pre-
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Figure 2. Most frequently used oral hypoglycemic medications (dark green) in kidney transplantation,
with the main advantages (light green) and concerns (light orange). BMI, body mass index; CV,
cardiovascular; CVD, cardiovascular disease; CYP2C9, cytochrome P450 family 2 subfamily C member
9; GFR, glomerular filtration rate; GI, gastrointestinal; DPP-4i, dipeptidyl peptidase-4 inhibitors GLP-
1 RA, glucagon-like peptide-1 receptor agonists; IST, immunosuppressive therapy; SGLT-2i, sodium
glucose cotransporter-2 inhibitors.

Metformin has been shown to exert beneficial effects on the kidney in various clinical
trials and experimental studies [23]. However, it is still contraindicated in patients with
glomerular filtration rate (GFR) < 30 mL/minute [24]. Severe hypoglycemia may occur
with sulfonylureas, because of the drug–drug interaction with azole antifungals or other
inhibitors of Cytochrome P450 family 2 subfamily C member 9. [25]. SGLT2i reduces the
reabsorption of glucose in the proximal tubular cells and facilitate its excretion in urine. As
glucose is excreted, its plasma levels fall, leading to an improvement in all glycemic param-
eter. SGLT2 inhibition has been shown to reduce cardiovascular mortality and preserve
kidney function in patients with type 2 DM [26,27]. Potential concerns of SGLT2 inhibi-
tion in KT recipients include volume depletion and urinary tract infections. A review of
9 studies, including 144 KT patients with diabetes, reported that SGTL2 inhibition resulted
in a modest improvement in glycemic control, weight reduction, small reduction in blood
pressure and stable renal allograft function. No serious side effects were reported [28].
In KT recipients, an improvement of glycemic control has been observed when SGLT2
inhibitors were added to other antidiabetic medications [29,30]. This class of drugs has not
been tested yet in patients with severe reduction of GFR (<30 mL/minute) [31]. Addition-
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ally, dipeptidyl peptidase-4 inhibitors (DPP-4i) and GLP-1 RA are used in PTDM. GLP-1
RA and DPP-4i are incretin agents that stimulate β-cell function, decrease insulin resis-
tance and slow gastric emptying [32]. Although data on GLP-1 RA in PTDM derive from
small randomized controlled trials and case series, some benefits have been highlighted.
GLP-1 RA are efficient in reducing glucagon secretion and increasing insulin secretion,
thus improving glycemic control [33]. They favor weight loss through the delay of gastric
emptying and the suppression of central appetite [34]. A reduction of cardiovascular
events and a renoprotective effect have been demonstrated in type 2 DM patients treated
with GLP-1 RA [32]. However, in KT recipients the same beneficial effect has not been
described [32]. DPP-4i is effective in improving insulin resistance and improving glycemic
control, as demonstrated by several studies [32]. DPP-4i can also favor body mass index
(BMI) reduction [35]. However, DPP-4i seems to be less effective in reducing hemoglobin
A1c compared to GLP-1 RA [36] No data are available on the effect of DPP-4i on major
adverse cardiovascular events in KT recipients.

Despite oral hypoglycemic medications being preferred to insulin in the treatment of
PTDM, about 50% of diabetic patients require insulin treatment. The dose and the type of
insulin should be decided on an individual basis. It is safer to obtain acceptable glucose
levels rather than insist on “ideal” lower glucose levels [11]. Attention should be paid to
the Somogyi effect and the dawn phenomenon. It is, therefore, recommended to keep the
values of glycemia in the early morning over 65 mg/dL.

3. Arterial Hypertension

Hypertension (HTN) is one of the strongest risk factors for CVD [37]. HTN is common
after KT and ranges from about 50% to 80% in both adults and children [38–40]. However,
a shared definition of post-kidney transplantation HTN does not exist and may be just
clinically defined as a persistently elevated or a new onset elevation of blood pressure
after successful KT [41]. In addition to poorer renal allograft outcomes, post-kidney trans-
plantation HTN is associated with an increased risk of CVD. It has been demonstrated
in the FAVORITE trial that higher systolic blood pressure is strongly and independently
associated with increased risk of CVD and all-cause mortality in KT recipients [42]. Ad-
ditionally, alterations of pulse pressure are associated with cardiovascular morbidity and
mortality [43].

Several factors may cause or aggravate post-kidney transplantation HTN. Among
these, immunosuppressive therapy with CNI and steroids has an important role. CNI may
induce HTN through the alteration of vascular tone and interfering with renal sodium
transport handling [41]. CNI-induced HTN is more evident with cyclosporine than
tacrolimus [44–46]. Although the exact mechanism is not known, CNI may activate the
sympathetic system and increase systemic vascular resistance by activating vasoconstrictor
factors while reducing the production of vasodilator compounds, such as nitric oxide [47].
The sympathetic overactivity, together with a reduced GFR caused by the afferent arteriole
constriction, determines an increased salt and water retention, with subsequent expansion
of extracellular fluids [48]. Moreover, CNI may exalt the salt-sensitive component of HTN
by activating the thiazide-sensitive sodium chloride cotransporter through an effect on the
with-no-lysine [K] kinase (WNK) and SPS1-related proline/alanine-rich kinase (SPAK) [49].
Steroids can cause HTN through different mechanisms that eventually cause an increase
of renal vascular resistance and the retention of water and salt. In fact, they exert miner-
alocorticoid effects, activate the renin-angiotensin system, potentiate vasoactive responses
to catecholamines, and suppress the production of vasodilators, such as prostacyclin and
nitric oxide [50]. Because of this effect on HTN, steroids avoidance or withdrawal during
maintenance immunosuppressive treatment should be considered. A systematic review
and meta-analysis showed that steroids avoidance or withdrawal is associated with better
cardiovascular outcomes at a cost of an increased risk of acute rejections [51]. However,
data on this approach are still conflicting. Another cause of HTN post-KT is renal artery
stenosis (TRAS), which is a common vascular complication. It may also lead to allograft
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dysfunction. Its reported incidence ranges between 1% and 23% [52]. The pathogenesis
of TRAS is related to vascular damage at the time of surgical anastomosis [53], but also to
immune-mediated vascular endothelial injury [54]. The pharmacological treatment of TRAS
is based on Renin-Angiotensin-Aldosterone System (RAAS) inhibition with angiotensin
converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARB). However,
in the case of worsening renal function and/or uncontrolled HTN, renal artery angioplasty
with stenting or surgical revascularization should be considered. There are no randomized
controlled clinical trials comparing pharmacological treatment vs. renal artery angioplasty
with stenting vs. surgical revascularization in TRAS, and data from non-transplant renal
artery stenosis are also not conclusive [41]. Generally, surgical revascularization is consid-
ered in the case of unsuccessful renal artery angioplasty with stenting. Finally, other causes
of post-transplant hypertension are renin production by failed native kidneys [55], weight
gain after transplantation [56] and chronic renal allograft dysfunction [40].

Weight control, sodium restriction, low fat intake, physical exercise and cessation of
smoking are strongly recommended to prevent hypertension. The target blood pressure
in renal transplant recipients should be <130 mm Hg systolic and <80 mm Hg diastolic,
regardless of other risk factors [57,58]. Calcium channel blockers, beta-blockers, diuretics,
ACEi and ARB are the antihypertensive drugs that proved to reduce the risk of CVD in the
general population [59]. These drugs are also frequently used in KT, with calcium channel
blockers and beta-blockers as the most used first-line treatment. The characteristics of the
most frequently used antihypertensive drugs in KT are reported in Table 1.

In the case of resistant HTN, defined as uncontrolled blood pressure despite a treat-
ment with three antihypertensive drugs of which one is a diuretic, secondary forms of HTN
must be ruled out. Apart from classical causes, renin production by failed native kidneys
may be a cause of resistant HTN [55,68]. In this case, pharmacological treatment with RAAS
inhibition or native nephrectomy should be considered. Several studies demonstrated that
after native bilateral nephrectomy a better blood pressure control with a reduction of anti-
hypertensive medications requirement is achieved both in adult and pediatric transplant
recipients [69–72].

In addition to the RAAS, failed native kidneys are associated with an overactivity of the
sympathetic nervous system [73]. Grounded on this pathogenic mechanism, native renal
denervation (RDN) has been investigated in renal transplantation [41]. Complete RDN
performed through bilateral native nephrectomy has been shown to improve HTN [72].
However, bilateral native nephrectomy may be burdened by surgical complications and
should be considered for selected patients with severe and uncontrolled HTN. Another
feasible approach is catheter-based RDN of native kidneys, although data are still scant.
Two clinical case reports demonstrated an improvement of hypertension after RDN of
native kidneys [74,75]. In a single center randomized controlled trial on 18 KT recipients
with resistant HTN, a better control of blood pressure was achieved with RDN compared
to pharmacological treatment alone [76].

The choice of the best treatment for post-kidney transplantation HTN should take
into account the heterogeneity of the pathogenesis of HTN in this setting and the peculiar
properties of antihypertensive medications, surgical nephrectomy and RDN. Considering
all these factors, the clinician should tailor the treatment to the single patient.
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Table 1. Main advantages and side effects of the drugs used in the treatment of hypertension in renal
transplant recipients.

Antihypertensive
Classes References Advantages Side Effects

Thiazide Diuretics Taber D. et al. [60]
Reduce extracellular expansion

Reduce arteriolar resistance
Consider in salt-sensitive HTN

Hypokalemia, hyponatremia
Reversible increase in serum creatinine

Loop Diuretics Rizk J. et al. [61] Reduce extracellular expansion
Effective in heart failure

Hypokalemia, hyponatremia,
hypomagnesemia

Hypovolemia
Ototoxicity

Calcium
Channel Blockers Baroletti S. et al. [62] Reduce arteriolar vasoconstriction

Reverse ventricular hypertrophy

Peripheral oedema
Gastroesophageal reflux

Gum hypertrophy
Non-dihydropyridine calcium channel
blockers increase cyclosporine levels

RAAS-inhibitors
(ACEi and ARB) Jiang Y. et al. [63]

Prevent heart failure
Prevent intimal thickening

Antiproteinuric effects

Small increase in serum creatinine
Hyperkalemia

Anemia
Worsening renal function in the setting

of TRAS or hypovolemia
Mineralcorticoid

Receptor
Antagonists

Girerd S. et al. [64] Improve outcomes in HFrEF Hyperkalemia

Beta-blockers Aftab W. et al. [65] Cardioprotective
Hyperlipidemia

Interference with glucose metabolism
Hypoglycemia in diabetic patients

Alpha2
adrenergic agonists Gavras I. et al. [66]

Peripheral vasodilation
No change in renal plasma flow

and GFR

Potential rebound HTN
Orthostatic hypotension

Dryness
Confusion

Constipation

Alpha1 antagonists Martinez-Castelao A.
et al. [67] Peripheral vasodilation Headache, drowsiness, numbness

Constipation

ACEi, angiotensin converting enzyme inhibitors; ARB, angiotensin receptor blockers; GFR, glomerular filtra-
tion rate; HFrEF, heart failure with reduced ejection fraction; HTN, hypertension; RAAS, Renin-Angiotensin-
Aldosterone System; TRAS, transplant renal artery stenosis.

4. Dyslipidemia

Lipid disorders are frequent in KT recipients and may contribute to cardiovascular
morbidity and mortality both in adult and pediatric transplant recipients [39,77,78]. Ad-
vanced age, smoking, diabetes, obesity, excessive intake of calories and/or saturated fats,
alcohol, high sugar beverages or foods, poor physical activity, hypothyroidism, proteinuria,
renal insufficiency, use of beta-blockers or diuretics, and genetic factors can predispose
to hypercholesterolemia and/or hypertriglyceridemia [79]. Immunosuppressive drugs
can also contribute to dyslipidemia. Glucocorticoids may enhance the activity of acetyl-
coenzyme A carboxylase and free fatty acid synthetase, increase hepatic synthesis of very
low-density lipoproteins (VLDL), downregulate low-density lipoproteins (LDL) receptor
activity of 3-hydroxy-3methylglutaryl coenzyme A (HMG-CoA) reductase and inhibit
lipoprotein lipase [80]. While tacrolimus does not play a significant role in post-transplant
hypercholesterolemia [81], cyclosporine downregulates the expression of the LDL receptor
by increasing proprotein convertase subtilisin/kexin type 9 (PCSK9), an enzyme which
degrades LDL receptors and decreases the transport of cholesterol to the bowel through
the inhibition of cholesterol 7-alpha-hydroxylase [82,83]. Hypertriglyceridemia can occur
in tacrolimus-treated patients and may be favored by high levels of the drug and decrease
of lipoprotein lipase activity [84]. The mTOR inhibitors can frequently induce hypercholes-
terolemia. The mechanisms are still poorly elucidated. It is likely that mTOR inhibitors
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increase PCSK9 levels which are strong regulators of LDL cholesterol levels [85]; they can
also increase adipose tissue lipase activity and/or decrease lipoprotein lipase activity [86].
On the other hand, both sirolimus and everolimus may exert cardioprotective effects, by
inhibiting intimal proliferation and stabilizing the atherosclerotic plaque [87].

The management of dyslipidemia includes physical activity, diet (poor intake of
saturated fatty acids, particularly animal fats) and reduced doses of immunosuppressive
agents and lipid-lowering agents (Figure 3). Patients with hypertriglyceridemia should be
placed on a hypocaloric diet that restricts the intake of simple sugars and alcohol, while
limiting fat intake to less than 30% of total daily calories.
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HMG-CoA reductase inhibitors, also called statins, may reduce LDL, increase high-
density lipoproteins (HDL) and slightly decrease triglycerides [88]. Statins are the first-
line treatment of hypercholesterolemia and are recommended for people with an LDL
cholesterol level higher than 190 mg/dL [89]. Since statins and CNI are both metabolized
by the P450 cytochrome (CYP450) enzymatic system, pharmacokinetic interactions are
likely to occur. A Cox regression analysis on 622 KT recipients followed in mean for
5.4 years showed that statins did not significantly decrease incident cardiovascular events,
possibly due to a bilateral pharmacological interaction [90]. Statins are generally well
tolerated, but myopathy may occur. Statin-associated myopathy, with significant elevation
of serum creatine kinase (CK), is a rare but serious side effect of statins, affecting 1 per 1000
to 1 per 10,000 people on standard statin doses.

Fibrates (clofibrate, bezafibrate, fenofibrate, ciprofibrate and gemfibrozil) induce a
reduction in hepatic VLDL synthesis and an increase in lipoprotein lipase activity, thereby
causing a reduction in triglycerides concentrations and an increase in HDL cholesterol
concentration. A systematic review and meta-analysis demonstrated that fibrates could
improve lipid profiles and prevent cardiovascular events in people with CKD. Fibrates can
also reduce albuminuria and reversibly increase serum creatinine [91]. Probably, there is
little interaction between fibrates and CNI, but to be on the safe side, in transplant patients,
it is better not to exceed a daily dose of 900 mg for gemfibrozil, 400 mg for bezafibrate or
200 mg for fenofibrate.



J. Pers. Med. 2022, 12, 1200 8 of 19

Ezetimibe selectively inhibits the intestinal absorption of cholesterol and related
phytosterols. At a dose of 10 mg/day, ezetimibe can reduce hypercholesterolemia and
hypertriglyceridemia in renal transplant recipient given maximal doses of statin [92]. In
transplant patients resistant to statins, the addition of ezetimibe determined a decrease
of total cholesterol, LDL and triglycerides by 21%, 31% and 13%, respectively. CK, liver
enzyme serum levels and renal function were not affected to any level of clinical significance
with the addition of ezetimibe [93].

Anti-PCSK9 antibodies, alirocumab and evolocumab are monoclonal antibodies ap-
proved for clinical use in the treatment of hypercholesterolemia. They have a significant
activity in lowering cholesterol levels and reducing the risk for CVD, without relevant
safety issues [94]. Angiopoietin-like protein3 and apolipoprotein C-III are regulators of
triglycerides that have been identified as targeting agents in recent clinical trials [95].
However, no data are available about the use of these new drugs in KT.

5. Obesity

The percentage of obese patients has steadily increased in recent decades, and since
obesity is a risk factor for end-stage renal disease, the same increase has been also observed
in renal transplant candidates [96]. Obesity is not only associated with an increased risk of
surgery complications [97], but also negatively influences graft survival and determines
a higher risk of CVD [96]. A systematic review found that a BMI >30 kg/m2 was associ-
ated with increased mortality and decreased graft survival compared to patients with a
BMI < 30 kg/m2 [98].

It has been demonstrated that a 5 unit increase in recipient BMI can increase the risk
of cardiac disease by 25% [99]. However, it is very difficult to determine the real impact of
obesity on CVD, since it is a well-recognized risk factor for hypertension, dyslipidemia,
impaired glucose tolerance and proteinuria, all of which increase cardiovascular risk [100].
Probably for this reason, systematic reviews did not find a statistically significant association
between obesity and cardiovascular mortality [101]. However, considering the effect of
obesity on other risk factors, weight loss through dietary advice and physical activity
should be encouraged in all renal transplant recipients with BMI > 30 kg/m2.

6. Graft Dysfunction and Proteinuria

Many events may be responsible of progressive graft dysfunction, including rejection,
recurrent or de novo renal and systemic diseases, drug-related nephrotoxicity, polyoma BK
virus nephropathy, poor quality of the donated kidney, poor adherence to prescriptions,
etc. Whatever the cause, in KT, a low estimated GFR (eGFR) is a major risk factor for
cardiovascular events [102]. The association of graft dysfunction with conventional risk
factors, such as arterial hypertension, glucose intolerance and abnormal lipoprotein, and
other risk factors, such as anemia, oxidative stress and inflammation, may contribute to the
development of CVD in patients with reduced kidney graft function. Persistent proteinuria
is an independent risk factor for increased cardiovascular morbidity and mortality in
renal transplant patients [103]. The impact of proteinuria on CVD is even greater when
it is associated with poor renal allograft function, suggesting that eGFR and albuminuria
should be used together to determine the risk of cardiovascular outcomes in transplant
recipients [104].

7. Hyperuricemia

In KT, the causal relationship between hyperuricemia and CVD remains debated [105].
However, uric acid may be pathogenic and participate in the pathophysiology of CVD
by serving as a bridging mechanism that mediates or potentiates the deleterious effects
of cardiovascular risk factors on vascular tissue and myocardium [106]. Allopurinol re-
mains the cornerstone drug to reduce uricemia to ≤ 6 mg/dL, which is considered the
minimum target of urate-lowering drugs [107]. Febuxostat is an acceptable alternative
for the treatment of hyperuricemia. A prospective, randomized trial of febuxostat versus
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allopurinol showed that the two drugs were comparable with respect to the primary car-
diovascular endpoint and long-terms untoward events [108]. Additionally, a retrospective
study comparing febuxostat and allopurinol in early post-renal transplant recipients did
not find differences in the efficacy and safety between the two drugs [109]. Febuxostat
dose adjustment is not necessary in patients with renal function impairment [110]. Both
allopurinol and febuxostat inhibit the activity of xanthine oxidase, an enzyme involved in
the metabolism of 6-mercaptopurine. Caution should be taken before administering these
drugs to patients taking azathioprine. To prevent bone marrow aplasia, it is mandatory to
reduce the dose of azathioprine to one third and to check blood count frequently.

8. Hyperhomocysteinemia

Elevated levels of homocysteine are common in renal transplant recipients and are
mainly associated with graft function and only to a lesser degree with vitamin status [110].
Whether hyperhomocysteinemia in renal transplant recipients is an innocent marker of renal
dysfunction or an important risk factor for atherosclerosis is still discussed. Retrospective
studies concluded that plasma levels of homocysteine are neither correlated with patient
nor with graft survival [111], while prospective studies demonstrated that they represent
an independent variable associated with cardiovascular events [112]. In a large randomized
controlled trial, 4110 stable KT recipients were assigned to a high dose or low dose of
multivitamin therapy, which included folic acid and vitamins B6 and B12. Treatment with a
high-dose multivitamin preparation did not reduce a composite CVD outcome or all-cause
mortality, despite significant reduction in homocysteine level [113]. A large review of the
literature also concluded that there is no evidence to support the use of homocysteine-
lowering therapy for cardiovascular disease prevention in KT recipients [114]. At present,
treatments with folic acid and vitamins B6 and B12 do not represent a therapeutic solution
for preventing CVD after KT.

9. Inflammation and Oxidative Stress

Inflammation and oxidative stress are known risk factors for CVD in KT recipi-
ents [115]. Several factors, such as donor brain death, ischemia-reperfusion injury, rejection,
infection and chronic allograft dysfunction, may induce an inflammatory state in KT. Fur-
thermore, inflammatory cells, cytokines, growth factors, complement, coagulation cascade
and oxidative stress create an unbalanced interaction with innate and adaptive immunity,
which are both heavily involved in atherogenesis [116,117]. In addition, a prothrombotic
state and reduced fibrinolysis are present in KT. The interactions between inflammation
and thrombosis may increase the risk of CVD [118]. Inflammation is also associated with
elevated levels of fibroblast growth factor 23 (FGF23) and low levels of Klotho, which
contribute to major adverse cardiovascular events [119,120]. Another major consequence
of the inflammatory/oxidative state is the development of chronic hypoxia [121]. Through
the mediation of interleukins 1 and 6, angiotensin II and transforming growth factor-β,
hypoxia can result in excessive accumulation of extracellular matrix [122,123]. The final
result of extracellular matrix (ECM) deposition is the development of tubulointerstitial
fibrosis and vascular ischemia, which can further aggravate hypoxia and activate the innate
immune system, leading to uncontrolled intra-graft fibrogenesis and allograft dysfunction,
disruption and replacement of functional parenchyma, release of inflammatory mediators
and reactive oxygen species and induction of epithelial–mesenchymal transition [124].
Oxidative stress increase is directly correlated to the reduction of graft function [125].
Lifestyle and regular physical activity may reduce inflammation and oxidative stress. No
prospective controlled trial to assess the validity of different drugs has been conducted
in KT.

10. Klotho and Fibroblast Growth Factor 23

Klotho is a transmembrane protein produced by kidney, which is cleaved by secretases
and released into the circulation as soluble Klotho, which functions as a coreceptor of
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Fibroblast Growing Factor (FGF) receptors to activate FGF23. There is evidence that Klotho
deficiency is a pathogenic factor for CVD and excess of FGF23 may also contribute to
CVD [119,126]. Most candidates to renal transplant present low levels of Klotho and
elevated levels of FGF23 [127,128]. The level of Klotho tends to decrease in the presence of
kidney graft insufficiency with a correspondent increase in levels of FGF23 [129]. A study
in KT recipients demonstrated that recombinant human erythropoietin may mitigate the
Klotho reduction caused by renal damage [130].

11. Vascular Calcifications

Vascular calcifications are frequent in KT recipients and are associated with an in-
creased risk of CVD and mortality [131]. In many cases, calcifications are already present
before transplantation and may be caused by hypocalcemia, hyperphosphatemia, secondary
hyperparathyroidism, decreased vitamin D and/or increased levels of osteoprogeterin
and sclerostin [132]. After transplantation, some of these disorders may improve, but low-
grade inflammation with persistent redox imbalance and deregulated mineral and bone
metabolism can accelerate vascular calcifications [133]. A further contributor to vascular
calcifications is osteoprotegerin cytokine receptor of the tumor necrosis factor receptor
superfamily, which can cause arterial stiffness in KT recipients [134]. The calcification
propensity is associated with an increased risk of all-cause mortality and cardiovascular
mortality in KT recipients [135].

Prevention of vascular calcifications rests on lowering the circulating levels of both
phosphate and calcium. Current treatments are based on calcimimetics, bisphosphonates,
thiosulfate, and supplement of vitamin D in case of deficiency [136]. In patients with
vascular calcifications vitamin K deficiency is frequent [137], but a double-blind, placebo-
controlled trial reported that vitamin K supplementation did not reduce vascular stiffness
or calcification in KT recipients [137]. Pyrophosphate, an endogenous inhibitor of calcifica-
tion, proved to prevent calcifications in animal studies, but has not been investigated in
KT recipients.

12. Smoking

Smoking represents one of the most important preventable risk factors for the de-
velopment of cardiovascular events. In organ transplant recipients, tobacco smoking is
associated with CVD and decreased patient and graft survival [138]. In a series of 864 adult
renal transplant recipients, smoking increased the risk of CVD by 30% [139]. In a retrospec-
tive cohort of 41,705 adult renal transplant recipients, incident smoking after transplant
was associated with a risk of death more than doubled in comparison with never smok-
ers [140]. Smoking cessation may be associated with substantial health benefits for all
smokers [141]. Since the successful rate of smoking cessation without a treatment is poor,
smoking cessation programs are emerging as an important part of KT recipients’ treat-
ment [142]. When counseling alone is not sufficient, a pharmacological treatment should be
considered. Nicotine replacement therapy (NRT) is effective and has no contraindications
and few adverse effects [143]. Bupronion is an antidepressant which inhibits dopamine
and norepinephrine uptake. It is as effective as NRT, but is burdened by several adverse
effects (e.g., rash, headache, dry mouth, dizziness and sleep disorder), and requires dose
adjustment in advanced stages of CKD [144]. Finally, two nicotinic cholinergic receptor
partial agonists, varenicline and cytisine, are effective for smoking cessation with mild
adverse effects (nausea, vomiting and sleep disorders) [142].

13. Physical Inactivity

Poor physical activity at the time of KT is a strong predictor of all-cause mortality,
particularly in older recipients, smokers and diabetics [145]. However, most transplant
recipients, in particular elderly subjects and children, are sedentary. Many patients do
not exert physical activity because they believe that their disability on dialysis did not
change following transplantation. In a study on renal transplant recipients, the risk of
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cardiovascular death and all-cause mortality was significantly higher in patients with
poor physical activity [146]. In a large multiethnic, multicenter trial on homocysteine
in KT recipients, lower levels of physical activity were associated with more CVD risk
factors [145]. In transplanted children, a weekly physical exercise of 3–5 h significantly
improved cardiorespiratory fitness and the left ventricular mass [147]. To reduce the burden
of cardiovascular risk factors in KT recipients, prehabilitation before KT and post-transplant
physical activity should be encouraged [148–150].

14. Anemia

Anemia is common after KT [151]. Late anemia (>6 months) is mainly caused by
impaired kidney graft function and defective erythropoietin production. Iron deficiency is
common and is associated with an increased mortality risk in KT recipients [152]. ACEi,
azathioprine, mycophenolate salts, mTOR inhibitors and viral infections may trigger or
aggravate anemia.

Chronic anemia may increase preload, reduce afterload and lead to a hyperdynamic
state with increased cardiac output, left ventricular hypertrophy and maladaptive left ven-
tricular hypertrophy, which in turn is a well-recognized risk factor for CVD outcomes and
all-cause mortality [153]. Anemia has been reported to be an independent risk factor for de
novo congestive heart failure in renal transplant recipients [154]. Erythropoiesis-stimulating
agents and iron supplementation are currently used to correct post-transplant anemia.

15. Vitamin D Deficiency

Vitamin D is metabolized first to 25-hydroxyvitamin D [25(OH)D] and is hydrolyzed
in the kidney to the active form 1,25(OH)D2 or vitamin D3. Vitamin D regulates renin-
angiotensin-aldosterone system, nitric oxide production, and exert anti-oxidant and anti-
inflammatory effects [155]. The recommended 25(OH)D level after transplant is at least
30 ng/mL (75 nmol/L). Vitamin D deficiency is frequent after KT [156] and this condition
may render transplant recipients more susceptible to cardiovascular events and mortal-
ity [157]. Despite this, many trials have failed to find a beneficial effect of vitamin D
supplements on CVD outcomes and there are some concerns related to calcium use and in-
creased CVD risk [158]. These findings, along with the lack of consensus on optimal serum
25(OH)D concentrations, have reduced the initial enthusiasm for vitamin D supplements.

16. Quality of Life

Although Quality of Life (QoL) scores tend to improve after transplantation [159],
KT recipients experience significant physical and psychosocial challenges and several
difficulties, including health anxiety, body image concerns, sleep disorders and depressive
symptoms [160,161]. Little is known about the association between QoL and cardiovascular
risk factors in KT. However, in the general population, psychological factors, such as
major depression and stress, are now known as independent risk factors for developing
CVD [162,163]. Interventions such as increasing exercise and training appear to be safe
in KT recipients and are associated with improved QoL and exercise capacity [149,164].
Sleeplessness may be reduced by avoiding or reducing the use of caffeine, alcohol and
medications that can cause insomnia. Administering short-acting glucocorticoids in a single
morning administration may reduce sleeplessness.

17. Sleep Apnea

In the general population, sleep apnea (SA) increases the risk of CVD independently
from other cardiovascular risk factors [165]. SA prevalence in CKD patients is about 27%
and increases in parallel with the reduction of GFR, with a prevalence of 57% in patients
with end-stage kidney disease [166]. The higher prevalence seems to be correlated to fluid
overload, uremic toxicity and altered chemosensitivity, but this hypothesis needs to be
confirmed [167]. Although the improvement of both fluid overload and uremic toxicity
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after KT, SA recurs on long term observation. However, in this population, SA is not
associated with poorer renal allograft outcomes or increased CVD [167].

18. Conclusions

Cardiovascular disease is a frequent cause of morbidity after KT and represents the
leading cause of mortality [1]. The pathogenesis of cardiovascular disease in KT recipients is
multifactorial, as has been described in this review. Modifiable risk factors that develop after
KT represent possible therapeutic targets to prevent CVD. After transplantation, smoking
cessation, maintenance of ideal body weight, healthy diet, physical activity, and adherence
to prescriptions are strongly recommended. Whenever possible, the immunosuppression
should be tailored to the clinical characteristics of the patient, by reducing the use of
glucocorticoids, CNI or other drugs in patients with major risk factors for CVD. Treatment
of post-transplant diabetes, hypertension and/or hyperlipidemia should be timely and
vigorous. Prevention and treatment of anemia is also important. Still under discussion
are other measures to prevent CVD, including urate-lowering therapy, supplementation
of vitamin D, treatment with folic acid, vitamin B6 and B12 and use of anti-inflammatory
and anti-oxidant drugs. Reduction of cardiovascular morbidity can improve not only the
life expectancy and the quality of life of the transplant recipients, but also their allograft
function and survival.
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Abbreviations

25(OH)D 25-hydroxyvitamin D
ACE Angiotensin converting enzyme
ACEi Angiotensin converting enzyme inhibitors
apoCIII Apolipoprotein CIII
ARB Angiotensin receptor blockers
BMI Body mass index
CK Creatin kinase
CKD Chronic kidney disease
CNI Calcineurin inhibitors
CVD Cardiovascular disease
CYP Cytochromes P
CYP2C9 Cytochrome P450 family 2 subfamily C member 9
CYP450 P450 cytochrome
DPP-4i Dipeptidyl peptidase-4 inhibitors
ECM Extracellular matrix
eGFR Estimated glomerular filtration rate
FGF Fibroblast growing factors
FGF23 Fibroblast growth factor23
GI Gastrointestinal
GFR Glomerular filtration rate
GLP-1 RA Glucagon-like peptide-1 receptor agonists
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HFrEF Heart failure with reduced ejection fraction
HDL High-density lipoprotein
HMG-CoA 3-hydroxy-3-methyl-glutaryl-coenzyme A
HTN Hypertension
IST Immunosuppressive therapy
KT Kidney transplantation
LDL Low-density lipoprotein
mTOR Mammalian target of rapamycin
NRT Nicotine replacement therapy
PCSK9 Proprotein convertase subtilisin/kexin type 9
PTDM Post-transplant diabetes mellitus
QoL Quality of Life
RAAS Renin-Angiotensin-Aldosterone System
RDN Renal denervation
SA Sleep apnea
SGLT2i Sodium glucose cotransporter-2 inhibitors
SPAK SPS1-related proline/alanine-rich kinase
TRAS Transplant renal artery stenosis
VLDL Very low-density lipoprotein
WNK With-no-lysine [K] kinase
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