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ABSTRACT: Gold nanoparticles (Au NPs) supported on a nanostructured
gamma alumina (γ-Al2O3) fiber can exhibit excellent catalytic activity for the
conversion of 5-hydroxymethylfurfural to produce its ester derivative, dimethyl
2,5-furandicarboxylate (FDMC). γ-Al2O3 was synthesized using a PEG surfactant
to generate oxide fibers that randomly stack together into irregular shapes. The
average particle sizes of the Au NPs are 1−6 nm, where the catalytically active Au
(111) surface is the exposed facet. This 3D nanocatalyst architecture enhances
the 5-hydroxymethylfurfural (HMF) oxidative esterification because HMF
reactant molecules can readily diffuse into this fibrous structure and adsorb to
active catalytic sites, while ester product molecules can diffuse out. Up to 99%
HMF conversion and 90% FDMC selectivity can be obtained at a low reaction
temperature of 45 °C, and the catalyst shows excellent recyclability. Increasing
the Au content in the catalyst minimizes the requirement of a base for HMF
conversion. Thus, the Au NPs supported on γ-Al2O3 can drive HMF
esterification to FDMC efficiently with high product selectivity under very mild reaction conditions, omitting the need for an
additional esterification step of the HMF acid.

■ INTRODUCTION

Nonrenewable fossil fuels such as coal, petroleum, and natural
gases produce 86% of the world’s fuels and 96% of the world’s
chemicals.1−3 Large-scale use of fossil fuel energy sources
causes significant environment pollution and concerns
regarding energy security in the future.4 With the high
availability of renewable carbohydrates in nature (cellulose
and other sugars),5 particular attention has been given to
conversion of agricultural waste into value-added chemical
commodities.6 Biomass derivative utilization in the fine
chemical and polymer industry has been identified as a
potential means to diminish demand for nonrenewable energy
sources. Catalytic transformations of biomass derivatives can
produce value-added building-block chemicals for the polymer
industry and petrol-derived commodities.7−9 5-Hydroxymeth-
yl-2-furfural is one biomass-derived platform molecule that is
produced from hexoses with treatment of acid catalysts.10,11 As
such, 5-hydroxymethylfurfural (HMF) is a bio-based fuel and a
furan ring-based compound that can be catalyst-treated to
produce useful product intermediates. HMF having both a
hydroxyl group and aldehyde group can react to form value-
added high-quality fuel chemicals,8,12,13 namely, 2,5-dimethyl-
furan (DMF),14 5-ethoxymethylfurfural,15 ethyl levulinate,16

and 2,5-furandicarboxylic acid (FDCA).17

FDCA has a diacid structure and a furan ring system and is a
key ingredient in the polymer industry for synthesis of green,

degradable plastics and nontoxic plasticizers.18 The conven-
tional conversion of HMF into FDCA is done using equivalent
oxidizing agents such as nitric acid19 and potassium hyper-
manganate.20 As alternatives, metal/metal oxide nanoparticle
systems that use Au,21 Pd,22 Ru,23 and Fe24 have also been
developed to convert HMF into FDCA. FDCA is a solid
powder and has a large polarity and a high boiling point25 with
a low solubility in industrial solvents.26 Extreme acidic and
basic conditions are needed to synthesize FDCA, which
produces super-stoichiometric inorganic byproducts and has an
associated environmental impact.27 This has led to difficulties
in FDCA purification by conventional crystallization and
rectification.28 FDCA is used in the polymer industry in
multiple ways. One is by transforming FDCA into its ester
prior to transesterification. A second method subjects FDCA
to a two-stage polyesterification. The direct polyesterification is
considered a better method after comparison, as it omits the
additional FDCA esterification step.29 The direct polyester-
ification process generates colourless polyesters and has a
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higher reaction rate than when FDCA is used as the starting
material. It is also reported that FDCA-derived ester is less
decomposed in the polymerization process than FDCA.30

Considering all the drawbacks associated with using FDCA,
a methyl ester derivative of FDCA, furan-2,5-dimethylcarbox-
ylate (FDMC), may be a useful replacement for FDCA in
industry. FDMC is identified as a key intermediate to produce
polyethylene furoate.31 FDMC is readily soluble in most
organic solvents. Having a low boiling point, FDMC can
readily separate from the reaction mixture and is easily
purified.28 Research on sustainable FDMC production is
therefore warranted.28,32 Most literature reports have demon-
strated conversion of HMF in high yields with moderate
reaction conditions, but achieving high FDMC product
selectivity is challenging using such conditions. It would be
desirable to generate catalysts that produce the FDMC product
from HMF through one-step oxidative esterification.32 Au NP
catalysts are good candidates for this, due to their remarkable
oxidation ability and their resistance to oxygen poisoning.33

One-step esterification of HMF has been reported using Au
NPs supported on a nanoporous polymer host matrix, where
the polymer support acted as a conveyor and concentrator of
the reactants toward the catalytic sites.34 A Au−CuOx
nanohybrid catalyst has also been used to obtain FDMC via
direct esterification of HMF, where the reaction gave 98%
FDMC product selectivity but required comparatively a high
reaction temperature of 100−120 °C.32 Similar high temper-
ature and pressure conditions were used to convert HMF into
FDMC using Au on nanoparticulated ceria catalysts (130 °C,
10 bar O2).

35 89% of FDMC selectivity has been obtained by
hydroxyapatite-supported Au nanocatalysts at 130 °C and 2.4
MPa air pressure.31 An N-doped carbon-supported CoCu
bimetallic catalyst has been able to successfully convert HMF
with an FDMC selectivity of 95% at 80 °C without a base
using 2 bar of O2.

36 Another CoRu bimetallic catalyst has been
developed by Salazar and co-workers to successfully convert
HMF into FDMC with an ester selectivity of 99% using mild
temperature and pressure conditions.37 NaCN-promoted
HMF and DFF oxidative esterification has been achieved
using MnO2 metal oxide, which can act as an oxygen
regenerator. Here, 83% of the FDMC product was obtained
from HMF and 97% FDMC was obtained from DFF.27

Homogeneous and heterogeneous PdCoBi/C catalysts have
been able to convert HMF to FDMC with a 96% ester
selectivity using 10 mol % of PdCoBi/C (1:1:1) catalyst at 60
°C with 20% of base.28 Another work has been reported for
HMF oxidative esterification using Au supported on ZrO2. Au
has been supported on sulfated and bare zirconia to investigate

the structure dependency for HMF esterification. 100% HMF
conversion was obtained with a low FDMC selectivity of 32%
using high temperature and pressure conditions.38

This study examined how a noble metal-based heteroge-
neous catalyst can drive the HMF oxidation to obtain FDMC
using milder reaction conditions, reduced concentrations of
base, lower temperatures, and pressure. This catalyst was
prepared by depositing Au nanoparticles on gamma alumina
nanofibers using an impregnation precipitation method.
Catalysts with different Au loadings were synthesized to
optimize the best FDMC yield. 99% HMF conversion and 90%
of FDMC selectivity are obtained by this environmentally
benign and safe process. A detailed mechanism for the reaction
pathway is proposed after studying the effects of the O2
amount, base, and Au nanoparticle interaction with HMF.

■ RESULTS AND DISCUSSION
As shown in Figure 1a, the Au/γ-Al2O3 catalyst shows a strong
light absorbance in the visible and UV range due to the local
surface plasmon resonance (LSPR) effect of the Au nano-
particles. The LSPR effect absorption increases with the
increase of Au percentage in each catalyst where 11% Au/γ-
Al2O3 exhibits the highest absorption. A blue shift is observed
in the LSPR peak wavelength when the Au loading content
increases from 3 to 11%. The γ-Al2O3 does not strongly absorb
light in these regions, as it absorbs light in the UV region.39

XPS studies were performed to identify the oxidation state of
Au. According to the spectrum shown in Figure 1b, the binding
energies for Au 4f7/2 and Au 4f5/2 electrons were 83.6 and 87.0
eV, respectively. Accordingly, binding energy intensities for Au
4f7/2 and Au 4f5/2 electrons increase when the Au loading
increases. These results confirmed that the catalysts were
prepared with nanoparticles of Au in their metallic, reduced
state.40 As shown in Figure S1, binding energies for Al 2p are
74.3 and 74.7 eV for γ-Al2O3 and 8% Au/γ-Al2O3, respectively.
The O 1 s peak appears at 531.4 eV for both the Au catalyst
and support materials.
Transmission electron microscope studies confirmed the

structural properties of the catalyst. The TEM images show the
dark, spherical shapes of Au nanoparticles, uniformly dispersed
on the γ-Al2O3 nanofiber support. As shown in Figure 2, the
nanofibers stacked randomly, where the mean length of the
fibers is 100 nm and mean width is 4−10 nm. The mean
diameter of the reduced Au nanoparticles is 6.46 ± 0.55 nm for
3% Au/γ-Al2O3, 5.28 ± 0.79 nm for 5% Au/γ-Al2O3, 3.81 ±
0.51 nm for 8% Au/γ-Al2O3, and 2.90 ± 0.68 nm for 11% Au/
γ-Al2O3. The high-resolution TEM image shows the Au
nanoparticle spherical shape precisely. As illustrated in Figure

Figure 1. (a) UV−visible spectrum of Au/γ-Al2O3 catalysts; (b) XPS spectrum of Au catalysts.
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S2, measured d-spacings of the Au NPs are 0.235 and 0.203
nm for {111} and {002} planes, respectively. The lattice
parameters of the Au NPs can be clearly discerned in Figure
S2, characteristic of highly crystalline Au NPs in the form of
single nanocrystals, where the Au (111) facet appears to be the
principal crystal facet exposed to the environment.
Al2O3 can transform into different intermediate crystallo-

graphic structures such as χ-, γ-, κ-, δ-, and θ- alumina,
depending on the temperature during the process of forming.
Out of these forms, γ-Al2O3 has an ultrafine, high surface area
compared with other phases.41,42 In this study, the γ-Al2O3
support was prepared using the polyethylene glycol surfactant
to increase the surface area and volume. The role of the
surfactant is to enhance the growth of fibrils by forming rodlike
micelles.43 This highly porous framework structure is identified
as an ideal support for catalysts.44

XRD patterns obtained for the catalysts are illustrated in
Figure 3a. The measured XRD patterns of the powder catalyst
samples were compared with entries of the ICDD 2020 PDF-
4+ database in Diffrac.EVA v5.2 software and matched with
PDF# 048−0367 for the γ-Al2O3 crystal phase, where the
patterns show identical lattice planes for gamma alumina
nanofibers.45 Au-loaded catalysts were matched with PDF#
066−0091 for the gold crystal phase.46 The (311), (400), and
(440) crystal planes of alumina fibers are preserved by
introducing Au NPs into the system. All the metal-loaded
catalyst samples show the crystal planes for Au as indicated in
Figure S4. The BET equation was used to calculate the specific
surface area over a P/P° range of 0.05 to 0.3 for the fiber
support and catalysts. As shown in Figure 3, a steep increase
from P/P° of 0.7 indicated that all the samples possessed a
large volume with a macroporous structure. The gamma
alumina gave a BET surface area of 258 m2/g. The BET values
of Au/γ-Al2O3 catalysts were 237, 227, 225, and 219 m2/g for
3% Au/γ-Al2O3, 5% Au/γ-Al2O3, 8% Au/γ-Al2O3, and 11%
Au/γ-Al2O3, respectively.
As summarized in Table 1, FDMC selectivity increased with

an increase in Au NP loading, indicating that the Au
nanoparticles are active catalytic centres for HMF oxidation.
99% HMF conversion occurred for all the catalytic samples,
but the maximum selectivity toward FDMC occurred with the
8% Au/γ-Al2O3 catalyst. When the Au content was increased
to 11%, the number density of Au NPs on the support
noticeably increased and the Au−Au interparticle distance also
decreased, as can be observed in Figure 2 and in Table S1. The
FDMC selectivity also decreased for this gold loading. As given
in Table S2, when the Au NPs have an average particle size of
3.81 ± 0.51 nm, the best FDMC selectivity was obtained. This
could be due to an optimized surface area of active AuNPs
exposed for the reaction and Au−Au interparticle distance. A
larger number of smaller Au NPs in the system can be one

Figure 2. TEM and average particle size histogram of (a) 3% Au/γ-
Al2O3, (b) 5% Au/γ-Al2O3, (c) 8% Au/γ-Al2O3, and (d) 11% Au/γ-
Al2O3 catalysts.

Figure 3. (a) XRD patterns of catalysts and catalyst supports; (b) N2 adsorption/desorption isotherms of the γ-Al2O3 catalyst support, (c) 3% Au/
γ-Al2O3, (d) 5% Au/γ-Al2O3, (e) 8% Au/γ-Al2O3, and (f) 11% Au/γ-Al2O3 catalysts.
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reason for the greater observed FDMC product selectivity and
HMF conversion. Control experiments were performed to test
for an independent support-only contribution toward the
HMF oxidation. As shown in Table 1, no reaction was
observed and the γ-Al2O3 nanofiber support did not convert
HMF in the absence of Au NPs. Any HMF oxidation occurring
in the presence of Au NPs is therefore likely to be due to the
noble metal active catalytic sites. When in contact with Au
NPs, the oxidation of HMF to FDMC can potentially occur by
two different reaction paths, depending on the functional
group initially oxidized, either the aldehyde group or the
hydroxyl functional group can react. From the result summary
in Table 1, oxidation of the aldehyde functional group on
HMF is favoured by the catalyst system. This results in an
intermediate, methyl 5-(hydroxymethyl)furan-2-carboxylate
(HMFCE), that converts to FDMC by oxidation of the
alcohol. The other reaction pathway that could occur in these
conditions would produce 2,5-diformylfuran (DFF) as the
intermediate instead, which was not detected in the presence
of Au NPs.47

Reaction conditions: Methanol (2 mL), HMF (0.2 mmol),
KOH (0.1 mmol), catalyst (20 mg), and O2 (3 min) at 45 °C.
8% Au/70-Al2O3 and 8% Au/230-Al2O3 = catalysts synthesized
by depositing 8% Au on commercially available Al2O3 particles
with mesh sizes of 70 and 230, respectively.
Catalysts were synthesized by depositing 8% Au on

commercially available Al2O3 particles with mesh sizes of 70
and 230 to explore how the support material may affect the
HMF esterification reaction. Comparing the as-synthesised,
nanofiber-supported catalysts with 8% Au/70-Al2O3 and 8%
Au/230-Al2O3 catalysts, low HMF conversion and FDMC
product selectivity were obtained. A likely reason is that a
reduced surface concentration of basic sites (OH groups) is
present on these alumina particle samples compared to γ-Al2O3
nanofibers. Basic OH sites on γ-Al2O3 fibers play a critical role
in the reaction. This difference can be seen in the FT-IR
spectra obtained for both γ-Al2O3 and Al2O3 particles. As
illustrated in Figure 4, no OH peaks are visible for Al2O3
particles, whereas a clear, broad OH peak was observed for γ-
Al2O3 fibers.
Reaction time-dependent kinetic behavior of HMF con-

version and optimum FDMC product selectivity were
investigated. In Table 1, more than 90% HMF converted

within the first 4 h. FDMC selectivity increased between 4 and
16 h. Higher HMFCE selectivity (also a valuable product) can
be obtained after 4 h. FDMC selectivity did not significantly
change when the reaction time was increased from 16 to 20 h.
The optimized reaction conditions are more than 16 h and less
than 12 h to achieve both effective HMF conversion and high
FDMC selectivity. These results indicate that HMFCE is the
main intermediate formed during HMF oxidative esterification.
Au NPs are stable and effective catalysts for oxidation

reactions in the presence of a base.33 In oxidative esterification,
both alkaline strength and alkalinity play an effective role.28

Green chemistry principles and potential economic advantages
dictate the minimization of additives to achieve the same
outcomes, where possible. HMF oxidative esterification was
performed in methanol at 45 °C using 8% Au/γ-Al2O3 as the
catalyst. In Table 2, the optimum additive amount is 6 mg (0.1

mmol) of KOH. It is important to note that the reaction can
also take place in the absence of a base. This implies that Au
NPs alone can oxidize 57% of HMF into FDMC, while the
base activity promotes further oxidation steps. When increasing
the added KOH from 0.01 to 0.14 mmol, the conversion
increased and the FDMC selectivity passed through a
maximum at 0.10 mmol of KOH added. The selectivity for
FDMC drastically drops to 51% when 0.14 mmol mg of base is
added. This can be due to the influence of high basicity to
FDMC selectivity48 and HMF gradual degradation (Canni-
zzaro reaction) at high pH.49 It has been reported that base
concentration significantly influences both HMF oxidation and
HMF degradation.50 When using different base types, the

Table 1. Investigating the Effect of Au Loading for HMF
Conversion

entry catalyst
reaction time

(h)
HMF conv.

(%)

selectivity (%)

FDMC HMFCE

1 16 0
2 γ-Al2O3 16 0
3 3% Au/γ-Al2O3 16 99 45 55
4 5% Au/γ-Al2O3 16 99 55 45
5 8% Au/γ-Al2O3 16 >99 90 10
6 11% Au/γ-

Al2O3

16 99 71 29

7 8% Au/70-
Al2O3

16 68 17 83

8 8% Au/230-
Al2O3

16 71 36 64

9 8% Au/γ-Al2O3 4 90 32 68
10 8% Au/γ-Al2O3 8 90 54 46
11 8% Au/γ-Al2O3 12 95 72 28
12 8% Au/γ-Al2O3 20 >99 90 10

Figure 4. FT-IR spectral comparison between γ-Al2O3 and Al2O3
particles.

Table 2. Optimizing Additive Concentration for HMF
Oxidation

entry base

base
amount
(mmol)

conversion
(%)

FDMC
selectivity

(%)

HMFCE
selectivity

(%)

1 No base - 57 28 72
2 KOH 0.01 60 44 56
3 KOH 0.05 73 63 37
4 KOH 0.07 88 75 25
5 KOH 0.08 99 86 14
6 KOH 0.10 99 90 10
7 KOH 0.12 90 77 23
8 KOH 0.14 76 51 49
9 K2CO3 0.10 80 56 44
10 LiOH 0.10 90 67 33
11 K-tBuO 0.10 99 72 28
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HMF conversion and FDMC selectivity were increased by the
alkaline strength. This observation is consistent if a higher pH
medium is required to hydrate the aldehyde group into a
germinal diol group.51

Reaction conditions: Methanol (2 mL), HMF (0.2 mmol),
8% Au/γ-Al2O3 catalyst (20 mg), and O2 (3 min) at 45 °C for
16 h.
One of the essential steps in the esterification of HMF is

producing the hemiacetal intermediate, which is subsequently
oxidized to the ester. Solvents having different polarities,
dielectric constants, steric hindrances, and acid−base proper-
ties greatly influence the efficiency of these chemical
reactions.52 Particularly notable is that alcohol solvents having
different structural and nucleophilic properties can affect the
formation of the hemiacetal intermediate, which in-turn affects
the kinetic behavior of the overall reaction. To investigate this
phenomenon, different solvents were tested for HMF oxidation
under a gold catalyst. Ethanol, 1-propanol, and methanol were
solvents that most favored the HMF conversion. The
selectivity of HMF conversion to FDMC was higher when

using methanol. As illustrated in Scheme 1, with ethanol and 1-
propanol as the solvent, two different ester products were
obtained. It is therefore likely that during the HMF
esterification reaction, the alcohol acted not only as the
solvent but also as a substrate molecule that participated in the
reaction. When the DMF, DMSO, acetonitrile, and ethyl
acetate (all polar aprotic solvents) were used, no reaction
occurred, while methanol, 1-propanol, and ethanol, which are
polar protic, gave good yields and HMF conversions.
Reactions were carried out under different atmospheres (air,

N2, and O2) to investigate their influence on HMF oxidation.
Only the reaction performed under O2-containing atmospheres
proceeded. It was concluded the oxidant for HMF
esterification to FDMC is oxygen. Not needing a continuous
flow of oxygen is also a significant factor in this study. It is
previously reported that HMF oxidation was greatly influenced
by the reaction temperature.53 As listed in Figure 5a, very low
FDMC selectivity was observed when using different reaction
temperatures in the range between 30−40 °C. Conversion of
HMF and selectivity of dimethyl 2,5-furandicarboxylate ester

Scheme 1. HMF Oxidative Esterification Product Selectivity for Different Solvents

Figure 5. (a) HMF conversion and product selectivity at different temperatures:Methanol (2 mL), HMF (0.2 mmol), KOH (0.1 mmol), 8% Au/γ-
Al2O3 catalyst (20 mg), O2 (3 min) for 16 h (b) Reusability of 8% Au/γ-Al2O3 catalyst. Reaction conditions: Methanol (2 mL), HMF (0.2 mmol),
KOH (0.1 mmol), 8% Au/γ-Al2O3 catalyst (20 mg), O2 (3 min) at 45 °C for 16 h.

Scheme 2. Proposed Reaction Mechanism for HMF Oxidative Esterification to FDMC
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increases when increasing the temperature. Although 85% of
HMF was converted at 40 °C, the best FDMC selectivity was
obtained at 45 °C; the ideal temperature for the reaction was
45 °C, according to Figure 5a. As shown in Figure 5b, a
reaction series was carried out to investigate the reusability of
the catalyst. Using optimized parameters, four cycles were
performed. After each cycle, the catalyst was separated by
centrifugation, washed with ethanol, and dried under vacuum
at 60 °C for 24 h. The catalyst performed well in the first 3
cycles giving more than 90% of conversion and more than 80%
FDMC selectivity. The HMFCE selectivity increased when
moving from cycles 1 to 4. The trend of HMF conversion
decrease and HMFCE selectivity increase as the cycle number
increases is the same as the trend observed when the Au
content decreases from 11 to 3%. A gradual decrease of yield
can be due to loss of catalyst in the treatment process. No
morphological changes of the catalyst were observed after the
final run as illustrated in Figure S3.
Following the evolution of the reaction with time, one

intermediate compound was detected by GC and GC−MS,
which is the monoester primary, unstable product. Considering
the kinetic behavior, a possible reaction pathway is given in
Scheme 2. Considering the kinetic profiles (Table 1), the only
intermediate product obtained in the reaction pathway was
HMFCE. The other possible intermediate DFF (2,5-
furandicarbaldehyde) was not detected from GC analysis.
This suggests that the main reaction pathway for oxidative
esterification of HMF to FDMC is path A (Scheme S1).
The catalytic oxidation of aldehyde function is faster than

that of alcohol over Au.54−56 This concludes that the rate-
limiting step in the overall reaction is converting HMFCE to
FDMC. A methoxy group is formed by proton abstraction by
the base or basic sites of γ-Al2O3. By the reaction between the
methoxy group and aldehyde on HMF, the first hemiacetal
intermediate will form. Au will abstract the H in the α C−H
bond of the hemiacetal intermediate.57 This unstable
intermediate will immediately convert to the monoester
product (HMFCE detected by GC and GC−MS) via a β
hydrogen elimination reaction on the Au active catalytic site.
This was confirmed by the data from Table 2, where 57%
HMF conversion and 72% HMFCE selectivity were obtained
without using a base. Electron transfer from negatively charged
Au to O2 will generate activated oxygen species.58−60 The
molecular oxygen will oxidize the primary alcohol group in
HMFCE to aldehyde forming methyl 5-formylfuran-2-carbox-
ylate (FFCE). FFCE is attacked again by a methoxy group to
form the 2nd hemiacetal intermediate. As in the last step, the
2nd hemiacetal intermediate will turn into FDMC via a β
hydrogen elimination reaction. This suggests that both the
base and γ-Al2O3 promote the HMF esterification to FDMC
on Au NP active catalytic sites. It is important to note that the
product distribution highly depends on pH. Finally, the
surface-adsorbed H atoms in Au nanoparticles will be removed
by O2 (no need of atomic oxygen57) as water.61 The gamma
alumina fibers not only act as a support but will also promote
the reaction by providing basic sites.

■ CONCLUSIONS
Here, we report an efficient direct oxidation route to synthesize
dimethyl-2,5-furandicarboxylate from 5-hydroxymethylfurfuryl.
γ-Al2O3 fibers act as a reliable and a cheap catalyst support for
heterogeneous Au NP catalysts and shows promising results
for conversion of HMF to its derivative ester and selectivity,

under remarkably mild conditions, having only one inter-
mediate product in the synthesis mechanism. The catalyst can
readily isolate FDMC ester without further oxidation to its acid
or CO2. A low stoichiometric amount of an inorganic base
(HMF/base 2:1 mmol) used with moderate temperature is
another key feature of the transformation. The AuNP catalyst
converts more than 50% of HMF with a 20% product
selectivity of the ester, even with the absence of the base. The
byproduct HMFCE is a valuable intermediate produced with
more than 70% selectivity within the first 4 h with this method.
The 3D nanocatalyst architecture enhances the HMF oxidative
esterification, since HMF reactant molecules can readily diffuse
in this fiber structure and adsorb to the active catalytic sites,
while ester product molecules can diffuse out. Advantages to
using this catalyst material include efficient conversion to
products using a minimum amount of base and mild reaction
conditions favored by the green synthesis.

■ EXPERIMENTAL SECTION
Materials. The listed chemicals were purchased from given

commercial suppliers: 5-(hydroxymethyl)furfural (Sigma-Al-
drich, >99%), isopropanol (Sigma-Aldrich, >99.5%,anhy-
drous), methanol (Sigma-Aldrich, HPLC), ethanol (Sigma-
Aldrich, >99%), ethyl acetate (Sigma-Aldrich, >99%), N,N-
dimethyl formamide (Sigma-Aldrich, >99.8%, anhydrous),
toluene (Fisher, >99.99%, GC assay), acetic acid (Ajax
Finechem, >99.7%), C12-14H25‑29O(CH2CH2O)5H surfactant
(Sigma-Aldrich), potassium hydroxide (Sigma-Aldrich,
>99.99%), lithium hydroxide (Sigma-Aldrich, >99.99%),
potassium tert-butoxide (Sigma-Aldrich, >99.99%), potassium
carbonate (Sigma-Aldrich, >99.99%), gold chloride trihydrate
(Sigma-Aldrich, >99.9%), sodium borohydride (Sigma-Aldrich,
>98%), sodium aluminate (Sigma-Aldrich, anhydrous), and 02
(Supagas, >99.999%).

Synthesis of γ-Al2O3 Nanofibers. γ-Al2O3 was synthe-
sized using a previously reported method.62 NaAlO2 (18.81 g)
was dissolved in 50 mL of distilled water. This suspension was
stirred at room temperature to obtain a homogeneous mixture.
This solution was added to 50 mL of 5 M acetic acid solution
dropwise with vigorous stirring. The solution pH was adjusted
to approximately 5. A white aluminium hydrate was obtained,
washed with water, and recovered by centrifugation (6000 rpm
for 20 min). Polyethylene glycol (40 g) was then mixed with
the white precipitate, and the mixture was stirred for 1 h. This
homogeneous mixture was transferred into a glass bottle and
kept at 373 k. Every two days, the first three steps were
repeated to synthesize a hydrate cake, which was added to the
bottle. After 8 days of this procedure, the mixture was calcined
in a muffle furnace for 5 h at 450 °C (obtained γ-Al2O3
nanofiber mass − 21.83 g).

Loading Au NPs on γ-Al2O3 Nanofibers. γ-Al2O3 (1.0 g)
was dispersed in 100 mL of distilled water. 3% gold-loaded
samples were prepared by the following procedure. 0.01 M
HAuCl4 solution (12 mL) was added to the solution. 0.1 M L-
lysine was added to achieve a solution pH of 7. Subsequently,
0.35 M NaBH4 was added to the mixture dropwise while
stirring. The solution was aged 24 h, and then, the solid was
recovered by centrifugation. The Au/γ-Al2O3 samples were
washed with distilled water (5 times) and ethanol (2 times)
and dried overnight at 60 °C in a vacuum oven. Catalysts with
four different gold loadings (3, 5, 8, and 11%) were prepared.

Characterization of Catalysts and Supports. Nano-
particles were imaged using a JEOL TEM-2100 transmission
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electron microscope with an accelerating voltage of 200 kV.
Finely powdered specimens were deposited onto a Cu
microgrid coated with a holey carbon film. Surface areas of
γ-Al2O3 nanofiber samples and catalysts were measured with a
Tristar II 3020 isotherm analyzer. The samples were degassed
using a VacPrep 061 sample degas system at 250 °C in a
vacuum at 100 mTorr for 16 h prior to measurement. The
sample’s elemental compositions were determined using the
energy-dispersive X-ray spectroscopy attachment of an FEI
Quanta 200 scanning electron microscope. Diffuse reflectance
UV−visible spectra of the samples were also recorded on a
Cary 5000 spectrometer. XRD was done to identify the
alumina catalyst support’s crystal phase. A Bruker D8 advance
diffractometer was operated at 35 kV and 40 mA with a Co Kα
radiation λ of 0.178 nm. The samples were analyzed with a step
size of 0.02° and at a scan range of 20−119°.
General Procedure for the HMF Oxidation Reaction.

Reactions were conducted in sealed reaction tubes maintained
at 45 °C. 0.2 mmol of HMF, 0.1 mmol of base, 2.0 mL of
methanol, and 20 mg of catalyst were placed in a 20 mL glass
tube. Prior to the reaction, O2 gas was purged for 3 min to the
reaction mixture. The tubes were then sealed thoroughly. 1 mL
aliquots were collected at given time periods. These samples
were filtered through a millipore filter (pore size 0.45 μm) to
remove the catalyst particulates to analyze products. Reactant
conversion and product selectivity were calculated from gas
chromatography (GC-HP6890 Agilent Technologies) meas-
urements using a HP-5 column. Product compositions were
analyzed using an Agilent HP5973 mass spectrometer.
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traitement acide de sucres sur reśines ećhangeuses d’ions. Bull. Soc.
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