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γδ T  lymphocytes maintain skin homeostasis by balancing keratinocyte differentiation 
and proliferation with the destruction of infected or malignant cells. An imbalance in 
skin-resident T cell function can aggravate skin-related autoimmune diseases, impede 
tumor eradication, or disrupt proper wound healing. Much of the published work on 
human skin T cells attributes T cell function in the skin to αβ T cells, while γδ T cells 
are an often overlooked participant. This review details the roles played by both αβ and 
γδ T cells in healthy human skin and then focuses on their roles in skin diseases, such 
as psoriasis and alopecia areata. Understanding the contribution of skin-resident and 
skin-infiltrating T cell populations and cross-talk with other immune cells is leading to the 
development of novel therapeutics for patients. However, there is still much to be learned 
in order to effectively modulate T cell function and maintain healthy skin homeostasis.
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SKiN AS AN iMMUNOLOGiCAL BARRieR

The skin serves as the largest organ in the body and as such provides a barrier against pathogens 
and regulates physiological changes. This is achieved through the network of cells, extracellular 
matrix molecules, and accessory organs residing in the complex layers of the skin. Human skin 
is composed of two compartments that include the epidermis and the dermis. The epidermis is a 
multilayer barrier composed of differentiating keratinocytes while the dermis is a connective tissue 
rich in collagen fibers (1). Immune cells including αβ and γδ T cells, and Langerhans cells reside 
in the epidermis. The dermis hosts a more diverse population of immune cells including: αβ and 
γδ T cells, dermal dendritic cells (DCs), innate lymphoid cells, plasmacytoid DCs, natural killer 
T cells, macrophages, mast cells, B cells, and fibroblasts (1). Human skin is estimated to host over 
20 billion T cells or one million T cells per square centimeter (2). These T cells are composed of 
1–10% γδ T cells with αβ T cells making up the remaining population (2, 3). Together, they mediate 
processes, such as skin homeostasis, wound repair, and immunity (4–6).

Skin-resident T cells recognize and respond to infected, stressed, or damaged cells by secreting 
cytokines and growth factors that stimulate cellular proliferation, induce cytolysis, and/or activate 
other cells to infiltrate the affected region (7–10). While T cells reside in both the epidermis and the 
dermis, the majority of T cells in normal human skin reside in the dermal–epidermal junction, in 
appendages, and near blood vessels (2). The epidermal and dermal compartments contain unique 
phenotypes of resident versus recirculating T cells with the epidermis exhibiting a higher frequency 

Abbreviations: DC, dendritic cells; ILCs, innate lymphoid cells; DN, double negative; DETC, dendritic epidermal T cells; LAT, 
linker activation in T cell; CLA-1, cutaneous lymphocyte antigen-1; ICAM-1, intercellular adhesion molecule 1; VCAM-1, 
vascular cell adhesion protein 1; MICA, MHC class I related chain A molecules; MICB, MHC class I related chain B molecules; 
AICD, activation induced cell death; JAML, junctional adhesion molecule-like; B-CLL, lymphocytic leukemia of B-cell type; 
JAK3, janus kinase 3; T2DM, diabetes mellitus type 2; PD1, programmed cell death protein 1; PDL1, programmed death-ligand 
1; LFA-1, lymphocyte function-associated antigen 1.
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of CD103+ T resident CD4+ and CD8+ populations (11). CD103 
along with β7 integrin bind E-cadherin which is expressed heav-
ily by keratinocytes in the epidermis. Recirculating T central 
memory cells isolated from the skin express CCR7 and L-selectin, 
while T migratory memory lack L-selectin (11). Together these 
receptors provide signals that allow distinct populations of T cells 
to remain in the skin or recirculate to the blood or lymphatics 
during normal skin homeostasis.

αβ AND γδ T CeLL DeveLOPMeNT  
AND MiGRATiON TO THe SKiN

Much of the work to understand T  cell development has been 
performed using mouse models. Epidermal γδ T cells in mice, 
also known as dendritic epidermal T cells (DETC), seed the epi-
dermis during fetal development in a wave and express a canoni-
cal Vγ3Vδ1 TCR (12, 13). It is unclear whether a similar seeding 
event occurs in humans; however, the majority of skin-resident 
T cells express the Vδ1 TCR (14, 15). It is important to note that 
in this review we employ the γδ TCR nomenclature described by 
Garman et al. (16) and Hayday et al. (17).

Chemokine receptors, cytokines, and adhesion molecules play 
key roles in T cell homing to the skin. In mice, CCR10 is upregu-
lated on developing γδ T cells in the fetal thymus and required for 
efficient homing to seed the epidermis (18). In addition, CCR10 is 
utilized for T cell homing to inflamed skin via CCL27 produced 
by keratinocytes (19). In humans, vitamin D induces T cells to 
express CCR10 which may play a role in skin retention (20). T cells 
isolated from human skin also express the chemokine receptor, 
CCR8. The ligand for CCR8, CCL1, is expressed in the epidermis 
further suggesting that keratinocytes participate in T cell entry 
and retention in the skin through the production of chemokines 
(21). In addition to skin-resident T cells, circulating T cells home 
to a variety of barrier tissues upon infection and remain there 
poised for immediate effector functions to protect the organ-
ism (22, 23). The CCR6–CCL20 receptor ligand pair plays key 
roles in activated γδ T cell recruitment to the skin in mice (24). 
Skin-resident γδ T cells express CCR6, while the ligand, CCL20, 
can be expressed by keratinocytes, DCs, and endothelial cells. 
Human epidermal samples normally express low levels of CCL20; 
however, it is upregulated after an acute injury (25). Thus, CCL20 
may act as an indicator of acute injury, initiating recruitment of 
infiltrating T cells to the epidermis.

The absence of cytokines, such as IL-7, IL-15, and IL-4, in mice 
results in a reduction/elimination of γδ T cells while IL-10 increases 
the generation of γδ T cells when present at low concentrations 
(26–29). These cytokines induce T cell survival and/or prolifera-
tion. IL-7R signaling induces rearrangement and transcription of 
the TCR γ-chain, while IL-15 facilitates γδ epidermal T  cell 
precursor expansion and survival, and IL-4 signaling promotes 
growth of epidermal γδ T  cells (30–33). Thus, critical roles are 
played by cytokine receptor signaling in γδ T cell development and 
expansion in sites such as the skin.

Selective recruitment of lymphocytes into human skin is facili-
tated by the expression of adhesion molecules on the T lympho-
cytes to ligands in the skin. For example, cutaneous lymphocyte 

antigen-1 expressed on a subset of human peripheral blood 
T cells, binds to E-selectin expressed by endothelial cells during 
inflammation (34). Endothelial cells express other adhesion 
molecules, such as intercellular adhesion molecule 1 (ICAM-1) 
and vascular cell adhesion protein 1, which also aid in T  cell 
recruitment (35–37). In addition, the integrin CD103 is involved 
in the recruitment of T cells to the skin and binding to E-cadherin 
on epidermal cells (38–40). While CD103 is expressed in less than 
15% of splenic T cells in mice and less than 3% of T cells in human 
peripheral blood, it is expressed at much higher rate on murine 
and human T cells in epithelial tissues (41–43). In mice, CD103 
plays key roles in the establishment of γδ epidermal T cell popula-
tions as CD103-deficient mice show a significant reduction of γδ 
epidermal T cells and an impairment in morphology compared 
to controls (44). Together these chemokine receptors, cytokines 
and adhesion molecules develop/maintain skin-resident T  cell 
populations and further recruit T cells to sites of inflammation 
in the skin.

αβ AND γδ T CeLL ACTivATiON  
iN THe SKiN

αβ T  cell activation and cytokine production rely on three 
consecutive signals: TCR ligation, stimulation of costimulatory 
molecules and cytokine signaling (45–47). These three signals are 
essential for full functionality of the cell and without proper sign-
aling there is a lack of T cell function, differentiation, prolifera-
tion, and survival (48). Co-stimulation is generated through the 
interaction between costimulatory molecules such as CD28 on 
the αβ T cell and ligands, such as CD80 and CD86 (46). γδ T cell 
activation is less understood; however, there are some similarities 
and differences with αβ T cell activation.

While αβ TCRs rely on MHC presentation of foreign peptides, 
γδ TCRs recognize some antigens in a manner that is more similar 
to antibody–antigen interactions (49). The entire repertoire of 
antigens recognized by γδ T cells is still unknown, yet it is clear 
that the γδ TCR is required for antigen recognition and the nature 
of antigen recognition is unique to the TCR expressed by the γδ 
T cell (49–51). The restricted TCR repertoire of Vγ and Vδ gene 
segments in both humans and mice leads to speculation that these 
TCRs recognize conserved self-proteins that become upregulated 
during stress, damage, or malignancy (52). Human γδ T cells are 
limited to Vδ1, Vδ2, and Vδ3 expressing populations which are 
distributed in different locations in the body (Table 1). γδ T cell 
populations have shown the ability to recognize atypical antigens, 
such as phosphoantigens, stress molecules including MHC class I  
related chain A molecules and MHC class I related chain B 
molecule, non-peptide metabolites of isoprenoid biosynthesis, 
and other unique antigens (53–55). One particular population 
of Vδ1+ T cells has been shown to recognize CD1 molecules with 
lipid antigens that are presented by antigen-presenting cells such 
as DCs (56). Specifically, CD1d is a Vδ1+ T cell ligand in both 
mice and humans (56, 57). In addition, γδ T cells expressing the 
Vγ2Vδ2 TCR have the ability to recognize phosphoantigens, 
which are important products of microbes, such as Mycobacterium 
tuberculosis (58). This suggests that antigen recognition between 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


TABLe 1 | γδ T cell subsets in humans and their roles in immunopathology.

Features in immunopathology

Subset Location 
of highest 
prevalence

identified antigen Cancer Psoriasis Diabetes Reference

Vδ1 Barrier tissues MHC class I related chain  
A molecule/B, CD1  
molecules, sulfatides

Immunosuppressive/ 
regulatory roles
Migrate to tumor site via  
CCR5 and CCR2
Produce IL-17, TNF-α,  
and IFNγ
Kill melanoma cells

(53, 56, 59–63)

Vδ2 Peripheral blood ULPB4, Phosphoantigens,  
F1-ATPase, aminoacyl  
tRNA synthetase

Migrate to tumor site via CCR5  
and CXCR 3
Express adhesion molecules:  
lymphocyte function-associated  
antigen 1, L-selectin, CD44v6

Reduction in circulating  
CLA+ Vδ2 T cells
Migrate to skin
Produce TNF-α, IFNγ,  
IL-17A, and growth 
factors

Reduction in circulating  
Vγ2Vδ2 T cells in 
patients with high BMI
Reduced IFN-γ 
production

(62–66)

Vδ3 (Vδ1−/
Vδ2−)

Peripheral blood, 
liver

CD1d, CD1c Increased number in  
patients with B cell chronic  
lymphocytic leukemia

(56, 67, 68)
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γδ T cells varies among populations and is likely unique to the 
site, such as the skin, in which they reside.

While co-stimulation is less understood in γδ T cells, CD27 
is expressed on most Vγ2Vδ2 T cells and contributes to T cell 
activation (69). Upon activation, the majority of CD27+ Vγ2Vδ2 
T cells produce IFN-γ while IL-17 is rarely produced (69). CD27 
signaling also protects against activation induced cell death and 
increases the expansion of tumor-specific cytotoxic T  lympho-
cytes suggesting a costimulatory role (69). Studies suggest CD2 
and ICAM-1 work as costimulatory receptors on Vδ1+ T  cells 
(70). CD2 acts as a cell adhesion and co-stimulatory molecule 
that binds to CD58, facilitating cell contact and TCR ligation 
(71). ICAM-1 binds to lymphocyte function-associated antigen 
1 inducing intercellular communication and inflammatory 
responses (72). In mice, the junctional adhesion molecule-like 
(JAML) is a costimulatory receptor for γδ epidermal T  cell 
activation (73). Resting epidermal T cells express JAML at low 
levels; however, upon stimulation JAML expression is increased 
(73). Upon co-stimulation through JAML, epidermal T  cells 
proliferate and produce IL-2, TNFα, and IFNγ (73). In addition 
another costimulatory receptor, CD100, regulates γδ epidermal 
T cell responses to keratinocyte damage (74). Ligation of CD100 
facilitates the activated “round” morphology of epidermal γδ 
T cells through ERK kinase and cofilin (74). It will be important 
to determine whether these costimulatory pathways are also 
utilized by human skin γδ T cells.

SKiN-ReSiDeNT T CeLL HOMeOSTASiS 
AND ePiDeRMAL MAiNTeNANCe

Antigen-specific T cells expand during a skin infection and then 
largely die off leaving a small population of memory cells (11, 75). 
Recently, these remaining memory T cells have been categorized 
based on phenotype and function in humans (11). Skin-resident 

populations include dermal CD4+ CD103− T cells and epidermal 
CD8+ or CD4+ T cells that express CD103. The epidermal T cells 
are less able to proliferate, but exhibit a greater ability to produce 
IFN-γ and TNF-α (11). Recirculating populations express CCR7 
and lack CD69 but breakdown into L-selectin+ central memory 
cells and L-selectin- migratory memory cells (11). The T migra-
tory memory populations are associated with expanding lesions 
in patients with cutaneous T cell lymphoma (11).

Memory CD4+, CCR10+, CCR6+, CCR4+ T cells homing to the 
skin can secrete cytokines that include IL-22, IL-26, and IL-23, 
which are involved in skin homeostasis (76). IL-22 acts on non-
hematopoietic tissue cells of barrier tissues such as keratinocytes 
and helps regulate cellular differentiation and survival. This sug-
gests IL-22 is involved in maintaining homeostasis of the epithelia 
(77). IL-23 induces the production of IL-22 and at elevated levels 
it contributes to a disruption in keratinocyte homeostasis (78). 
IL-26 has direct and indirect antiviral and antimicrobial proper-
ties, yet when not tightly regulated, skin homeostasis can become 
disrupted causing chronic infections and skin-related diseases 
(79). It is important to note that in most of these studies the 
T cell populations were not divided into αβ TCR versus γδ TCR 
expressing T cells. Thus, future studies will be needed to assess 
which subset includes the cytokine producing T cells that may be 
targets for therapeutic interventions.

In the murine epidermis, antigen-specific skin-resident 
memory CD8+ T  cells and DETC adopt a dendritic morphol-
ogy, increasing the number of cells they contact (75). DETC are 
distinctive in that they form phosphotyrosine-rich aggregates 
that keep the cells in a preactivated state (80). This dendritic 
morphology seems to be particular to the epidermis where 
receptors such as CD103 and E-cadherin interact, as dermal γδ 
T cells appear more rounded and are more motile (80, 81). At 
steady state, epidermal γδ T  cells help maintain keratinocyte 
homeostasis through the production of factors such as insulin-
like growth factor-1 (IGF-1) and wound healing through the 
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production of keratinocyte growth factors (82–84). Mice lack-
ing γδ T cells, TCRδ−/− mice, exhibit delayed wound repair and 
fewer basal keratinocytes with increased differentiation (84, 85). 
However, when DETC are added to either the same well as 
TCRδ−/− skin organ cultures or open wounds of TCRδ−/− mice 
there is improved wound closure (84, 86).

Human skin-resident T  cells have been speculated to also 
maintain skin homeostasis (5, 87). Both human and murine αβ 
and γδ skin-resident T cells regulate keratinocytes through the 
production of IGF-1; demonstrating their ability to influence 
keratinocyte proliferation and homeostasis (7, 82, 83). Recent 
work has focused on characterizing skin-resident T  cells as 
compared to CLA+ T cells from blood (88). Results from this 
study confirm that CLA+ memory cells represent 80–90% 
of CD3+ cells in the skin and 15% in the blood (88). More 
interestingly, skin-derived T  cells and blood-derived T  cells 
express a different set of genes which are conserved in both 
mice and humans; these genes are involved in tissue homing 
and cell activation (88). Some gene signatures were consistent 
for T  cells such as the cell markers CTLA4, CD8A, and CD4 
(88). T cells residing in human skin express higher levels of a 
variety of genes including NR4A2 as compared to T cells in the 
blood which have elevated expression of genes such as S1PR1 
(88). Thus, T cells in the skin are transcriptionally unique from 
blood T cells and are comparable to previous gene signatures for 
T-resident memory cells.

T CeLLS HAve A vARieTY OF FUNCTiONS 
iN THe SKiN

In human skin, T  cells have been shown to perform roles that 
maintain skin integrity. CD4+ αβ T cells such as Tregs and T-helper 
cells secrete cytokines in response to infection, tissue damage, 
and tumors (89). Th1 cells primarily secrete IFN-γ and IL-12 in 
response to intracellular pathogens that disrupt the skin barrier 
while Th2 cells fight extracellular pathogens and are involved in 
atopic diseases by secreting IL-4, IL-13, IL-24, IL-25, and IL-3 
(90, 91). CD8+ T cells destroy infected cells by recognizing epitopes 
of viruses such as the herpes simplex virus, varicella zoster virus, 
and Epstein–Barr virus (92, 93). While most αβ T cells undergo 
apoptosis after a pathogen has cleared, a population of αβ T cells 
become long-lived memory T cells and reside in the skin (94, 95). 
These memory T  cells are involved in inflammation upon viral 
infection by secreting cytokines, such as IL-22, IL-26, and IL-23 
(76). While much of the published research in humans has focused 
on αβ T cell function in the skin, γδ T cells play key roles in main-
taining skin integrity and protecting from malignancy.

γδ T cells monitor skin integrity by recognizing damaged cells 
and producing IGF-1 (7). Activated skin-resident T cells improve 
the rate of wound closure in cultured human skin in an IGF-1-
dependent manner (7). In addition, human skin-derived γδ T cell 
clones exert cytotoxic responses against melanoma cell lines (96). 
Human dermal γδ T cells express the NKG2D receptor, which 
stimulates cell lysis (97, 98). Once activated, skin-derived γδ T cells 
produce perforin and induce Fas-mediated cytotoxicity (87).  
In patients with chronic lymphocytic leukemia of B-cell type, 

there is an increase in circulating Vδ1+ γδ T cells that respond to 
autologous leukemic B cells by proliferating and secreting TNF-α 
and IFN-γ (59). Although T cells play a vital role in providing an 
effective immune response, they can be harmful if not function-
ing in a regulated manner.

An imbalance in the number and/or function of skin-resident αβ 
and γδ T cells has been associated with chronic inflammation and 
skin-related diseases (99–102). Elevated skin-resident T cells has 
been reported in individuals with psoriasis and alopecia areata 
(99, 101). Alternatively, a reduction in T  cell infiltration and 
function has been shown in individuals with type 2 diabetes and 
melanoma (100, 102). This has highlighted T cells as a promising 
target for immunotherapeutics. Here, we describe the current 
findings on T cells in human skin diseases and identify how they 
are being targeted with immunotherapeutics.

PSORiASiS

2–3% of the US population suffers from psoriasis, which is a chronic 
inflammatory skin disease (103). It is a multifaceted disease that 
can occur at any age, has unpredictable onset and remission, and 
is most commonly characterized by the presence of painful itchy 
skin lesions (104). Comorbidities of psoriasis include psoriatic 
arthritis, diabetes, ulcerative colitis, and cardiovascular disease 
(105, 106). While the mechanism of disease remains unclear, 
roles for innate immune cells and adaptive immune cells have 
been identified and participate in the pathogenesis.

Psoriatic lesions are caused by cross-talk between different cell 
types such as DCs and T cells, along with a number of cytokines 
including IL-17, IL-12, IFN-γ, TNF-α, and IL-23 (Figure 1) (107). 
Studies show an elevation in IL-23 and IL-12 production by 
macrophages and DCs in patients with psoriasis (108). Abnormal 
regulation of the IL-23/IL-17 axis in psoriasis has directed the 
focus of recent studies on infiltrating CD4+ and/or CD8+ T cells 
and skin-resident T cells, as contributors to disease pathogenesis 
(108–110). Dermal T cells are elevated in psoriatic skin compared 
to healthy skin, increasing from 1% CD3+ T cells to 15% in psoriatic 
samples (99). The proportion of dermal γδ T cells are also increased 
with more than 40% of the CD3+ T cells expressing the γδ TCR 
as compared to 15% in the healthy controls (99). Dermal αβ and 
γδ T cells also have the ability to secrete IL-17 when stimulated 
with IL-23, inducing inflammatory cytokines (63, 99, 111). In fact, 
dermal γδ T cells isolated from psoriasis patients produced more 
IL-17 upon IL-23 stimulation (99). These cytokines lead to the 
recruitment of more lymphocytes, neutrophils, and myeloid cells 
creating a positive feedback loop that maintains cutaneous inflam-
mation and causes epidermal hyperplasia (112). Patients with 
psoriasis have a reduction in circulating CLA+ Vγ2Vδ2 T cells as 
compared to healthy patients (63). CLA+ Vγ2Vδ2 T cells are able to 
home to the skin and are elevated in number in the skin of patients 
with psoriasis (63). The CDR3 region of TCR genes was recently 
examined in both psoriatic and healthy patients. Interestingly, skin 
that has resolved psoriatic lesions retained IL-17-producing patho-
genic oligoclonal αβ T cell populations, suggesting a mechanism by 
which disease can reoccur at the same site (113).

Anti-TNF-α therapies such as etanercept are effective at 
reducing inflammation and resolving psoriasis. However, the 
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FiGURe 1 | Dendritic cells produce IL-12, IL-23, and TNF- α in response to pathogen-associated molecular pattern activation. These pro-inflammatory cytokines 
induce differentiation of naïve T cells into Th17 and Th22 cells. These T cells produce IL-22, IL-17A, and IL-17F causing epidermal hyperplasia and induce epidermal 
chemokine and inflammatory cytokine production. Neutrophils, T cells, mast cells, and NK cells are recruited to the skin and then to the epidermal/dermal junction 
via changes in adhesion molecule expression, such as VLA-1 (CD49a).
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understanding of immune mechanisms and the pathogenesis 
of psoriasis is steadily progressing, allowing for more effective 
and targeted treatments such as ustekinumab and secukinumab 
(114). Ustekinumab, a human IgG1k monoclonal antibody, was 
approved by the FDA in 2009 to treat psoriasis in adults by neu-
tralizing IL-12 and IL-23 (115, 116). Ustekinumab targets IL-12 
and IL-23, specifically at the p40 subunit, preventing binding 
to the IL12Rβ1 and IL-23 receptor complexes on the surface of 
T cells and NK cells (117). Psoriatic patients treated with usteki-
numab show a reduced expression of pro-inflammatory cytokine 
genes such as cyclin dependent kinase inhibitor 2D, IL-12B, and 
IL-17A (Table 2) (117, 118). IL-17 has been identified as a clini-
cal target for the treatment of psoriasis. Secukinumab binds and 
blocks the activation of IL-17A which inhibits the production 
of β-defensin 2 and CXCL8 in human keratinocytes increasing 
pro-inflammatory cytokine production (119, 120). Elevated 
levels of IL-17 are a hallmark of psoriasis, therefore, rendering 
IL-17A inactive reduces inflammation (121, 122). Most recently, 
the FDA approved brodalumab. This monoclonal antibody binds 
and blocks the IL-17 receptor A (IL-17A) (123). The inhibition 
of IL-17R helps regulate and suppress inflammation mediated by 
IL-17 making it an additional target to treat psoriasis (119). While 
successful immunotherapies have been developed to treat the 
pro-inflammatory immune response associated with psoriasis, 
no drugs have been approved that cure the disease.

ALOPeCiA AReATA

Alopecia areata is a polygenic autoimmune disease with a life-
time risk of 1.7% (128). Pathogenesis of alopecia areata involves 
the dysregulation of immune privilege around the anagen hair 
follicle (129). While the epithelial bulb of a normal anagen hair 

follicle does not express MHC Class I or MHC Class II; patients 
with alopecia areata exhibit increased MHC expression and 
adhesion molecule upregulation (130, 131). Elevated numbers 
of Th1 cells in the skin of alopecia patients produce IFN-γ which 
induces the expression of MHC class I molecules and triggers 
perifollicular CD8+ T  cell infiltration (101, 132,  133). The 
severity of alopecia areata is closely related to CD8+ T cell gene 
expression, with a positive correlation between CD8+ T  cell-
specific genes and alopecia areata severity (101). Autoreactive 
CD8+ αβ T  cells cause hair cycle arrest which then inhibits 
further hair growth (134).

Hallmark Th1 and Th2 cytokines are elevated in the blood 
of patients suffering from alopecia areata, while regulatory 
cytokines such as TGF-β are reduced (135). Patients with alopecia 
areata express a higher level of IL-23, IL-16, and IL-32 in the skin, 
which implicates the IL-17 inflammatory axis (136). Th17 cells 
are elevated in the scalp lesions of patients with alopecia areata, 
while FOXP3+ T  regulatory cells are reduced (137). Alopecia 
areata lesions also exhibit upregulated expression of genes, 
such as CCL19, IL-2, IL-15/IL-15RA, IL-2RA/IL-2RB, and Janus 
kinase 3 (JAK3) responsible for T cell migration and activation 
compared to regions with normal hair growth in alopecia areata 
patients (Table 2) (136).

Genome-wide association studies (GWAS) were performed to 
further investigate how innate and adaptive immunity is involved 
in the pathogenesis of alopecia areata. Several susceptibility loci 
for alopecia areata were identified: CTLA-4, IL-2, IL-2RA, HLA, 
ULBP, and Eos (Table 2) (124). These genes are known to regulate 
T cell activation and proliferation. Both CTLA-4 and IL-2RA are 
critical regulators of regulatory T cells (124, 138). ULBP func-
tions as a NKG2D ligand and is a stress signal, which activates 
γδ T  cells, natural killer T  cells, and CD8+ T  cells (124, 139). 
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TABLe 2 | Genes associated with T cell function and activation in patients with alopecia areata, psoriasis, diabetes mellitus type 2 or melanoma.

Region Gene Function involved in disease Type of study Reference

2q33.2 CTLA-4 Co-stimulatory family Alopecia areata Genome-wide association 
studies (GWAS)

(124)

4q27 IL-21/IL-2 T cell proliferation Alopecia areata, psoriasis, diabetes 
mellitus type 2 (T2DM)

GWAS, Microarray (124, 125)

9q31.1 STX17 Premature hair graying Alopecia areata GWAS (124)
10p15.1 IL-2RA T cell proliferation Alopecia areata GWAS (124)
12q13 ERBB3 Epidermal growth factor receptor Alopecia areata GWAS (124)
6p21.32 MICA NKG2D activating ligand Alopecia areata, psoriasis, T2DM GWAS, microarray (124, 125)
6p21.32 HLA-DQA1 Antigen presentation Alopecia areata, psoriasis, melanoma GWAS, microarray (124, 126)

HLA-DRA Antigen presentation Alopecia areata, melanoma GWAS, microarray (124, 126)
1p12 NOTCH2 T cell activation T2DM GWAS (127)
8p21.3 TNFRSF10A TNF receptor superfamily T2DM Microarray (125)

CTLA2A Cytotoxic T lymphocyte-associated protein alpha T2DM Microarray (125)
21q22.3 ICOSLG T cell costimulator ligand T2DM Microarray (125)
16Q12.1 IL-4R T cell differentiation Melanoma Microarray (126)
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Murine studies further implicate CD8+NK2GD+ T  cells in the 
induction of alopecia areata (140). Skin of alopecia-prone C3H/
HeJ mice revealed an increased number of CD8+NK2GD+ T cells 
with smaller numbers of CD4+ T cells, and mast cells (140–142). 
Similar to the GWAS studies, microarray analysis identified 
an upregulation of both IL-2 and IL-15 in skin from C3H/HeJ 
mice (140). IL-2 and IL-15 regulate the production of IFN-γ by 
CD8+ effector T cells and NK cells which induces a positive loop, 
promoting a type I cellular immune response and inflammation 
in the hair follicle (140, 143, 144). More recent meta-analysis 
studies on alopecia areata have further identified candidates that 
regulate autophagy/apoptosis, T  regulatory cells and the JAK/
STAT pathway (145). Patients with alopecia areata have elevated 
JAK3 protein levels in the epidermis and phosphorylated JAK3 in 
the dermal infiltrate (146).

Together, these findings have led to the investigation of several 
treatments that help regrow hair in patients with alopecia areata 
(147). However, none of the treatments have been approved by 
the FDA due to severe study limitations and lack of pediatric 
treatment studies on alopecia areata (147). Corticosteroids may 
be administered orally, topically, or intralesionally but recurrence 
is likely. Clinical studies have focused on the delivery and timing 
of corticosteroid treatments to improve results for hair regrowth 
(148–150). Beyond corticosteroids, researchers have begun to 
study the effectiveness of JAK inhibitors. Ruxolitinib is a JAK1/2 
inhibitor that blocks IFN-γ signaling, which is normally utilized 
by CD8+NKG2D+ lymphocytes (140). Ruxolitinib is currently 
approved by the FDA for the treatment of polycythemia vera and 
myelofibrosis; however, it is currently being studied in alopecia 
areata patients. In 2016, ruxolitinib was administered orally 
to 12 patients 2× daily with 20 mg for 3–6 month and 75% of 
the patients exhibited an average hair regrowth of 92% (151). 
Baricitinib, another immunomodulator that inhibits JAK1/2 is 
being studied in clinical trials for alopecia areata (152). A trial 
starting in 2012 enrolled one patient, and in 9 months that patient 
completely sustained hair regrowth (152). Tofacitinib is a small 
molecule JAK3 inhibitor. In an open-label pilot study, tofacitinib 
was administered to 12 patients, 8 patients exhibited more than 
50% hair regrowth, 3 patients demonstrated less than 50% hair 

regrowth, while 1 patient did not demonstrate hair regrowth 
(153). Ongoing studies are further investigating how modulating 
cytokine signaling via the JAK/STAT pathway in T lymphocytes 
can effectively treat alopecia areata.

DiABeTeS MeLLiTUS TYPe ii

Diabetes mellitus is a chronic condition of elevated blood 
glucose levels caused by insufficient insulin production and/or 
insulin resistance. Approximately 30.3 million people in the US 
have been diagnosed with diabetes, with 90–95% of these cases 
being diabetes mellitus type 2 (T2DM) (154). Obesity is a strong 
predictor for T2DM (155). Patients with T2DM exhibit a complex 
array of complications including a higher prevalence of chronic 
non-healing wounds, impaired leukocyte function, neuropathy, 
and vasculopathy (156, 157).

Chronic non-healing wounds in T2DM patients are caused 
by a disruption in one or more stages of the normal wound heal-
ing process (158, 159). The process of wound healing normally 
encompasses numerous overlapping stages. First there is clot 
formation from platelet aggregation followed by cytokine and 
chemokine secretion which elicits an inflammatory response. 
This leads to the proliferation of epithelial cells to restore the 
lost barrier. Finally, the tissue is remodeled to strengthen the 
new matrix. Skin-resident T cells participate in the early stages 
of wound healing through the production of growth factors, 
cytokines, and chemokines (7). Skin-infiltrating T  cells arrive 
within a week to fight infection and secrete cytokines including 
IFN-γ (160). However, in T2DM the timing and level of immune 
cell function becomes altered.

Diabetic wounds become arrested in a chronic state of inflam-
mation that is caused by pro-inflammatory cytokines, such as 
TNF-α, secreted by adipocytes and immune cells (161). In murine 
models of obesity and T2DM, epidermal γδ T  cells become 
reduced in number as disease progresses (100). The remaining 
T  cells in the epidermis exhibit reduced cytokine and growth 
factor production during wound repair (100). Growth factor 
production by the γδ T cells is partially restored upon blocking 
TNF-α with antibodies prior to injury (100). T cell dysfunction in 
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FiGURe 2 | Expression of PD-1 and CTLA-4 by T cells leads to downregulation of activation and antitumor cytotoxic activity by suppressing downstream TCR 
signals. Immunotherapeutics have been approved that block CTLA-4 (ipilimumab) or programmed cell death protein 1 (PD1) (pembrolizumab, nivolumab) which 
restores the ability of T cells to become activated and destroy tumor cells.
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obese, T2DM mice results in a thinner epidermis with premature 
keratinocyte differentiation (85). In accordance, the blockade of 
TNF-α improves insulin resistance in animal models (162), but 
has not shown good efficacy in humans (163).

T cells isolated from patients with chronic non-healing wounds 
lack the ability to secrete growth factors such as IGF-1 upon 
stimulation (7). This suggests that skin T  cells become refrac-
tory to stimulation as wound healing stalls. Obese subjects also 
exhibit a reduction in Vγ2Vδ2 T cells in the blood that negatively 
correlates with BMI (65). The remaining Vγ2Vδ2 T cells are less 
able to become activated and secrete reduced levels of IFN-γ in 
response to virus infected cells (65). The Vγ2Vδ2 T cells in obese 
subjects show an increase in differentiation from central memory 
to T effector memory T cells and T effector memory CD45RA+ 
lymphocytes (65). Future studies are needed to further elucidate 
the contribution of T cell dysregulation in obese T2DM patients 
to chronic non-healing ulcers (164).

Conventionally, diabetic foot ulcers are treated with wound 
debridement followed by aseptic techniques that aim to keep the 
area clean and moist (165). Medications that reduce inflammation 
directly and/or indirectly, such as metformin, are being studied to 
determine whether they improve diabetic wound healing (166, 167). 
Upon activation of AMP-activated protein kinase, metformin sup-
presses the production of glucose by the liver (168). The activation 
of AMPK results in anti-inflammatory responses through the 
suppression of NF-κβ signaling (169). Metformin reduces Th17 
differentiation and IL-22 secretion, decreasing chronic inflamma-
tion and improving immune responses (170, 171).

Systemic insulin therapy has shown some success in improving 
wound healing in rats and humans (156, 172). Insulin regulates 
glucose uptake, gene expression, and cell differentiation which 
all impact skin-resident T cells and wound repair. Other studies 
show that topical insulin injections accelerate the healing of 
diabetic foot ulcers by stimulating the AKT and ERK pathways 
(156). A large multicenter clinical trial is needed to determine 
the level of effectiveness and mechanisms used by insulin to 
promote proper T cell function and wound healing in diabetic 
patients.

MeLANOMA

Melanoma only makes up approximately 1% of skin cancer cases, yet 
it is responsible for most skin cancer deaths with an estimated 9,730 
deaths and 87,110 new cases in 2017 (173, 174). The majority of 

melanomas are caused by UV radiation from sun exposure (175). 
Malignant melanoma has a high metastatic rate, making it one 
of the most aggressive and dangerous cancers (176). Cytotoxic 
T cells recognize antigens associated with melanoma, including 
tyrosinase and tyrosinase-related proteins 1 and 2; however, the 
immune response is inhibited or repressed by the tumor environ-
ment (176–179).

There is a reduction in number and percentage of circulat-
ing Vγ2Vδ2 T  cells in melanoma patients (180). Interestingly, 
15–25% of tumor-infiltrating cells in patients are Vγ2Vδ2 T cells 
(180). γδ T cell cytotoxicity in melanoma patients is also signifi-
cantly lower compared to healthy patients and this reduction in 
cytotoxicity is correlated with melanoma stages (180). In a study 
of 46 patients, 23 of the patients’ melanoma-infiltrating γδ T cells 
into the skin were Vδ1+ T cells, 19 patients had predominantly 
Vδ2+, and 4 patients did not have a significant different in 
percentages of Vδ1+ and Vδ2+ T cells (60). Cytotoxic capability 
between Vδ1+ and Vδ2+ among these patients was substantially 
different. Most Vδ1+ T cells performed cytotoxic activity against 
the melanoma cell line A375; however, only two out of eight 
Vδ2+ T cells exhibited this capability (60). Thus, γδ T cell subsets 
play complex roles that contribute to immunosurveillance of 
melanoma in human skin.

Melanoma utilizes a wide variety of mechanisms to evade 
the host’s immune system. The most recent mechanisms under 
extensive investigation are CTLA-4, programmed cell death pro-
tein 1 (PD1), and programmed death-ligand 1 (PDL1) immune 
checkpoints (Figure 2) (102). T cell expression of CTLA-4 and 
PD1 downregulates functions such as activation and antitumor 
activity by suppressing signals downstream of TCR stimulation 
(177, 178). CTLA-4 binds to CD80 and CD86 expressed by 
antigen-presenting cells. CTLA-4 disrupts CD80/CD86- CD28 
binding, which suppresses co-stimulation and T cell activation 
(181). PD1 is a transmembrane protein that is expressed on acti-
vated T cells, DCs, B cells, and NK cells. It binds to the ligands 
PDL1 and PDL2 resulting in the suppression of T cell activation 
(182). Resting Vγ2Vδ2 T cells in the blood express PD1 at low 
levels but upon activation it is upregulated (183). PD1 regulated 
TCR-mediated activation thus maintains self-tolerance and 
prevents autoimmunity (184). Cancer cells express PDL1 and as 
a result bypass immune checkpoints and evade T cell recognition 
(181). Although anti-CTLA-4 and anti-PD1 treatments have 
shown promise, it is necessary to further investigate how these 
treatments impact Vδ1+ T cells specifically.
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The FDA-approved drug, ipilimumab, targets CTLA-4 on 
T cells for the treatment of melanoma. This medication is also 
used to treat autoimmune diseases such as multiple sclerosis 
and rheumatoid arthritis (185). Targeting CTLA-4 reduces Treg-
mediated suppression and enables activation and proliferation 
of T  cells (186–188). Beyond ipilimumab, the FDA has also 
approved immunotherapeutics that target the PD1 pathway: 
pembrolizumab and nivolumab. By blocking the PD1 receptor 
the therapeutic antibody prevents ligation with PDL1, which is 
expressed on tumor cells; this restores the ability of T  cells to 
respond to melanoma antigens and initiate cytotoxic responses 
and cytokine production (189).

A phase III study of 945 patients with stage III and IV mela-
noma across 137 countries revealed that when combined, ipili-
mumab and nivolumab have synergistic effects against metastatic 
melanoma (185). Unfortunately, these patients also experienced 
side effects from the combined treatment including diarrhea, 
elevate liver enzymes, and colitis (185). This suggests that while a 
combination of CTLA-4 and PD1 targeted therapies can be more 
successful than a monotherapy, it is also likely to cause adverse 
effects by unregulated T cells.

CONCLUSiON

αβ and γδ T cells are vital in the maintenance and homeostasis of 
the skin through the recognition of stressed or damaged cells and 
subsequent functions including the secretion of cytokines and 
growth factors. Current studies do not allow precise conclusions 
on the distinct roles of αβ and γδ in skin immunity to be drawn. 
However, both αβ and γδ T cells fight pathogens and cancer by 
directly destroying infected or transformed cells in the skin, while 
also maintaining immunological tolerance. γδ T cells recognize 
a wide variety of peptide and non-peptide antigens released by 
stressed, damaged, malignant, or infected cells in the skin while 
αβ T cells recognize peptides derived from pathogens or tumors 
presented by MHC. Through specific cytokine profiles CD4+ αβ 
T cells aid in the recruitment and regulation of other immune 

cells, while CD8+ αβ T  cells exhibit cytotoxicity (190–192).  
The receptors responsible for T cell activation also differ between 
αβ and γδ T cells, suggesting unique roles in skin homeostasis 
and immunity. In addition, skin-resident versus recirculating 
T  cells show distinct profiles indicating that the various roles 
and requirements for T cell function in the skin is complex and 
requires subsetting. Thus, the molecular mechanisms that regu-
late skin-specific αβ and γδ T cells are important to elucidate for 
the development and study of immunotherapies.

Cytokine and growth factor production by αβ and γδ T cells 
helps to maintain skin homeostasis, while factors produced upon 
activation contribute to wound repair and the eradication of 
tumors. Elevated and unregulated T cell activity can contribute 
to or cause chronic inflammatory related diseases including 
psoriasis, and alopecia areata. Conversely, defects in T cell func-
tion can increase susceptibility to melanoma. Current knowledge 
about skin αβ and γδ T cell activation and antitumor activity has 
advanced considerably, yet further studies are needed to identify 
specific molecular mechanisms that can be exploited for thera-
peutics that treat autoimmune diseases and cancer.
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