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Abstract
Objective  Small mammals such as the Julia Creek dunnart (Sminthopsis douglasi) may be difficult to detect using 
traditional trapping methods. Here, we conducted a pilot study to determine whether eDNA collected from soil 
and/or air could detect the presence of terrestrial vertebrates, including S. douglasi, in a semi-arid, open grassland 
environment.

Results  Airborne eDNA analysis returned vertebrate DNA from five sample sites (n = 7), whereas soil eDNA 
analysis returned vertebrate DNA from a single site (n = 7). The Julia Creek dunnart was not detected in any of the 
experimental samples. However, several airborne eDNA samples did return strong matches to three terrestrial 
vertebrates, the long-haired rat (Rattus villosissimus), red kangaroo (Osphranter rufus) and brown quail (Synoicus 
ypsilophorus), all native species known to occur commonly in the study area. Overall, our preliminary findings suggest 
that the effectiveness of airborne and soil-derived eDNA in detecting terrestrial vertebrates was constrained by 
high human signal and low sampling intensity. For future studies, we recommend a number of field and lab-based 
refinements to increase the likelihood of detecting more taxa, particularly those that occur at low density.

Clinical trial number  Not applicable
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Introduction
Small, cryptic mammals such as the Julia Creek dunnart 
(Sminthopsis douglasi) present a challenge for detection 
[1, 2]. This threatened species has been successfully live 
trapped and detected using camera traps [1, 3]. How-
ever, the grasslands where they occur are vast and open, 
spanning hundreds of kilometres, and populations of 
the mammal are known to fluctuate markedly, leading 
to variable outcomes using traditional detection meth-
ods [1]. The development of a rapid and more reliable 
presence/absence detection tool is thus critical to better 
understand the distribution and prioritise conservation 
management of the species.

The emergence of environmental DNA (eDNA) collec-
tion techniques, capable of surveying entire vertebrate 
communities, is a major scientific breakthrough of the 
last few decades [4–6]. However, the best techniques for 
collecting eDNA of terrestrial vertebrates is still an active 
and rapidly growing field of research [7]. eDNA has been 
collected from indirect sources, such as spider webs [8], 
owl pellets [9] and by swabbing vegetation [10, 11]. But 
eDNA collected from soil and the air are likely the most 
promising techniques for detecting a broad range of ter-
restrial vertebrate taxa. These techniques have been 
investigated under laboratory and enclosed environmen-
tal conditions [12–14] and have more recently shown 
promise in field trials targeting terrestrial vertebrates 
in natural habitats [15–19]. However, if the techniques 
are to be broadly adopted, they must be further tested 
in a range of natural environments and under different 
conditions.

Here, we conducted a pilot study to determine whether 
eDNA collected from soil and/or air could detect the 
presence of terrestrial vertebrates, including S. doug-
lasi, in a semi-arid, open grassland environment. To our 
knowledge, this is the first trial of the airborne eDNA 
technique in semi-arid Australia and one of the first 
applications to target a threatened terrestrial species.

Methods
Sampling design
To investigate the utility of eDNA as a detection method 
for vertebrates, including S. douglasi, we collected soil 
and air filter samples at two sites where S. douglasi indi-
viduals had been captured and released as part of a paral-
lel live-trapping program (known sites) and at three sites 
proximate to known sites in suitable habitat (potential 
sites) where S. douglasi had been recorded in previous 
years (see Table 1). We took two negative control samples 
in unsuitable S. douglasi habitat, where the species was 
assumed to be absent (Table 1). See Additional File 1 for a 
detailed description of sample sites and parallel live-trap-
ping. We also collected two positive experimental control 
samples to validate the accuracy of the DNA extraction, 
sequencing and bioinformatics processes. We collected 
the positive experimental controls by placing a steril-
ised piece of filter paper into a calico bag containing an 
individual S. douglasi for 3–3.5 h. We acknowledge that 
the positive experimental control does not test the effi-
cacy of the active eDNA sampler. However, the sampler 
has already proven effective at collecting airborne eDNA 
under controlled conditions [14].

eDNA collection
We used air sampler design 2 as per Garrett et al. [14]. 
See Additional File 1 for more information on the air 
sampler design and specifications, as well as specific 
cleaning protocols.

We deployed the samplers in the field by hammering a 
metal star picket into the ground and attaching the frame 
to the star picket using garden wire with the ‘filter head’ 
facing down toward the ground/soil cracks at a height 
of ~ 10  cm above ground. This setup was chosen in an 
attempt to target small, terrestrial vertebrates, particu-
larly S. douglasi, which are known to shelter in soil cracks 
[1–3]. We placed the power bank and adapter to run the 
fan into an airtight plastic container and strapped the 
container to the star picket. We then turned the sampler 
on and left it to run overnight (~ 12–16 h). The next day, 

Table 1  The locations of each filter and soil sample, including coordinates, run time and sample type
Filter ID Location Sample type Latitude Longitude Deploy-

ment date
Collection 
date

Total run 
time

Associ-
ated soil 
sample?

Soil 
ID

AF01 Bladensburg National Park Positive control -22.5149 143.0381 17/04/2024 17/04/2024 3 h 30 min No NA
AF02 Bladensburg National Park Negative control -22.5740 143.1165 19/04/2024 20/04/2024 16 h 20 min Yes S02
AF03 Bladensburg National Park Known sample -22.4998 143.0612 19/04/2024 20/04/2024 13 h 2 min Yes S03
AF04 Bladensburg National Park Potential sample -22.5310 143.0486 19/04/2024 20/04/2024 13 h 10 min Yes S04
AF05 Bladensburg National Park Positive control -22.5149 143.0381 21/04/2024 21/04/2024 3 h No NA
AF06 Bladensburg National Park Potential sample -22.5500 143.0859 22/04/2024 23/04/2024 15 h 45 min Yes S06
AF07 Bladensburg National Park Known sample -22.5022 143.0640 22/04/2024 23/04/2024 12 h 50 min Yes S07
AF08 Bladensburg National Park Potential sample -22.5282 143.0466 22/04/2024 23/04/2024 13 h 15 min Yes S08
AF09 Samford Ecological Re-

search Facility (SERF, QUT) 
Negative control -27.3883 152.8793 28/04/2024 29/04/2024 12 h 45 min Yes S09
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we collected the filter paper using sterilized forceps and 
placed it into a vial of RNAlater solution.

At each air sampler site, we also collected topsoil with 
a sterilised spoon and placed the sample into a 15 ml vial 
with RNAlater solution. Where possible, we took samples 
from the outside edge of soil cracks, locations we consid-
ered more likely to be used by S. douglasi.

DNA extraction and metabarcoding
Please see Additional File 1 for details regarding DNA 
extraction and metabarcoding methodology, contami-
nation mitigation, and bioinformatics parameters. We 
tested two DNA extraction methods for the air filters: 
Qiagen Blood and Tissue Kit as per Garrett et al. [14] and 
Qiagen Powersoil Pro Kit (Qiagen, Valencia, CA, USA). 
Soil samples were only processed with the latter kit. We 
included a single DNA extraction blank for each method.

We processed all samples in Polymerase Chain Reac-
tion (PCR) duplicate using the MiMammal-U primer set, 
targeting 12S rRNA [20]. Amplifying a ~ 171  bp insert, 
this primer set was developed to primarily detect mam-
mals [20], but it also detects a broad range of vertebrate 
taxa. We modified the primers with a 5’ universal tail 
as part of the 2-step PCR library preparation method 
described in Colman et al. [21] for paired-end Illumina 
sequencing (MiSeq v2 500 cycle kit).

Following quality filtering, error correction, paired-
end merging, chimera removal, and post-clustering into 
Operational Taxonomic Units (OTUs) [22–24], we clas-
sified taxa using Lowest Common Ancestor (LCA) from 
Basic Local Alignment Search Tool (BLAST) searches 
against Genbank’s core_nt database [25–27]. We then 
visually inspected the BLAST results of each OTU to ver-
ify LCA classifications, correcting for any over- or under-
splitting of the taxonomic labels. We removed from 
consideration sequences deriving from non-vertebrates, 
any that did not yield BLAST hits, and any deriving from 
known or suspected pseudogenes, or any non-mtDNA 
source.

Results and discussion
After processing, we retained 444,605 reads that were 
classified to at least the order level (median = 12,809 reads 
per library) with OTU richness consistently plateauing at 
a sequencing depth of 8000 reads in rarefaction curves 
(Additional File 1). None of the DNA extraction blanks 
(n = 3) or PCR-negative controls (n = 5) prepared with 
the samples yielded mergeable, paired-end reads in the 
DADA2 pipeline (Additional File 2), and therefore, they 
did not yield taxonomic data. The PCR positive control 
yielded 2 out of 4 expected OTUs, which we determined 
to be an issue with the mock community itself and not 
due to processing or sequencing depth (see Additional 

file 1 for verification). None of the sequences in the PCR 
positive controls were detected in any other sample.

For DNA extraction from air filters, the Qiagen Blood 
and Tissue Kit was the most successful in terms of ampli-
fication success and taxonomic richness (Fig. 1). The Qia-
gen Blood and Tissue Kit detected eight taxa (present in 
1–9 samples), and the Qiagen Powersoil pro kit detected 
three taxa (present in 1–6 samples).

We obtained taxonomic data from all nine air filters 
but only one sediment sample (Fig.  2). The Julia Creek 
dunnart was not detected in any soil or airborne eDNA 
samples, despite two samplers being deployed at S. doug-
lasi release locations. Based on mark-recapture data from 
previous years, S. douglasi are frequently recaptured at 
the same trap locations on successive nights and have a 
median trap movement distance of ~ 61 m [1]. Therefore, 
we assumed these locations would have a higher chance 
of detecting the target species. However, the species was 
only detected from the two experimental positive con-
trols, where a filter was placed directly into a clean calico 
bag with a live Julia Creek dunnart. As highlighted by 
Leempoel et al. [17], there is still much we do not know 
about how frequently, closely and/or recently an animal 
must move through an area before being detectable by 
an eDNA sampler. Therefore, in future studies, we would 
recommend monitoring airborne eDNA samplers with 
unbaited camera traps to identify vertebrates that move 
in close vicinity to the samplers in order to assess their 
accuracy. We would also collect at least one positive con-
trol sample, by holding a live S. douglasi underneath an 
active airborne eDNA sampler.

The airborne eDNA samples at Bladensburg National 
Park did detect red kangaroo (Osphranter rufus), long-
haired rat (Rattus villosissimus), brown quail (Synoicus 
ypsilophorus) and one sequence variant that could only 
be classified to order Passeriformes (Sequence Read 
Archive BioProject PRJNA1173596; Fig.  2). This repre-
sents just three terrestrial vertebrates of the 24 species 
recorded via camera trapping (30 cameras deployed for 
four weeks) at the same locations [28]. Our low num-
ber of eDNA species detections may be due to the small 
number of samples collected and relatively short deploy-
ment timeframes in comparison to other methods. A 
similar study by Lynggaard et al. [18] in a natural envi-
ronment, using a pair of two different custom-made air 
samplers per site, detected 57 ‘wild’ taxa across six, 12 h 
sampling events (over three days). Therefore, for future 
studies in this system, we recommend deploying sam-
plers at (at least) ten sites for 3–4 consecutive nights to 
better account for variability in weather conditions and 
animal movements/behaviour. We would also recom-
mend deploying two active samplers per site at differ-
ing heights and/or orientation (horizontal and vertical) 
to the ground to determine whether sampler placement 
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influences the detection of S. douglasi and/or the overall 
number of taxa recorded.

Overall, the airborne eDNA samplers did detect 
the most commonly recorded species at Bladensburg 
National park, as previously determined via cameras, live 
trapping and/or opportunistic observations [1, 3, 28]. It 
is noteworthy that during the eDNA collection period, 
the long-haired rat was undergoing a population irrup-
tion (E.L. Gray and A.M. Baker, pers. obs.), and only 
two taxa were detected via the concurrent live trapping 
(see Additional File 1). Other studies of airborne eDNA 
have observed that more common species are often more 
frequently detected [16] or generally have higher read 
counts [14] than rare species.

Most of our soil samples amplified DNA, but the major-
ity was either non-vertebrate or uninformative. Plausibly, 
at most sites, there was in fact little vertebrate DNA con-
tained in the soil sample. Substrate selection, frequency 
of sampling and target animal size are all recognised fac-
tors that may limit vertebrate detectability via soil eDNA 
[29]. The exception was the soil sample from the off-site 
negative control. The mammal species detected from this 
site in the soil eDNA sample was the brush-tailed pos-
sum (Trichosurus vulpecula) (99.41% match), a species 
known to occur in high density at the location.

Human DNA was detected most frequently in the air-
borne samples, accounting for 98.1% of reads (excluding 
the positive experimental controls). Two air filter samples 

also returned only human DNA. This likely represents 
both human airborne eDNA in the environment and also 
contamination, the latter a known issue with airborne 
eDNA [19]. High levels of contamination have been 
known to result in false negative results in other eDNA 
studies due to the competitive amplification of con-
taminant DNA over low quantity DNA during the PCR 
process [30]. In future studies, the risk of human con-
tamination may be reduced by wearing surgical half or 
full facepiece respirators (with no exhalation valve) when 
in the field and refining other field collection protocols. 
Blocking the amplification of human DNA by developing 
blocking primers using MiMammal-U (12  S), may also 
be useful. Although the DNA of other vertebrate species 
was detected despite the contamination, with less human 
contaminant present, the chance of detecting DNA of 
target taxa will increase, especially if the latter occur at 
relatively low density in the environment and/or the sam-
ple [30–32].

Limitations
We have shown in this pilot study that a small number 
of active air samplers left running overnight were able 
to detect common vertebrate species within an open 
tussock grassland ecosystem. However, our study failed 
to detect S. douglasi, the focal species, and we detected 
fewer species at Bladensburg National Park compared 
to traditional methods such as camera trapping and live 

Fig. 1  Frequency of occurrence of the bird and mammal species detected using two DNA extraction protocols
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trapping. Our study was limited by the small sample size 
and short deployment of the airborne eDNA samplers. 
Therefore, we have recommended practical field and lab-
based refinements to the sampling design to increase the 
likelihood of detecting more taxa, particularly those that 
occur at low density.
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