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The opportunistic pathogen Pseudomonas aeruginosa is one of the most common
agents of respiratory infections and has been associated with high morbidity and
mortality rates. The ability of P. aeruginosa to cause severe respiratory infections results
from the coordinated action of a variety of virulence factors that promote bacterial
persistence in the lungs. Several of these P. aeruginosa virulence mechanisms are
mediated by bacterial lipids, mainly lipopolysaccharide, rhamnolipid, and outer
membrane vesicles. Other mechanisms arise from the activity of P. aeruginosa
enzymes, particularly ExoU, phospholipase C, and lipoxygenase A, which modulate
host lipid signaling pathways. Moreover, host phospholipases, such as cPLA2a and
sPLA2, are also activated during the infectious process and play important roles in P.
aeruginosa pathogenesis. These mechanisms affect key points of the P. aeruginosa-host
interaction, such as: i) biofilm formation that contributes to bacterial colonization and
survival, ii) invasion of tissue barriers that allows bacterial dissemination, iii) modulation of
inflammatory responses, and iv) escape from host defenses. In this mini-review, we
present the lipid-based mechanism that interferes with the establishment of P. aeruginosa
in the lungs and discuss how bacterial and host lipids can impact the outcome of
P. aeruginosa respiratory infections.
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INTRODUCTION

Pseudomonas aeruginosa is a major etiological agent of both acute and chronic respiratory
infections in immunocompromised and critically ill individuals. Several features explain the
success of P. aeruginosa as an opportunistic pathogen, including the wide distribution of these
bacteria in the environment (1, 2), the high frequency of multidrug-resistant strains (3–7), and the
ability to produce an extensive and adaptable set of virulence factors, which are expressed depending
on environmental conditions (8, 9).

In hospitalized patients, P. aeruginosa is usually associated with acute infections, representing
one of the most common causes of hospital-acquired pneumonia (HAP) and the most isolated
pathogen in ventilator-associated pneumonia (VAP) (10–12). Additionally, P. aeruginosa can
persist in the lungs of individuals suffering from chronic respiratory diseases, such as cystic fibrosis
(CF) or chronic obstructive pulmonary disease (COPD). In fact, P. aeruginosa is the most frequently
org July 2022 | Volume 13 | Article 9310271
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detected and longest-lasting microorganism found in CF lungs,
representing the main cause of morbidity and mortality for these
patients (13–17).

The capacity to cause acute and chronic infections relies on
the multifactorial nature of P. aeruginosa pathogenicity, which is
supported by a wide range of proteins, carbohydrates, and lipids
that allow colonization of abiotic surfaces and host cells, invasion
of tissue barriers, killing of other bacterial species, and escape
from the immune system. To highlight the role of lipids in the
pathogenesis of respiratory infections caused by P. aeruginosa,
this mini-review will focus on virulence mechanisms that use
bacterial lipids or interfere with host lipids to favor the
establishment and persistence of P. aeruginosa in the airways.
BACTERIAL LIPIDS ACTING AS
VIRULENCE FACTORS

Lipopolysaccharide (LPS)
pt?>LPS is composed of three domains: lipid A, the core
oligosaccharide, and the O-antigen polysaccharide. P. aeruginosa
lipid A consists of an acylated glucosamine disaccharide
phosphorylated at the 1 and 4’ positions which can undergo
several modifications, such as phosphorylation, hydroxylation, and
addition of a palmitate acyl chain or aminoarabinose (18–22).

Lipid A is highly variable among P. aeruginosa isolates and
also differs under planktonic and biofilm growth conditions (22,
23). Lipid A modifications are under the control of the two-
component regulatory systems PhoP-PhoQ and PmrA-PmrB,
which sense changes in environmental conditions and activate
the expression of lipid A-modifying enzymes (20, 24, 25). In
addition, PagL, which encodes a lipid A 3-O-deacylase, is
particularly susceptible to mutations and is one of the hot spot
loci detected in CF isolates (23). Mutations in PagL can lead to
increased acylation of lipid A over time, with the penta-acylated
lipid A seen in bacteria that initially colonize CF lungs being
replaced by hexa- or, in the late stages of CF disease, hepta-
acylated forms (26, 27).

During infection, lipid A modifications may confer greater
resistance to cationic antimicrobial peptides or activate the
inflammatory response (20, 25, 28, 29). It is interesting to note
that the P. aeruginosa penta-acylated LPS binds TLR2 and is
predominantly found in isolates from non-CF and early CF
disease (30), whereas the hexa- and hepta-acylated forms that
prevail in well-established P. aeruginosa infections, with higher
acylation pattern been associated with higher CF disease severity
in late stages, efficiently bind and activate the human TLR4-MD2-
CD14 complex, inducing a more robust inflammatory response
(31–34). Since CF individuals acquire P. aeruginosa infection from
environment early in their lives, the inability to respond strongly
to the penta-acylated LPS of environmental strains may facilitate
the initial colonization of CF lungs by P. aeruginosa.

In mice lungs, TLR4 activation by P. aeruginosa LPS was
able to induce NF-kB activation, secretion of proinflammatory
cytokines and chemokines, and neutrophil recruitment,
through a mechanism involv ing GM-CSF and the
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transcription factor PU.1 (35). It remains to be elucidated
whether chronic exposure to P. aeruginosa lipid A contributes
to CF morbidity by stimulating neutrophils to release
mediators that promote lung damage or whether it induces
LPS-hyporesponsiveness to reduce the inflammatory injury.

Rhamnolipids
P. aeruginosa rhamnolipids are biosurfactants that consist of a
dimer of fatty acids (3-(3-hydroxyalkanoyloxy) alkanoic acids
- HAA), mainly composed of 10 carbon chains, linked to one
or two molecules of L-rhamnose. The biosynthesis of
rhamnolipids is under the control of various transcriptional
and post-transcriptional regulators, with a critical role of the
Rhl quorum sensing (QS) system that directly induces the
transcription of the rhlAB operon and rhlC, which encode
enzymes involved in HAA production and L-rhamnose
transfer (36–38).

Rhamnolipids were first detected in sputum from CF patients
chronically infected with P. aeruginosa (39), although a later
study showed higher levels of rhamnolipids in P. aeruginosa
isolates from intermittently colonized individuals than in isolates
from chronically infected CF individuals (40). Curiously, when
isolates from either chronic or acute infections were compared, a
positive association between rhamnolipid production and acute
infection was found (41).

In the airways, rhamnolipids favor the invasion of the
epithelial barrier by P. aeruginosa and reduce bacterial
clearance through innate immunity. On the respiratory
epithelial surface, rhamnolipids slow down ciliary beat
frequency and impair mucociliary transport, thus reducing the
bacterial clearance (42, 43). Rhamnolipids initially interact with
the apical membrane of epithelial cells and then progressively
reach the basolateral membrane, displacing ezrin and disrupting
the tight junctions, thus opening a paracellular route to invading
bacteria (44). In the lungs, rhamnolipids inhibit phagocytosis by
macrophages (45) and induce necrosis of neutrophils (46, 47),
which play a key role in the defense against P. aeruginosa.

Several other effects related to rhamnolipid production may
affect the respiratory infections caused by P. aeruginosa, since
rhamnolipids can modulate swarming motility, participate in
biofilm architecture by promoting the maintenance of channels
that diffuse nutrients and oxygen, and mediate biofilm disruption
by promoting the seeding dispersal of motile bacteria (48–51).
Furthermore, rhamnolipids increase the bioactivity of the
Pseudomonas quinolone signal (PQS) (52), a QS signaling
molecule that controls several virulence factors (53), and can
be detected in the lungs of CF patients infected with P.
aeruginosa (54, 55). Importantly, rhamnolipids inhibit the
growth of microorganisms that colonize CF lungs along with
P. aeruginosa, such as Staphylococcus aureus and Aspergillus
fumigatus, conferring them a competitive advantage in this
environment (56–58).

Outer Membrane Vesicles (OMVs)
Outer membrane vesicles (OMVs) are spherical nanoparticles
with a lipid bilayer produced by blebbing of the bacterial outer
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membrane, containing a variety of lipids, sugars, DNA, RNA,
and proteins. Depending on their content, which differs among
P. aeruginosa strains (59, 60), OMVs can be involved in diverse
biological processes, such as horizontal gene transfer (61–63),
protection against phages (64), cell-cell communication (65),
biofilm architecture (66, 67), antibiotic resistance (68, 69), escape
from the immune system (70), and delivery of virulence factors
into host cells (71).

The lipid membrane protects the vesicle content from
extracellular degradative enzymes, enabling long-distance
transport, and upon contact with host cells, fuses with
cholesterol-rich host membrane microdomains known as lipid
rafts, delivering their contents into the cell cytoplasm (72). The
aminopeptidase PaAP, which is associated with the surface of
OMVs from CF strains (59, 73), participates in the interaction with
lung epithelial cells, optimizing the delivery of OMV content (73).

In P. aeruginosa respiratory infections, OMVs can release
important virulence factors, such as the cystic CFTR inhibitory
factor (Cif) (72). Cif decreases the apical membrane expression of
CFTR and chloride secretion, altering mucociliary clearance (74),
and inhibits TAP1, reducing MHC class I antigen presentation in
the airways (75). OMVs are also associated with macrophage
apoptosis (76) and can induce inflammation since they stimulate
CXCL8 secretion by lung epithelial cells (59), as well as secretion of
TNF-a, IL-6, MIP-2, CXCL1, CXCL-8, CCL2, IL-1b, and IFN-g,
and activation of the inflammasome in macrophages (77–79).
Moreover, Park et al., 2013 showed in vivo that OMVs can cause
dose-dependent pulmonary inflammation, with greater cellular
recruitment and higher chemokine and cytokine secretion in mice
lungs than in live bacteria (78). In contrast, release of sRNA by P.
aeruginosa OMVs is associated with reduced LPS- and OMV-
induced CXCL8 secretion by human airway epithelial cells along
with decreased OMV-induced KC secretion in the bronchoalveolar
fluid and reduced neutrophil recruitment in mouse lungs (80).
VIRULENCE FACTORS TARGETING HOST
LIPIDS

ExoU
ExoU, a phospholipase A2 (PLA2)-like enzyme that is injected into
host cytosol by the type III secretion system machinery (81), is of
special interest for acute respiratory infections caused by
P. aeruginosa, since potent ExoU-mediated virulence is
particularly associated with bloodstream invasion and increased
morbidity and mortality in hospitalized patients, especially those
suffering from HAP (70, 82–86).

ExoU and its chaperone SpcU are encoded in the PAPI-2
pathogenicity island (87–89), and are detected in about 20-40% of
isolates of acute nosocomial infections, such as pneumonia and
bacteremia (83–86, 90–92). A recent study performed with 243
isolates from P. aeruginosa bloodstream infection, including 50 with
an exoU-positive genotype, showed that patients infected with exoU-
positive strains had a higher proportion of respiratory infections,
greater severity of illness, septic shock, and increased mortality
compared with those infected with exoU-negative strains (85).
Frontiers in Immunology | www.frontiersin.org 3
After injection into host cytosol, the ExoU C-terminal domain
promotes localization of ExoU to the host cell membrane (93)
through binding to the lipid phosphatidylinositol 4,5-bisphosphate
(PI(4,5)P2) followed by conformational change and oligomerization
of ExoU (94–96). Furthermore, both ubiquitin and PI(4,5)P2
binding is necessary for full ExoU PLA2 activity and cytotoxicity
(96–98). Hence, although the N-terminal domain interacts with
SpcU and has enzymatic activity, the C-terminal domain, which
promotes ExoU-membrane lipid interaction, is also essential for
ExoU-mediated virulence (81, 87, 99–102).

Animal models of acute pneumonia showed that, after
infection, ExoU is rapidly expressed in mice lungs and that its
levels increase over time (103). In these models, ExoU promotes
a bacterial burden in the lungs, enhances dissemination of P.
aeruginosa from the bloodstream to other organs, and reduces
survival of infected mice (102–106).

PLA2 catalyzes the hydrolysis of the sn-2 position of
membrane glycerophospholipids to release arachidonic acid
(AA) and lysophospholipids, both potent lipid mediators. In
the lungs, the ExoU PLA2 activity on membrane phospholipids
generates free AA (107, 108) that is used to produce PGE2 (109,
110), whereas lysophospholipids (102, 110) produce PAF, which
binds to PAFR in airway epithelial cells and activates NF-kB,
stimulating a potent proinflammatory response characterized by
secretion of CXCL8, as well its murine homologue KC, and a
marked influx of neutrophils (109, 111, 112). However, ExoU kills
neutrophils, as well as other phagocytic cells, causing a state of
local immunosuppression that favors the persistence of ExoU+
and ExoU- bacterial strains (113–115).

Although ExoU injection causes reactive oxygen species (ROS)
imbalance (116) and is cytotoxic for airway epithelial cells (102, 117),
the remaining non-infected cells activate several transcriptional
regulators, such as AP1 and NF-kB, modulating the host response
(111, 112, 118, 119). Furthermore, the cytotoxic activity of ExoU also
promotes endothelial cell damage, which is associated with ROS
generation, membrane lipid peroxidation, and caspase-1 activation
(107, 120). The ability to break down cellular barriers to bacterial
dissemination, such as epithelium and endothelium, helps explain
why ExoU is a predictor of invasive infections and has been
associated with severe pneumonia followed by bacteremia and sepsis.

Phospholipase C
P. aeruginosa synthesizes three types of phospholipases C
(PLCs), the hemolytic PlcH, the non-hemolytic PlcN, and
PlcB. All three PLCs hydrolyze phosphatidylcholine, the main
component of cell membranes and lung surfactant, as well as
other phospholipids found in eukaryotic membranes: PlcH also
hydrolyzes sphingomyelin, PlcN targets phosphatidylserine, and
PlcB, phosphatidylethanolamine (121, 122). To reach the
extracellular medium, all three P. aeruginosa PLCs are secreted
by the type II secretion system. However, to be transported
across the inner membrane, PlcH and PlcN use the Tat system
(123) whereas PlcB uses the Sec pathway (122). Furthermore,
PlcH can be delivered into airway epithelial cells by OMVs (72).

In contrast to PlcN and PlcB, the role of PlcH in P. aeruginosa
respiratory infections has been studied. Both intratracheal
instillation of purified PlcH from P. aeruginosa and infection with
July 2022 | Volume 13 | Article 931027
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a PlcH-producing strain, but not with its PlcH-defective isogenic
mutant, were able to alter the respiratory mechanics during
infection, with decreased pulmonary surfactant activity and
impaired lung function (124).

Moreover, hydrolysis of phosphatidylcholine and sphingomyelin
by PlcH yields diacylglycerol and ceramide, which are involved in
signal transduction cascades that result in cellular processes such as
cell death and inflammation (125, 126). Actually, intranasal
administration of P. aeruginosa PlcH increases secretion of the
proinflammatory cytokines and chemokines IL-6, IL-1b, TNF-a,
MIP-1a, and MIP-2, as well as cellular infiltration, in mice
lungs (127).

Despite the activation of the proinflammatory response, PlcH
seems to favor P. aeruginosa persistence in the lungs (128). PlcH can
increase the colonization of biotic and abiotic surfaces, since it
contributes to P. aeruginosa attachment to CF bronchial epithelial
cells and promotes biofilm formation on plastic when bacteria are
grown in lung surfactant (129). In addition, PlcH is cytotoxic to
macrophages (130) and suppresses the respiratory burst activity of
human neutrophils (131), thus promoting bacterial survival in the
lungs. Although PlcH is also cytotoxic to endothelial cells and
inhibits angiogenesis (132), its role in bloodstream invasion remains
to be determined.

The role of PlcN and PlcB in the pathogenesis of P. aeruginosa
respiratory infections is unclear, although some properties can
contribute to successful infection. Both PlcN and PlcB participate
in the formation of P. aeruginosa biofilms (133), whereas PlcB is
also associated with twitching motility (122).

LoxA
Lipoxygenases play an important role in eukaryotic organisms
since they metabolize polyunsaturated fatty acids (PUFAs),
Frontiers in Immunology | www.frontiersin.org 4
allowing the subsequent production of lipid mediators with
strong immunomodulatory effects. Although lipoxygenases are
rare in prokaryotes, Vance and colleagues reported in 2004 that
P. aeruginosa secretes lipoxygenase A (LoxA), a functional
homolog of the eukaryotic 15-lipoxygenase (134).

Lipoxygenase activity was detected in 34% of isolates from
lungs of non-CF patients and in 18,3% of isolates from lungs of
CF individuals, suggesting that LoxA may be secreted during P.
aeruginosa respiratory infections (135). In vitro studies showed
that, after interaction with host cell membranes and peroxidation
of phospholipids, P. aeruginosa LoxA promotes biofilm growth
on the surface of airway epithelial cells, helps bacterial invasion,
and triggers arachidonoyl phosphatidylethanolamine-dependent
ferroptosis (136–139). Furthermore, in a murine model of acute
pneumonia, LoxA increased the production of the 15-LOX-
dependent metabolites 13-hydroxy-octadecadienoic acid (13-
HODE), 15- hydroxyeicosatetraenoic acid (15-HETE), and 17-
hydroxydocosahexaenoic acid (17-HDoHE), which were then
used to produce lipoxin A4 (LXA4), a bioactive lipid mediator
with anti-inflammatory properties. Additionally, LoxA inhibited
the secretion of the chemokines MIP-1a/CCL-3, MIP-1b/CCL-4,
MIP-2/CXCL-2, CXCL-1, and KC in BALF, reduced the
recruitment of inflammatory leukocytes, and promoted the
persistence of P. aeruginosa in the lungs (135).

HOST PLA2 ENZYMES AND THEIR ROLE
IN P. AERUGINOSA INFECTION

In addition to the PLA2 activity of P. aeruginosa ExoU, host cells
also exhibit PLA2 enzymes that can mediate P. aeruginosa-
induced toxicity (Figure 1). Among these enzymes, the host
FIGURE 1 | Role of host PLA2 in inflammation and antibacterial defense during P. aeruginosa infection. P. aeruginosa interacts with host cells through the binding of
PAMPs of this bacterium, mainly LPS and flagellin to the host receptors TLR4 and TLR5, respectively, leading to NF-kB activation. In parallel, toxins, including ExoS,
are also injected by this bacterium into host cells, leading to activation of the transcription factor KLF-2. Both processes result ultimately in the induction and
secretion of sPLA2-IIA. Once in the extracellular media, this enzyme binds bacterial membranes and hydrolyzes their phospholipids leading to bacterial death (140).
On the other hand, PAMPs stimulate cPLA2 translocation and activation via a MAPK-dependent mechanism. This leads to the hydrolysis of phospholipids of host cell
membranes and subsequent release of free fatty acids, such as arachidonic acid (AA), and lysophospholipids, such as lysophosphatidyl-choline (Lyso-PC). AA is
converted into pro-inflammatory eicosanoids and lyso-PC exert toxic effects on host cells (141, 142).
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cytosolic PLA2a (cPLA2a), which hydrolyzes host membrane
phospholipids releasing lysophospholipids and AA, plays a key
role in P. aeruginosa-induced mouse mortality, mainly through
cPLA2a-derived AA metabolites (141). In addition, it is likely
that the accumulation of highly cytotoxic lysophospholipids,
such as lysophosphatidylcholine, may participate in the
deleterious effects of P. aeruginosa. This may indicate that
cPLA2a represents a potentially interesting therapeutic target
for the treatment of lung injury induced by P. aeruginosa
infection and that a cPLA2a inhibitor can be used as a new
strategy against inflammation.

Conversely, the host also produces a family of secreted PLA2

(sPLA2) that play a key role in defense against invading bacteria.
For example, sPLA2-IIA can kill Gram-positive bacteria at very
low concentrations (below 10 ng/ml), due to the unique
preference of sPLA2-IIA for anionic phospholipids, such as
phosphatidylglycerol (140), the main phospholipid component
of bacterial membranes. In contrast, much higher concentrations
(> 10 µg/ml) of sPLA2-IIA are required for its action on host cell
membranes mainly composed of phosphatidylcholine, a poor
substrate for sPLA2-IIA. The ability of sPLA2-IIA to kill Gram-
negative bacteria, including P. aeruginosa, depends on factors that
Frontiers in Immunology | www.frontiersin.org 5
disrupt bacterial outer membrane organization, such as the
bactericidal/permeability-increasing protein (BPI), which
predisposes bacterial membranes phospholipids to sPLA2-IIA
attack. Additionally, sPLA2-IIA can directly kill clinical isolates
of P. aeruginosa, which chronically colonizes the upper airways of
CF patients, but this effect is not affected by the high salt
concentrations observed in CF secretions. Studies have shown
that sPLA2-IIA kills a laboratory strain of P. aeruginosa and that
sPLA2-IIA transgenic mice are protected from mortality by both
laboratory and clinical strains of P. aeruginosa isolated from CF
patients. These findings suggest that sPLA2-IIA may play a role in
host defense during episodes of pulmonary infection by P.
aeruginosa in CF patients (140).
DISCUSSION

P. aeruginosa uses multiple virulence factors to cause acute and
chronic respiratory infections. As summarized in Figure 2, P.
aeruginosa lipids are able to exert important effects during
infection. Bacterial lipids can protect P. aeruginosa from
antibiotics and phagocytosis, promote bacteria-bacteria
FIGURE 2 | Scheme model of Pseudomonas aeruginosa virulence factors using a lipid-based mechanisms to cause respiratory infections. Bacterial lipids (green)
and bacterial enzymes (yellow) targeting host lipids promote (!) or inhibit (˧) different biological functions during respiratory infections. They can (1) facilitate the
biofilm formation of P. aeruginosa, (2) promote the death of host cells and the invasion of tissues, leading to the spread of P. aeruginosa in the bloodstream, (3)
interfere with the inflammatory response, and (3) block the host defense (e.g. neutrophils, macrophages). As a result, P. aeruginosa can benefit from lipid
mechanisms to persist in its host. Created in BioRender.com.
July 2022 | Volume 13 | Article 931027

https://www.BioRender.com
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Constantino-Teles et al. Lipids in Pseudomonas aeruginosa Pneumonia
communication, provide a competitive advantage, participate in
biofilm development, and interfere with the host response. In
addition, host and bacterial lipid-modifying enzymes induced
during the infectious process may promote the direct lysis of
membranes and manipulate eukaryotic signaling pathways,
which may lead to modulation of the inflammatory response,
invasion of host tissue barriers, escape from immune
mechanisms, or bacterial clearance. Knowledge of lipid
manipulation by P. aeruginosa that may facilitate its
persistence is essential for understanding the mechanisms
underlying its pathogenicity and may provide important
insights to the control of P. aeruginosa infections.
Frontiers in Immunology | www.frontiersin.org 6
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