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A Derivative Method with Free Radical Oxidation to Predict Resveratrol
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Abstract: In this study, we demonstrated an oxidative method with free radical to generate 3,5,4'-trihydroxy-trans-
stilbene (trans-resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography
electrospray ionization tandem mass spectrometer (LC-ESI-MS/MS). In this oxidative method, the free radical initiator,
ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and
the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer pre-
ventative qualities, produces metabolites including dihydroresveratrol, 3,4’-dihydroxy-trans-stilbene, lunularin, resveratrol
monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of
resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages
of free radical oxidative method of its in sifu generation of oxidative derivatives followed by LC-ESI-MS/MS can be util-

ized to evaluate different metabolites in various conditions.

Keywords: Free radical, metabolite, resveratrol, ammonium persulfate (APS), liquid chromatography tandem mass spectrome-

try (LC-MS/MS), multiple reaction monitoring (MRM).

1. INTRODUCTION

In the last decades, metabolomics has developed at an
amazing rate in the —omics field. At an early stage of devel-
opment in the research of metabolic derivatives, biological
generation method can be used; specifically, human and rat
liver microsomes (HLMs & RLMs) were processed to inves-
tigate metabolites with specific cytochrome P450 (CYP450)
activity [1-4]. However, metabolites studied by HLM and
RLM methods are expensive, time consuming, and labor
intensive. Besides, under different conditions and extraction
times, the results of HLM or RLM treatments will display
different profiles in HLM and RLM metabolites [1].

In addition, electrochemical methods for producing me-
tabolites, such as cyclic voltammetry (CV) use various buffer
solutions, probes, and voltage values to generate oxidative
and reductive derivatives. For example, metabolic or oxida-
tive products of uric acid were detected by C-60-modified
glassy carbon electrodes [5], and multi-walled carbon-
nanotube-modified carbon-ceramic electrodes [6]. In another
studies, electrochemical oxidation of adenosine and
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guanosine-5'-triphosphate was investigated by glassy carbon
and pyrolytic graphite electrodes [7, 8]. Additionally, DNA
and DNA-related biological researches including DNA dam-
age were demonstrated [9-11]. However, CV is an off-line
technique and is incompatible with tandem MS. Further-
more, researchers have to contend with electrode aging,
probes’ activity and stability loss over time. The results of
CV technique cannot directly show compound antioxidant
capacities [12]. Consequently, there was a novel method
which was integrated Fenton reaction to generate free radical
and CV to demonstrate mimic drug metabolites in phase I
period [13, 14].

Nevertheless, for studying well-known metabolites, it is
convenient to utilize the detection mode multiple reaction
monitoring (MRM) by tandem mass spectrometry. In the
previous studies, electrochemical cells (EC) coupled with
electrospray ionization—tandem mass spectrometer (EC-ESI—
MS/MS) can be used as powerful online instruments for oxi-
dative derivative detection and prediction of metabolites [15-
19]. In recent years, the application of EC-ESI-MS/MS sys-
tems has been extended to include separation apparatus such
as liquid chromatograph (LC) to generate EC/LC-ESI-
MS/MS systems [13, 14]. Using this type of instrument,
tetrazepam metabolism has been investigated by comparing
in vivo and in vitro methods [18, 19]. Similar EC/LC-
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MS/MS methods have been developed for many applications
including protein adduct formation by thimerosal with hu-
man serum albumin and B-lactoglobulin A [20], protein ad-
duct formation of aniline [21], nucleotide oxidative products
generation and identification [22], and protein/peptide disul-
fide bond conformation by tracking electrolytic cleavage [23].

In this study, we generated free radical persulfate from
ammonium persulfate (APS) to demonstrate the oxidative
derivatives and to predict the metabolites of resveratrol.
Without CV and EC supporting, the results in metabolites of
resveratrol could be shown in MS profiles. Comparison with
previous studies on the metabolism of resveratrol [24, 25],
we monitored the production of dihydroresveratrol, 3,4'-
dihydroxy-trans-stilbene, lunularin, resveratrol monosulfate,
and dihydroresveratrol monosulfate. By free radical oxida-
tive method coupled with LC and tandem MS, we created an
online sequentially analytical system capable of following
metabolic progression. The APS oxidation method is based
on a previous study that utilized Fenton reactions to demon-
strate the oxidative derivatives of nicotine [26]. Because of
its online, sequential nature, this method has several advan-
tages, such as it saves time as well as avoids electrode con-
tamination and flow cell cracking (max. pressure: 40 psi,
Antec Leyden, Zoeterwoude, The Netherlands). Another
important advantage is that this sequential analysis can iden-
tify the changes in oxidative derivatives over time. Based on
the results, we can utilize this method to predict the produc-
tion of metabolic derivatives.

In this paper, we took resveratrol (3,5,4'-trihydroxy-
trans-stilbene, Res) as a model to demonstrate free radical
oxidative method. Resveratrol is a phytophenol being found
in natural foods including grapes, peanuts, and berries [27].
Resveratrol is reported to possess multiple functions such as
lifespan extension [28], antioxidant effects [29], anti-
inflammatory effects [30, 31], cardiovascular protective ef-
fects [32, 33], cancer prevention, and therapeutic effects [34,
35]. trans-Resveratrol, as a phytophenolic compound, has
been recognized in intracellular forms by metabolic enzymes
[25]. However, it is unclear whether it is resveratrol or one of
its metabolites that produce these effects [36]. Based on
these factors, we selected resveratrol as a model to evaluate
free radical method by APS and compare with previous stud-
ies [24, 25]. The free radical oxidative method is different

Table 1.
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from sulfotransferase catalyzing resveratrol into related
monosulfate compounds. However, metabolites can be gen-
erated and detected by utilizing suitable reactive chemical or
buffer conditions.

2. MATERIAL AND METHOD
2.1. Chemicals

The chemical reagents including formic acid (FA, ACS
reagent, >96% to volume), frans-resveratrol, and APS were
obtained from Sigma-Aldrich (St. Louis, MO, USA). Metha-
nol (MeOH) and acetonitrile (MeCN, LC-MS grade) were
purchased from J. T. Baker (Phillipsburg, NJ, USA). De-
ionized water was produced by a Milli-Q system with 18.2
MQ cm resistivity at 25 °C (Millipore, Bedford, MA).

2.2. Production of Resveratrol Metabolites with APS Free
Radicals in MS Scanning Mode

APS (10% to volume) was prepared in a water solution,
and resveratrol was dissolved in methanol to obtain a 10 mM
resveratrol alcohol solution. The experimental solution con-
sisted of 1764 puL of 0.1% FA (by volume), 18 puL of 10 mM
resveratrol, and 18 pL of a 10% APS to finally generate a
solution containing 0.1% APS (by volume) and 100 uM res-
veratrol. APS in solution served as a catalyst and an oxidant
in these experiments. The gradient in the separation system
was set at 15 min in one experiment, and 30 experiments
were conducted according to priority to the online sequential
sampling schedule.

2.3. MRM transitions of Oxidative Derivatives

Resveratrol oxidative derivatives can be sequentially
monitored via continuous sampling. The MRM scanning
mode focuses on precursor ions (m/z of oxidative deriva-
tives) and product ions (m/z of fragmented ions) with respec-
tive MRM transitions shown in Table 1.

2.4. Instruments

The separation system was an ultrahigh-pressure liquid
chromatograph (UHPLC, Acella 1250 UHPLC, Thermo
Fisher Scientific Inc., Waltham, MA, USA) coupled with
ESI-MS/MS (Thermo Finnigan TSQ Quantum Ultra Mass
Spectrometer Analytic System, Thermo Fisher Scientific

Predictive metabolic derivatives of resveratrol by free radical oxidation-ESI-MS/MS. Molecular formula, molecular

weight, and m/z of parent ion and daughter ions are listed.

Name Molecular Formula Mw (Da) Precursor ion# Product ions
trans-Resveratrol C4H 1,05 228.24 227 143, 185
Dihydroresveratrol C,H,,0; 230.26 229 817,122%, 123", 144
3,4'-Dihydroxy-trans-stilbene C4sH,0, 212.24 211 115, 143*, 169
Lunularin Ci:H140, 214.26 213 106, 107"
Resveratrol monosulfate C14sH1,06S 308.31 307 201, 243
Dihydroresveratrol monosulfate C4sH1,06S 310.32 309 201, 243

# Because the tandem MS method is conducted in the negative mode, the m/z of parent ions in each compounds decreases by one Da.

* The m/z of product ions is referred from a previous study [24].
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Inc.). The ESI ion source was 3.0 kV in negative polarity
with a tube lens offset of —188 V. Furthermore, vaporizing
and capillary temperatures were set at 270 °C and 350 °C,
respectively, and sheath gas and aux gas pressures were set
at 35 and 10 (arbitrary units), respectively. The collision
energy adjusted to 20 V with ramping 5 V, and collision
pressure was set at 1.0 (arbitrary units). The full scan (FS)
mode was set at m/z 60—-350 Da in the first quadrupole
chamber and unknown oxidative products with high intensi-
ties were separated, detected, and selected (intensity > 104)
into MS collision chamber with two high-intensity signals
(data dependant scan). The transferred ions passed into the
collision-induced dissociation (CID) chamber for MS/MS
fragmentation with a collision energy of 20 V, and further
detected in the third quadrupole chamber at m/z 10-350 Da.
The mass spectra were acquired by Xcalibur software (ver-
sion 2.2, Thermo-Fisher Scientific Inc., San Jose, CA, USA).
The sample containing oxidative derivatives was injected
directly into the UHPLC via Acella 1250 autosampler and
separated on a Shiseido HPLC CAPCELL PAK C18 MGII
column (150 mm X 1.5 mm, 3.0 um, Tokyo, Japan). The
UHPLC flow rate was set at 200 pL/min (gradient pump),
and the mobile phases were prepared with (A) 0.1% FA in
water and (B) 0.1% FA in 100% MeCN with a linear gradi-
ent as follows: from 5% (B) in 2 min, 5%-40% (B) in 5 min,
40%-95% in 3 min, 95% (B) in 1 min, 98%—5% (B) in 0.1
min and 5% (B) in 4.9 min.

3. RESULTS AND DISCUSSION

3.1. APS Free Radical Generation for the Production of
Oxidative Derivatives

A simple representation of the experimental concept is
shown in Fig. (1). APS is able to produce two persulfate free
radicals, shown in Fig. (1A), and oxidative derivatives can
be generated in a sample bottle. The reacted oxidative prod-
ucts are injected into the LC-MS/MS by an autosampler for
characterization of oxidative derivatives and to obtain their
structural information. A simple diagram of the experimental
process is shown in Fig. (1B).

3.2. MS and MS/MS Spectra of Resveratrol and its Oxi-
dative Derivatives

A Structural identification of resveratrol metabolic de-
rivatives was demonstrated by tandem MS experiments. The
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detailed structures of metabolic derivatives were obtained by
fragmented spectra of MS/MS and compared with previous
reports [24, 25]. Additionally, according to the results of the
APS free radical method and previous studies, before APS
addition, there was only one peak belonging to resveratrol at
m/z 227 in the chromatogram’s base peak (data shown in Fig.
2A). However, there were some oxidative derivative peaks
that were observed at m/z 307, 309 and 229 after APS was
added. In Fig. (2B), the resveratrol monosulfate ion at m/z
307 was extracted by Xcalibur software after APS treatment,
and the spectra of other oxidative derivatives were also ex-
tracted (data not shown).

The individual derivatives of fragmented ions were de-
termined by LC-MS/MS, and the structural information be-
longing to oxidative derivatives was identified. Based on
MS/MS spectra of Fig. (3A—F) and previous reports [24, 25],
resveratrol (m/z 227) has fragmented ions at m/z 185 and
143. Additionally, the reducing form of resveratrol, dihy-
droresveratrol, produces characteristic MS/MS ions at m/z
144. However, according to the study by Bode et al. [24],
dihydroresveratrol has other fragmented ions such as m/z
123, 122 and 81. In Fig. (3C and D), resveratrol monosulfate
and dihydroresveratrol monosulfate have similar fragmented
ions, at m/z 243 and 201. Finally, a hydroxyl group was sub-
tracted by APS radicalization, and the derivatives included
3,4'-dihydroxy-#rans-stilbene and lunularin represented by
ions at m/z 211 and 213. The fragmented ions of 3,4'-
dihydroxy-trans-stilbene were at m/z 169 and 145. Further-
more, the fragmented ions belonging to lunularin were at m/z
171 and 106, and the MS/MS spectra of 3,4'-dihydroxy-
trans-stilbene and lunularin are shown in Fig. (3E and F).
The final result indicates that we can generate MS and
MS/MS data belonging to resveratrol and its oxidative de-
rivatives to create an MRM method. MRM transitions are
shown in Table 1.

3.3. RESVERATROL AND ITS OXIDATIVE DERIVA-
TIVES BASED ON SEQUENTIAL ANALYSIS BY
MRM

Resveratrol and its oxidative derivatives were separated
and detected by LC-MS/MS via the MRM scanning mode.
According to Table 1, the MRM transitions were set with
m/z based on the characteristic fragmented ions belonging
to resveratrol and its derivatives such as m/z 227 > 185 and

Free Radical Oxidation
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Fig. (1). Schematic representations of the free radical oxidative method; (A) free radicals generated by ammonium persulfate; (B) chemical
scheme for the formation of resveratrol derivatives and the experimental detection apparatus.
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Fig. (3). MS/MS spectra of resveratrol and its derivatives with fragmented ion spectrum and proposed fragmentation pathways (A—F); res-
veratrol (m/z 227, A), dihydroresveratrol (m/z 229, B), resveratrol monosulfate (m/z 307, C), dihdroresveratrol monosulfate (m/z 309, D),

3,4'-dihydroxy-trans-stilbene (m/z 211, E), and lunularin (m/z 213, F).

m/z 227 > 143 as well as m/z 307 > 243 and m/z 307 > 201
of resveratrol monosulfate. Additionally, the conditions of
the MRM scanning mode in tandem mass were setup in a
negative ion mode, with 0.05 s in one transition, and colli-
sion energy was set at 23 V. Furthermore, the tune file of
tandem mass was adjusted in negative mode with a tube
lens offset —188 V.

MS spectra obtained from sequential sampling with the
MRM scanning mode are shown in Fig. (4). Fig. (4A) (se-
quential sampling 00) shows the spectra for the sample
where APS was not added; Fig. (4B) (sequential sampling
09) shows the spectra for the sample that was injected nine
times after APS addition; Fig. (4C) (sequential sampling
19) shows the spectra for the sample injected 19 times; and
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finally, Fig. (4D) (sequential sampling 30) shows the spec-
tra for the sample injected 30 times. According to the se-
quential sampling, the changes in quantities of individual
oxidative derivatives were observed. As the normalization
factor was based on the quantity of resveratrol, the changes
in quantities of every oxidative derivatives were followed
over time. According to the bar chart shown in Fig. (5), the
results of resveratrol metabolites changes in quantities with
time can be utilized to predict the generation of individual
resveratrol metabolites. According to Fig. (5A), resveratrol
monosulfate (m/z 307) increased with increasing concentra-
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tion, which is normalized by resveratrol (m/z 227). How-
ever, dihydroresveratrol monosulfate (m/z 309) increased
for the first two hours, and steadily decreased as the reac-
tion time progressed. In addition the concentration of dihy-
droresveratrol (m/z 229) reached a maximum after 15 min
and then stabilized. Finally, 3,4'-dihydroxy-frans-stilbene
(m/z 211) and lunularin (m/z 213) were in a random situa-
tion with low MS intensity. We considered that 3,4'-
dihydroxy-trans-stilbene and lunularin were produced in a
microenvironment with higher variations and were not de-
tected easily.
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3.4. Pathways of Resveratrol and its Oxidative Deriva-
tives

Based on Fig. (5), the prediction of resveratrol metabolic
pathway was proposed. In Fig. (6), 3,4'-dihydroxy-frans-
stilbene and lunularin are illustrated using smaller chemical
structure which is representative of their low concentrations
in the predictive metabolic pathway. Dihydroresveratrol and
dihydroresveratrol monosulfate with higher concentrations
are labeled with arrow marks and larger chemical structures.
Finally, resveratrol monosulfate with the highest concentra-
tion is represented by the largest chemical structure.

The results show that APS generates free radicals from
persulfate to attack resveratrol and produce resveratrol
monosulfate. We considered this to be the key factor in ob-
taining resveratrol monosulfate in highest concentration of
all oxidative products. However, other oxidative derivatives
were observed and detected in APS free radical oxidation
method.

CONCLUSION

In this study, the experiments showed that APS generates
free radicals to react with resveratrol and produce its oxida-
tive derivatives. According to the oxidative method, we can
predict the metabolic pathway of resveratrol. In addition,
oxidative derivatives could be continuously monitored via
sequential sampling. Moreover, the free radical generated
technique is a simple, well-controlled, time and labor saving,
and convenient method. However, free radicals generated by
APS produce compounds with APS attached, such as res-
veratrol monosulfate and dihydroresveratrol monosulfate.
Perhaps, other oxidative methods and reagents could be util-
ized for metabolic prediction such as hydrogen peroxide,
ozone, sodium hypochlorite, and potassium permanganate.
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