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Analysis of the relationships among wild species of section Moutan in the plant
genus Paeonia has traditionally been problematic. Interspecies relationships cannot be
effectively determined using phenotypic traits alone or through analysis of nuclear or
chloroplast DNA fragments. Elucidation of complete chloroplast genome sequences
will aid the identification and phylogeny of these species. In this study, the complete
chloroplast genomes of three sect. Moutan plants were sequenced and analyzed.
Comparative and phylogenetic analyses of the complete chloroplast genomes of all
eight species of sect. Moutan were then conducted. The three complete chloroplast
genomes gained in this study showed four-part annular structures, and the genome
length, structure, GC content, codon usage, and gene distribution were highly similar.
There was greater variation in the noncoding regions of the sequences than in the
conserved protein-coding regions. Sequence variations in the small single copy (SSC)
regions and large single copy (LSC) regions were considerably greater than those in
the inverted repeat (IR) regions. Phylogenetic analysis revealed that the species of
sect. Moutan clustered in one branch and then subdivided into smaller branches. As
for the three complete chloroplast genome sequences obtained in this study, Paeonia
jishanensis clustered with another P. jishanensis sequence from the GenBank database,
Paeonia qiui clustered with Paeonia rockii, and Paeonia delavayi var. lutea clustered
with Paeonia ludlowii. It was also found that the complete chloroplast genomes, LSC
regions, and SSC regions all showed great abilities in identification and phylogenetic
analysis of the species of sect. Moutan, while IRs regions and highly variable regions
were not suitable for the species of sect. Moutan.

Keywords: section Moutan, chloroplast genome, comparative analysis, phylogeny, species relationship

INTRODUCTION

Section Moutan belongs to the genus Paeonia, which was previously classified in the family
Ranunculaceae but is now under the family Paeoniaceae. In 1946, Stern divided the genus Paeonia
into three groups, namely sect. Moutan, sect. Paeonia and sect. Onaepia. Section Moutan can
be further divided into subsect. Vaginatae and subsect. Delavayanae, the latter consisting of the
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Suffruticosa and Delavayi groups (Stern, 1946). In the latest
classification, sect. Moutan comprises eight species (Hong and
Pan, 1999). Section Moutan plants are economically important
ornamental plants known for their attractive flowers. Moreover,
these plants also have high medicinal value as they exhibit
anti-oxidant, anti-tumor, anti-pathogenic, anti-inflammatory,
antidiabetic, analgesic, and anti-osteoporotic effects, and have
been shown to exert protective effects against cardiovascular
disease (Qi and Hu, 1993; Okubo et al., 2000; Kim et al., 2004;
Abdel-Aty, 2007; Tsai et al., 2008; Zhang X. J. et al., 2008). These
medicinal effects are attributed to the presence of monoterpene
glucosides, flavonoids, tannins, triterpenoids, steroids, paeonols,
phenolic acids, and other compounds in the plants (Okubo et al.,
2000). In addition, the pollen of sect. Moutan plants contains
various nutrients that can be used in the development of health
and beauty products (Zhao, 2007).

Species of sect. Moutan are all subshrubs (Guo, 2002). All
eight wild species of sec. Moutan are endemic to China (Hao
et al., 2008): the wild species of sect. Moutan originated and
evolved in China, which is also the birthplace of cultivated
species of sect. Moutan. The wild species of sect. Moutan that
are endemic to China are regarded as a valuable germplasm
resource worldwide (Ji et al., 2012). Elucidating the relationships
between species of sect. Moutan is crucial for understanding
and harnessing the medicinal and ornamental properties of the
different species. Progress has been made in studies on the
relationships of wild species of sect. Moutan. However, the origin,
genetic background, evolution, relationships, and classification
systems of these species are different (Hong et al., 1998; Lin
et al., 2004). According to classical taxonomy, using phenotypic
traits alone to infer phylogenetic relationships between taxa
with different genotypes is problematic. Moreover, different
interpretations for the morphological variations in sect. Moutan
species have been reported, and the different classification
treatments applied vary largely (Zhang J. M. et al., 2008).
Therefore, the relationships between wild species of sect. Moutan
require further study and discussion. Molecular markers are
a reliable alternative that are independent of morphological
features, enabling the taxonomic challenges arising from the
differences in interpretation of the morphological variations to
be addressed. Molecular systematics have previously been used to
study the evolutionary relationships among sect. Moutan species
(Sang et al., 1997a,b; Zou et al., 1999; Zhao et al., 2004). However,
the complex network evolution and polyploidy evolution of
sect. Moutan species result that limited nuclear or chloroplast
DNA fragments provide insufficient phylogenetic information
to effectively solve interspecies relationships. Furthermore, the
results of previous studies are inconsistent with each other (Sang
et al., 1995; Sun and Hong, 2012).

The chloroplast genome is independent of the nuclear genome
and corresponds to matrilineal inheritance with a separate
transcription and transport system. Chloroplast genomes are
very conservative (Jansen and Ruhlman, 2012) in terms of
genome structure, gene sequence and gene type. Most chloroplast
genomes of angiosperms have a circular tetrad structure existing
as multiple copies of covalent, closed, circular double-stranded
DNA. The circular tetrad structure comprises two inverted

repeats (IRs), a large single copy (LSC), and a small single copy
(SSC; Wang et al., 2012). Chloroplast genomes are typically
120–160 kb in length and are characterized by their small
molecular weight, multiple copies, and slow molecular evolution
(Shimada and Sugiura, 1991; Wakasugi et al., 2001; Kahlau et al.,
2006). Since the chloroplast genomes of Nicotiana tabacum and
Marchantia polymorpha were first reported in 1986 (Ohyama
et al., 1986; Sugiura et al., 1986), the complete chloroplast
genomes of various plants have been sequenced, and the
structure, function, and expression of their genes have been
studied. Chloroplast genome sequencing is increasingly used in
the identification and investigation of molecular markers and
phylogeny of medicinal plants (Wu et al., 2010; Kuang et al.,
2011; Nock et al., 2011; Takano and Okada, 2011). Over the
past years, chloroplast genomes have been shown to be an
efficient tool in revealing phylogenetic relationships (Jansen et al.,
2007), identifying close species as a super barcode (Chen et al.,
2018; Park et al., 2018a), and developing chloroplast genetic
engineering (Daniell et al., 2016).

In this study, the complete chloroplast genomes of three wild
species of sect. Moutan were sequenced. A comparative
analysis of the complete chloroplast genomes was then
conducted. Phylogenetic analysis was performed by constructing
phylogenetic trees based on different datasets of the chloroplast
genomes of 16 species of the genus Paeonia, including all eight
sect. Moutan species. Data obtained in this study provided a
basis for the identification and investigation of the phylogenetic
relationships of species of sect. Moutan.

MATERIALS AND METHODS

DNA Sources
Fresh leaves of Paeonia qiui, Paeonia jishanensis, and Paeonia
delavayi var. lutea were collected from Shennongjia in Hubei
Province, Jiyuan in Henan Province and Shangri-la in Yunnan
Province, respectively. The three species were identified by
Professor Peigen Xiao and Professor Chunnian He from the
Institute of Medicinal Plant Development (IMPLAD), Chinese
Academy of Medical Sciences and Peking Union Medical College.
Voucher specimens were deposited in the herbarium at IMPLAD.

Total DNA Extraction and Sequencing
Total DNA was extracted using a DNeasy Plant Mini Kit
(Qiagen, Germany). DNA concentration was determined using
a microspectrophotometer (Nanodrop 2000, United States), and
DNA quality was detected by 1% agarose gel electrophoresis.
Illumina HiSeq X sequencing platform was used to construct
a library with an insertion fragment of 500 bp. Paired-end
sequencing was performed to obtain 150-bp sequences at both
ends of each read.

Assembly of Chloroplast Genome
Sequences
Low-quality regions in the original sequencing data were
removed using Trimmomatic software (Bolger et al., 2014).
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A local sequence comparison retrieval (BLASTn) database was
constructed from the chloroplast genome sequences published
in the National Center for Biological Information (NCBI). Clean
reads were compared with this database, and mapped reads were
extracted based on coverage and similarity. SOAPdenovo 2 (Luo
et al., 2012) was used to assemble extracted reads into contigs.
A scaffold of the chloroplast genome was constructed using
SSPACE software (Boetzer et al., 2011). Gaps were filled using
GapFiller (Nadalin et al., 2012).

Chloroplast Genome Annotation and
Structural Analysis
Dual Organellar GenoMe Annotator (Wyman et al., 2004)
and chloroplast genome annotation, visualization, analysis, and
genbank submission (CPGAVAS) (Liu et al., 2012) were used
to initially annotate the sequences, and the annotations were
then manually corrected. tRNAscan-SE software (Schattner et al.,
2005) was used to annotate tRNA. Genes, introns and the
boundaries of coding regions were compared with reference
sequences. Chloroplast genome maps were generated using
Organellar Genome DRAW v1.2 (Lohse et al., 2007) and then
manually corrected. GC content was analyzed using MEGA 6.0
(Tamura et al., 2013). CodonW software (Sharp and Li, 1987)
was adopted to analyze the relative synonymous codon usage
(RSCU). The assembled complete chloroplast genome sequences
of the three species of sect. Moutan were submitted to NCBI
under the accession numbers MT210544 (P. qiui), MT210545
(P. jishanensis), and MT210546 (P. delavayi var. lutea).

Structural Analysis of Repeats
REPuter software (Kurtz et al., 2001) was used to identify
long repeat sequences of the chloroplast genomes. Microsatellite
identification tool (MISA) software (Beier et al., 2017) was used
to determine the type and number of simple sequence repeats
(SSRs), employing the parameters used by Li et al. (2013).
Completely repetitive SSRs were searched, and cyclically arranged
or inversely complementary SSRs were treated as the same type.

Analysis of Sequence Variations and
Phylogenetic Relationships
Chloroplast genome sequences of all eight species of sect.
Moutan were compared using the online genome comparison
tool mVISTA (Frazer et al., 2004). Nucleic acid variation values
of the three chloroplast genomes sequenced in this study
were determined by DnaSP v5.10 (Librado and Rozas, 2009).
The boundaries of four regions of chloroplast genomes were
compared using IRscope (Ali et al., 2018). MAFFT version 5
software (Katoh and Standley, 2013) was used to compare the
complete chloroplast genome sequences and LSC, SSC, and IRs
regions of the chloroplast genomes of 16 species of the genus
Paeonia (Supplementary Table S1). IQTREE software (Nguyen
et al., 2015) and MrModeltest 2.3 (Nylander, 2004) were utilized
to select tree models. Maximum likelihood (ML) and Bayesian
inference (BI) phylogenetic trees were constructed based on the
complete chloroplast genomes and LSC, SSC, and IRs regions
using the program IQTREE and MrBayes v3.2.7 (Ronquist and

Huelsenbeck, 2003), respectively. MEGA 6.0 (Tamura et al., 2013)
was used to construct ML phylogenetic trees based on 19 highly
variable regions, which were selected by the percent identity of
the complete chloroplast genomes using mVISTA (Frazer et al.,
2004). The positions of these highly variable regions were shown
in Supplementary Table S2.

RESULTS

Molecular Features of the Chloroplast
Genomes
The complete chloroplast genomes of three species of sect.
Moutan show a common tetrad structure comprising two IRs
(25,645–25,648 bp), an LSC (84,242–84,462 bp), and an SSC
(17,032–17,046 bp; Figure 1). The total lengths of the chloroplast
genomes were 152,578 bp (P. qiui), 152,631 bp (P. jishanensis)
and 152,790 bp (P. delavayi var. lutea), while the total GC content
ranged from 38.35 to 38.42%. Moreover, GC content in different
regions was unbalanced; the IR regions had the highest GC
content (43.06–43.10%) among the four sections, followed by the
LSC (36.64–36.73%) and SSC regions (32.59–32.73%) (Table 1).

The chloroplast genome structure and gene composition of
sect. Moutan species could be divided into four categories:
genes related to photosynthesis, genes related to self-replication,
protein-coding genes with unknown functions, and other genes
(e.g., mature enzyme gene matK and cystic protein gene cemA).
A total of 84 protein-coding genes were annotated in P. qiui
and P. jishanensis, while 83 protein-coding genes were annotated
in P. delavayi var. lutea. Compared with other species, the
polyT repeat region of matK gene in P. delavayi var. lutea lost
one T base, and the frame shift caused stop codon to appear
prematurely, so the gene was annotated as a pseudo gene. Thirty-
seven tRNA genes and 8 rRNA genes were annotated in the
three species. Seven protein-coding genes (rpl2, rpl23, ycf2, ycf15,
ndhB, rps7, and rps12), seven tRNAs (trnI-CAU, trnL-CAA, trnV-
GAC, trnI-GAU, trnA-UGC, trnR-ACG, and trnN-GUU) and four
rRNAs (rrn16, rrn23, rrn4.5, and rrn5) were located in the IR
regions. Among the protein-coding genes, 18 genes contained
introns; three of these genes (clpP, rps12, and ycf3) had two
introns, and 15 genes had only one intron. The gene rps12, which
contained two introns, is a trans-splicing gene with the 5’ exon in
the LSC region and the 3’ exon in the IR region (Table 2).

Relative Synonymous Codon Usage
Analysis of the Chloroplast Genomes
The RSCU of the chloroplast genomes of species of sect. Moutan
was calculated using all protein-coding genes. The RSCU value
is the ratio of the frequency of use of a particular codon to
the expected frequency. It enables the detection of synonymous
codons that do not uniformly occur in the coding sequence.
Codons with no preference value are set to 1.00. The actual
usage of codons with an RSCU value >1.00 is higher than
expected, and that of codons with an RSCU value <1.00 is lower
than expected. Among all amino acids, leucine (Leu) had the
highest number of codons in all protein-coding gene sequences
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FIGURE 1 | Gene maps of the complete chloroplast genomes of the three sect. Moutan species. Genes on the inside of the circle are transcribed clockwise, while
those outside are transcribed counter clockwise. The darker gray in the inner circle corresponds to GC content, whereas the lighter gray corresponds to AT content.
matK in P. delavayi var. lutea is a pseudo gene.

TABLE 1 | Statistics for assembly of the three chloroplast genomes.

Latin name Gene size (bp) IRs LSC SSC GC Content (%)

size (bp) GC Content (%) size (bp) GC Content (%) size (bp) GC Content (%)

P. qiui 152,578 25,646 43.06 84,242 36.66 17,044 32.62 38.36

P. jishanensis 152,631 25,645 43.06 84,295 36.64 17,046 32.59 38.35

P. delavayi var. lutea 152,790 25,648 43.10 84,462 36.73 17,032 32.73 38.42

in the chloroplast genomes. The amino acids with a total codon
number <1000 were methionine (Met), tyrosine (Tyr), histidine
(His), glutamine (Gln), cysteine (Cys), tryptophan (Trp), serine
(Ser), and terminator (TER); Cys had the lowest number codons

(Supplementary Table S3). Figure 2 shows the codon contents
of 20 amino acids and stop codons of all protein-coding genes
in the chloroplast genomes of the three species of sect. Moutan
sequenced in this study.
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TABLE 2 | Genes with introns in the chloroplast genomes of P. qiui, P. jishanensis and P. delavayi var. lutea as well as the lengths of the exons and introns.

Gene Location P. qiui P. jishanensis P. delavayi var. lutea

Exon I (bp) Intron I
(bp)

Exon II
(bp)

Intron II
(bp)

Exon III
(bp)

Exon I (bp) Intron I
(bp)

Exon II
(bp)

Intron II
(bp)

Exon III
(bp)

Exon I (bp) Intron I
(bp)

Exon II
(bp)

Intron II
(bp)

Exon III
(bp)

atpF LSC 159 696 411 159 696 411 159 696 411

clpP LSC 69 672 291 657 228 69 671 291 657 228 69 676 291 658 228

ndhA SSC 543 1010 540 543 1011 540 543 1013 540

ndhB IR 777 682 756 777 682 756 777 682 756

petB LSC 6 760 651 6 758 651 6 768 651

petD LSC 9 694 474 9 694 474 9 694 474

rpl16 LSC 9 1012 399 9 1018 399 9 1011 399

rpl2 IR 393 668 435 393 668 435 393 668 435

rpoC1 LSC 436 703 1616 436 701 1616 436 694 1616

rps12 LSC/IR 114 – 232 535 26 114 – 232 535 26 114 – 232 535 26

rps16 LSC 39 818 234 39 818 234 39 819 234

trnA-UGC IR 38 717 35 38 717 35 38 717 35

trnG-UCC LSC 34 696 48 34 696 48 34 691 48

trnI-GAU IR 42 933 35 42 933 35 42 933 35

trnK-UUU LSC 37 2442 35 37 2447 35 37 2459 35

trnL-UAA LSC 37 521 50 37 522 50 37 510 50

trnV-UAC LSC 39 573 37 39 573 37 39 576 37

ycf3 LSC 126 718 228 763 153 126 720 228 763 153 126 721 228 763 153
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Long Repeat Sequence and SSR
Analyses
Long repeat sequences are classified as forward (F), palindrome
(P), reverse (R), or complement (C). For all repeat types, the
repeat length is ≥30 bp and sequence similarity is ≥90%. In
the chloroplast genome of P. qiui, there were 21 F repeats, 23
P repeats, and 4 R repeats. Furthermore, 22 F repeats and 24 P
repeats were present in the chloroplast genome of P. jishanensis,
while the chloroplast genome of P. delavayi var. lutea contained
22 F repeats and 23 P repeats. No C repeats were found in
the chloroplast genomes of the three sect. Moutan species, and
no R repeats were identified in the chloroplast genomes of
P. jishanensis and P. delavayi var. lutea. The length of the repeat
sequences that were found predominantly ranged from 30 to
39 bp. R repeat sequences of the P. qiui chloroplast genome only
contained 30–39 bp (Figure 3).

Simple sequence repeats in the chloroplast genomes have
abundant polymorphisms, and they are an efficient molecular
marker (Tang et al., 2010). In this study, 73, 72, and 61
SSRs were identified in the chloroplast genomes of P. qiui,
P. jishanensis, and P. delavayi var. lutea, respectively. In
addition, the base composition of the repeating motifs from
mononucleotide repeats to trinucleotide repeats had a certain
base preference, mainly repeating motifs rich in A–T. In these
SSRs, mononucleotide repeats were the most abundant, being
found 49, 47, and 39 times in the chloroplast genomes of P. qiui,
P. jishanensis, and P. delavayi var. lutea, respectively. A/T repeats
were the most common mononucleotide repeats (93.9, 97.9,
and 100% for P. qiui, P. jishanensis, and P. delavayi var. lutea,
respectively). Dinucleotide repeat sequences predominantly
comprised AT/AT repeats (91.7, 92.3, and 92.3% for P. qiui,
P. jishanensis, and P. delavayi var. lutea, respectively), and all

FIGURE 3 | Repeat sequences in three chloroplast genomes. REPuter was
used to identify repeat sequences with length ≥30 bp and sequences
identified ≥90% in the chloroplast genomes. F, P, R, and C indicate the repeat
types F (forward), P (palindrome), R (reverse), and C (complement). Repeats
with different lengths are indicated in different colors.

trinucleotide repeats were AAT/ATT. This was consistent with
A–T enrichment in the complete chloroplast genomes of sect.
Moutan species (61.6, 61.7, and 61.6% for P. qiui, P. jishanensis,
and P. delavayi var. lutea, respectively) (Table 3).

Comparative Analysis of the Chloroplast
Genomes
In this study, the complete chloroplast genomes of all species of
sect. Moutan were compared using mVISTA (Frazer et al., 2004)
with the P. qiui genome as the reference genome (Figure 4).
There were more variations in the noncoding regions of
the sequences than in the conserved protein-coding regions.

FIGURE 2 | Codon distribution of 20 amino acid and stop codons in all protein-coding genes of the chloroplast genomes of three sect. Moutan species. The order
of every three columns is P. qiui, P. jishanensis, and P. delavayi var. lutea, respectively.
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TABLE 3 | Types and amounts of SSRs in the three chloroplast genomes.

SSR Type Repeat Unit Amount Ratio (%)

P. qiui P. jishanensis P. delavayi var. lutea P. qiui P. jishanensis P. delavayi var. lutea

Mono A/T 46 46 39 93.9 97.9 100

C/G 3 1 0 6.1 2.1 0

Di AG/CT 1 1 1 8.3 7.7 7.7

AT/AT 11 12 12 91.7 92.3 92.3

Tri AAT/ATT 7 6 5 100 100 100

Tetra AAAC/GTTT 1 1 1 20 20 25

AAAG/CTTT 1 1 0 20 20 0

AAAT/ATTT 2 2 2 40 40 50

AGAT/ATCT 1 1 1 20 20 25

Penta AATAT/ATATT 0 1 0 0 100 0

FIGURE 4 | Global alignment of chloroplast genomes of all sect. Moutan species. Gray arrows and thick black lines above the alignment indicate genes with their
orientation and the position of the IRs, respectively. A cutoff of 70% identity was used for the plots, and the Y-scale represents the percent identity ranging from 50 to
100%.

Variations in the SSC and LSC regions were considerably greater
than those in the IR regions, while the rRNA genes were highly
conserved with almost no variation. As shown in Figure 4,

the genes with large variations included trnK, trnR, psbZ, ycf3,
rps3, and rps19, whereas the other genes had a very high
degree of conservation (most had >90% similarity). Variations
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in intergenic regions were notably greater than those in gene
regions; such intergenic regions included trnK-rps16, rps16-trnQ,
rpoC1-rpoB, rpoB-trnC, psbM-trnD, psbZ-trnG, ndhC-trnV, atpB-
rbcL, petA-psbJ, rpl20-rps12, rpl16-rps3, ndhG-ndhI, ndhA-ndhH,
and ndhB-trnL.

DnaSP (Librado and Rozas, 2009) was used to analyze
and detect highly variable regions in the chloroplast genomes
sequenced in this study. The K value was calculated by pairwise
comparisons to determine variations at the sequence level
(Figure 5). Variation in the IR regions of the chloroplast genomes
was markedly lower than that in the LSC and SSC regions,
consistent with the mVISTA results. Furthermore, the K value
was generally below 0.005. In the LSC regions, two pairwise-
comparison peaks with a K value >0.005 were particularly
prominent. As shown in the mVISTA map and specific sites, the
two peaks were petA-psbJ and rpl16-rps3. The average K value was
0.00372 between P. delavayi var. lutea and P. jishanensis, 0.00378
between P. delavayi var. lutea and P. qiui, and 0.00100 between
P. jishanensis and P. qiui. Thus, the largest nucleic acid variation
was observed between P. delavayi var. lutea and P. qiui, followed
by that between P. delavayi var. lutea and P. jishanensis, and that
between P. jishanensis and P. qiui.

The boundaries of the four regions of chloroplast genomes of
all species of sect. Moutan were comprehensively compared. At
the junctions, the gene positions in the boundary regions of the
three chloroplast genomes sequenced in this study and that of

P. suffruticosa were very similar, whereas the chloroplast genomes
of the five other species of sect. Moutan were different (Figure 6).
In addition, it could be seen from the figure that the genome
length of P. delavayi was much longer than that of its variety
P. delavayi var. lutea, mainly because the length of the LSC region
of P. delavayi was about 1600 bp longer than that of P. delavayi
var. lutea. There were one more infA, trnP-GGG, trnT-GGU and
trnM-CAU genes in the LSC region of P. delavayi than those in
P. delavayi var. lutea.

Phylogenetic Analysis
Chloroplast genomes play an important role in phylogenetic
studies (Zhang et al., 2011; Hu et al., 2016). In the current
study, the complete chloroplast genome sequences and
LSC, SSC, and IRs regions of the chloroplast genomes of
16 species of the genus Paeonia, including all eight wild
species of sect. Moutan, were used to construct ML and
BI trees, with Bergenia scopulosa and Coptis chinensis as
the outgroups. The two phylogenetic analyses (ML and
BI) revealed congruent topologies based on the complete
chloroplast genomes, LSC regions and SSC regions, and all
of the nodes in the phylogenetic trees had high bootstrap
support values (Figures 7–9). The resulting phylogenetic
trees demonstrated that species of sect. Moutan were located
on one branch, whereas species of the sect. Onaepia and
sect. Paeonia were located on another branch. Species of

FIGURE 5 | Nucleic acid variation information of chloroplast genomes of sect. Moutan species. d: P. delavayi var. lutea; j: P. jishanensis; q: P. qiui.
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FIGURE 6 | Comparison of the borders of LSC, SSC, and IR regions among all sect. Moutan species chloroplast genomes. Number above the gene features means
the distance between the ends of genes and the border sites. These features are not to scale. JLB, junction of LSC/IRb; JSB, junction of IRb/SSC; JSA, junction of
SSC/IRa; JLA, junction of IRa/LSC.

subsect. Vaginatae and subsect. Delavayanae in sect. Moutan
clustered in different branches, and the bootstrap support
values for these were 100%. For the three chloroplast genomes
sequenced in this study, P. jishanensis (GenBank accession
no. MT210545) clustered with another P. jishanensis sequence
obtained from the GenBank database, P. qiui (MT210544)
clustered with P. rockii, and P. delavayi var. lutea (MT210546)
clustered with P. ludlowii. Bootstrap support rates were all
>95%. However, the two phylogenetic analyses (ML and BI)
revealed incongruent topologies based on the IRs regions
(Supplementary Figure S1). In the phylogenetic trees based
on IRs regions, the two sequences of P. suffruticosa did not
cluster together, and in subsect. Delavayanae, P. delavayi
clustered with P. ludlowii and then with P. delavayi var. lutea,
which was different from that based on complete chloroplast
genomes. In addition, some of the nodes had very low bootstrap
support values. It showed that IRs regions were not suitable for
the identification and phylogenetic analysis of the species of
sect. Moutan.

Then 19 highly variable regions of chloroplast genomes were
used to construct ML trees (Supplementary Figure S2). Most

of the bootstrap support values of the nodes in the phylogenetic
trees were much lower than that based on complete chloroplast
genomes. Species of sect. Moutan did not cluster in one branch
in some phylogenetic trees, such as the trees based on psbZ,
rps19, trnR, ndhG-ndhI, psbM-trnD, rpl16-rps3, rpoC1-rpoB, and
rps16-trnQ. In the phylogenetic trees based on ycf3, ndhB-
trnL, psbZ-trnG, rpl20-rps12, and trnK-rps16, species of subsect.
Vaginatae and subsect. Delavayanae did not cluster in one
branch, respectively. The other highly variable regions were also
not suitable for the identification and phylogenetic analysis of the
species of sect. Moutan.

DISCUSSION

Analysis of the Chloroplast Genomes of
Sect. Moutan Species
In the current study, the GC content distribution in the
chloroplast genomes of the three species of sect. Moutan was
the same as that reported for most other angiosperms (Xiang
et al., 2016; Zhou et al., 2017); the IR regions had the highest
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FIGURE 7 | Phylogenetic trees constructed using Maximum Likelihood (ML) and Bayesian Inference (BI) methods based on the complete chloroplast genome
sequences of 16 Paeonia species, including all eight species of sect. Moutan. Red numbers at nodes are values for bootstrap support (ML/BI).

GC content among the four regions, followed by the LSC and
SSC regions. The high GC content in the IR regions may be
attributed to the fact that these regions contain rRNAs with low
A/T content in the chloroplast genome, including rrna4.5, rrna5,
rrna23, and rrna16. In all types of SSR in this study, A and T
were the most often-used bases. Chloroplast genome SSRs are
typically composed of polyA or polyT repeats, as a result of the
A/T base preference of chloroplast genomes (Qian et al., 2013).
These SSRs not only have the advantages of an abundant number
of markers, codominant inheritance and high repeatability, but
also have the characteristics of a simple structure, the single-
parent inheritance of chloroplast genomes and are relatively
conservative (Yang et al., 2014). Chloroplast genome SSRs have
been widely used in species identification, phylogenetic analysis,
population genetic structure and system geography of several
species (Park et al., 2018b).

In the current study, a common feature of the chloroplast
genomes of sect. Moutan species was that the IR regions were
substantially more conserved than the LSC and SSC regions.
rrn4.5, rrn5, rrn16, and rrn23 were the most conserved sequence
regions in the IR regions. In addition, the degree of variation in
noncoding regions was considerably greater than that in coding

regions. The evolution rate of coding regions is slow and thus
these regions are suitable for phylogenetic analysis at high levels
of taxonomic hierarchy, such as families and orders (Li et al.,
2012). In contrast, the sequence of noncoding regions rapidly
evolves, cannot encode proteins, and contains an abundance of
variation information. Noncoding regions are therefore suitable
for phylogenetic analysis at low levels of taxonomic hierarchy,
such as genera (Shaw et al., 2007). Noncoding regions can be
subdivided into introns and intergenic regions and can be used
for molecular identification of subspecies (Shaw et al., 2007).
In the current study, 18 genes contained introns; three of these
genes (clpP, rps12, and ycf3) contained two introns, and 15 genes
contained only one intron. Furthermore, the intergenic regions
of the sect. Moutan chloroplast genomes were variable.

The study of chloroplast genomes is highly relevant for
revealing the structure and origin of chloroplast DNA, plant
molecular markers and species relationships (Tang et al.,
2011). Chloroplast genome sequencing and phylogenetic
analysis of species of sect. Moutan can enrich the number of
chloroplast genome sequences and lay the foundation for species
identification, phylogenetic relationship, breeding of improved
varieties and sustainable exploitation of plant resources.
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FIGURE 8 | Phylogenetic trees constructed using ML and BI methods based on the LSC regions of the chloroplast genomes of 16 Paeonia species, including all
eight species of sect. Moutan. Red numbers at nodes are values for bootstrap support (ML/BI).

Furthermore, this sequencing and analysis also provides a
theoretical basis for studying chloroplast genetic engineering in
species of sect. Moutan.

Phylogenetic Analysis of Sect. Moutan
Species and Chloroplast Genome Super
Barcode
Species of sect. Moutan are economically important ornamental
plants that are also commonly used as medicinal plants. However,
the phylogenetic relationships and taxonomic systems of wild
species of sect. Moutan were different in previous studies
(Lin et al., 2004), and this could affect their applications.
Plant classification and identification have been based on
morphological evidence for a long time. However, morphological
traits are easily affected by the environment, and convergence and
parallel evolution often occur (Xing et al., 2013). DNA studies can
provide reliable molecular evidence for phylogenetic evolution
of species and identification of similar species within a genus.
Numerous genes, such as the nuclear genes ITS, Adh and GPAT
and the chloroplast genes matK, psbA-trnH, and trnL(UAA)-
trnf(GAA), have been applied to phylogenetic relationship studies

of species of sect. Moutan (Sang et al., 1995, 1997a,b; Ferguson
and Sang, 2001; Tank and Sang, 2001; Sang, 2002; Sun and Hong,
2012). Although these studies have advanced our understanding
of the relationships among species of sect. Moutan, the results of
different studies are not completely consistent.

In the current study, phylogenetic trees were constructed
based on the complete chloroplast genomes and LSC, SSC, and
IRs regions of the chloroplast genomes of 16 species of the
genus Paeonia, including all eight wild species of sect. Moutan.
Among them, complete chloroplast genomes, LSC regions and
SSC regions showed good abilities in the phylogenetic analysis
of Sect. Moutan species. Species of sect. Moutan, sect. Onaepia
and sect. Paeonia clustered in large distinct branches of the
phylogenetic tree, and the two subgroups of sect. Moutan were
further subdivided into different branches. In subsect. Vaginatae,
P. jishanensis, P. decomposita, P. qiui, and P. rockii clustered in
one small branch, while P. ostii and P. suffruticosa clustered in
a different small branch, consistent with previous studies (Zhao
et al., 2004; Zhao, 2007). Previous studies (Zou et al., 1999; Tank
and Sang, 2001; Feng et al., 2015) showed that P. decomposita
was related to P. rockii, and P. qiui was related to P. jishanensis;
however, the current study indicated that P. decomposita was
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FIGURE 9 | Phylogenetic trees constructed using ML and BI methods based on the SSC regions of the chloroplast genomes of 16 Paeonia species, including all
eight species of sect. Moutan. Red numbers at nodes are values for bootstrap support (ML/BI).

related to P. jishanensis, while P. rockii was related to P. qiui.
Wang (1996) and Zhang J. M. et al. (2008) used gene fragments of
the chloroplast genomes of sect. Moutan species to analyze their
relationships and found that P. decomposita and P. jishanensis
were closely related and clustered together in the phylogenetic
tree. This is consistent with the results of the present study.
Furthermore, a pathway proposed by Zhou and Yao (2002)
for the phylogenetic evolution of subsect. Vaginatae based on
morphological traits produced the same conclusion as the current
study. In subsect. Delavayanae, P. delavayi var. lutea clustered
with P. ludlowii and then with P. delavayi. This demonstrated
that P. delavayi var. lutea and P. ludlowii are more closely
related to each other than to P. delavayi. This is consistent
with the finding that P. delavayi var. lutea used to be an
independent species named P. lutea and that P. ludlowii was a
variety of this species known as P. lutea var. ludlowii (Stern and
Taylor, 1951). Feng et al. (2015) came to the same conclusion
using chloroplast genes psbA-trnH. However, IRs regions were
not suitable for the identification and phylogenetic analysis
of the species of sect. Moutan. It was mainly because IRs
regions were more conserved and had less variations, just as
described above.

In addition, highly variable regions of chloroplast genomes
were used to analyze their phylogenetic relationships, but most
of the support values in the phylogenetic trees were very low,
and none of them effectively resolved relationships among the
sect. Moutan species. The relationships among sect. Moutan
species were resolved with very high support values in the
phylogenetic trees based on complete chloroplast genomes.
The complete chloroplast genomes were better than the highly
variable regions in the analysis of phylogenetic relationships of
the sect. Moutan species. It was mainly due to the inadequate
variations provided by a limited number of DNA loci (Xu
et al., 2015), while the complete chloroplast genome could
provide sufficient informative sites, which can help to clarify
the relationships of intractable groups at low taxonomic levels
(Yang et al., 2013; Li et al., 2017; Yu et al., 2017). In fact,
chloroplast genomes have been proposed as super barcodes for
species identification (Li et al., 2015). Super barcodes overcome
many limitations of traditional barcodes (Parks et al., 2009;
Steele and Pires, 2011; Coissac et al., 2016). Zhu et al. (2018)
experimentally demonstrated that complete chloroplast genome
sequences have higher resolution than DNA barcodes or highly
variable regions of chloroplast genomes and can be used to
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identify related species, consistent with the current study. Super
barcodes have been successfully used to identify species and
individuals (Doorduin et al., 2011; Kane et al., 2012; Chen et al.,
2018; Ma et al., 2018). The phylogenetic trees constructed in this
study demonstrated that complete chloroplast genome sequences
can also be used as a reference for the identification of species
of sect. Moutan. With the rapid development of sequencing
technology and analytical methods, chloroplast genome assembly
sequencing is predicted to become widely used as a super barcode.

CONCLUSION

The chloroplast genome structure and gene content of species of
section Moutan in the genus Paeonia were relatively conserved,
while the GC content and variations in LSC, SSC, and IRs regions
of the sequences were different. In addition, abundant repetitive
sequences were identified, and their nucleotide composition
was analyzed. The phylogenetic analysis illustrated that the
two subgroups of sect. Moutan clustered in different branches.
In subsect. Vaginatae, P. jishanensis, P. decomposita, P. qiui,
and P. rockii clustered in a small branch, while P. ostii and
P. suffruticosa clustered in a different branch. P. decomposita
was found to be related to P. jishanensis, and P. rockii was
related to P. qiui. In subsect. Delavayanae, P. delavayi var. lutea
and P. ludlowii were more closely related to each other than
to P. delavayi. Furthermore, it was found that the complete
chloroplast genomes, LSC regions and SSC regions had higher
discrimination than IRs regions and highly variable regions
for the species of sect. Moutan, and the complete chloroplast
genomes could also be used as a super barcode for the
identification of species of sect. Moutan.
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