
entropy

Article

Magnetocaloric Effect in Non-Interactive Electron
Systems: “The Landau Problem” and Its Extension to
Quantum Dots

Oscar A. Negrete 1,*, Francisco J. Peña 1, Juan M. Florez 1 and Patricio Vargas 1,2 ID

1 Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile;
f.penarecabarren@gmail.com (F.J.P.); juanmanuel.florez@usm.cl (J.M.F.); patricio.vargas@usm.cl (P.V.)

2 Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago 8320000, Chile
* Correspondence: oscar.negrete@usm.cl

Received: 29 June 2018; Accepted: 24 July 2018; Published: 27 July 2018
����������
�������

Abstract: In this work, we report the magnetocaloric effect (MCE) in two systems of non-interactive
particles: the first corresponds to the Landau problem case and the second the case of an electron in
a quantum dot subjected to a parabolic confinement potential. In the first scenario, we realize that
the effect is totally different from what happens when the degeneracy of a single electron confined
in a magnetic field is not taken into account. In particular, when the degeneracy of the system is
negligible, the magnetocaloric effect cools the system, while in the other case, when the degeneracy is
strong, the system heats up. For the second case, we study the competition between the characteristic
frequency of the potential trap and the cyclotron frequency to find the optimal region that maximizes
the ∆T of the magnetocaloric effect, and due to the strong degeneracy of this problem, the results are
in coherence with those obtained for the Landau problem. Finally, we consider the case of a transition
from a normal MCE to an inverse one and back to normal as a function of temperature. This is due to
the competition between the diamagnetic and paramagnetic response when the electron spin in the
formulation is included.

Keywords: magnetocaloric effect; magnetic cycle; thermodynamics

1. Introduction

From a fundamental point of view, the magnetocaloric effect (MCE) consists of the temperature
variation of a material due to the variation of a magnetic field to which it is subjected. The MCE was
observed for the first time by Warburg in 1881 [1], but it was not until 1918 that Weiss and Picard [2]
exposed the physical principles that govern this phenomenon, thus allowing Debye [3] in 1926 to
propose the first practical applications. A year later, Giauque [4] designed magneto-thermal cycles
in order to explore physical phenomena at temperatures close to the liquefaction point of helium
(4.2 K). A little later in 1933, Giauque and Mac Dougall [5] reached temperatures of the order of
250 mK with paramagnetic salts exceeding for the first time in history the 1 K barrier. For more than
four decades, magnetic refrigeration was confined solely to the scientific scope, thus never arriving
as technology for domestic use, this being due to the low work temperature of the magnetocaloric
materials. All the compounds are known to date only work at temperatures of the order of 5 K,
making it impossible to use them in less extreme conditions. It was not until 1976 that Brown [6],
working with a prototype of a magnetic cooler using gadolinium as the active compound, showed that
it was feasible to have a refrigerating machine at room temperature. Pecharsky and Gschneider [7]
discovered in 1997 a series of materials with amazing magnetocaloric responses, thus enabling the
implementation of magnetothermic machines that were previously not considered feasible due to
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the low working temperatures. Nowadays, the research of the MCE effect has reawakened a strong
interest in the scientific community again [8–36]. Moya et al. [21] made a recompilation of recent
high temperature caloric materials and discussed other entropy-driven effects to generate thermal
responses. Another interesting case is the compounds where the inverse and direct magnetocaloric
effect is present [8,15], giving the possibility of a wider range of technological applications. This kind
of behavior has been reproduced using theoretical models for multilayered systems under the
competition of antiferromagnetic and ferromagnetic interactions [19,29,30]. Compounds with working
temperatures increasingly closer to room temperature are being studied all over the world with the
hope of finally finding a suitable candidate, thus replacing the current refrigeration technology by
a more efficient alternative and compatible with current environmental emergencies and requirements.
We highlight the work related to diamagnetic systems by Reis et al. [31–36], where they described the
oscillations of the magnetocaloric effect, finding materials (especially graphene) with a strong potential
application in magnetic sensors.

In physical terms, the MCE is closely linked to the behavior of the total entropy (S) since there
is a connection between the temperature changes that a system experiences together with entropy
variations. In this context, in a recent work [37], the study of the degeneracy role in the Landau problem
showed a very interesting behavior for the magnetic field along an isoentropic stroke compared to the
calculation in its absence. The low-temperature response of the entropy in the Landau problem is only
proportional to the amplitude of the external magnetic field, so the variation of S is a good candidate
to study the MCE for this case. On the other hand, the effects of the energy levels’ degeneracy on
quantum thermodynamic quantities have been reported in many works in the past [38–44]. In this
same framework, we highlight the work of Mehta and Ramandeep [38], who worked on a quantum
Otto engine in the presence of level degeneracy, finding an enhancement of work and efficiency for a
two-level particle with a degeneracy in the excited state. Furthermore, Azimi et al. [39] presented the
study of a quantum Otto engine operating with a working substance of a single phase multiferroic
LiCu2O2 tunable by external electromagnetic fields and that was extended by Chotorlishvili et al. [40]
under the implementation of shortcuts to adiabaticity, finding a reasonable output power for the
proposed machine. Therefore, the study of the role of degeneracy may be of interest to the MCE
community. Besides, nowadays, it is physically possible to confine electrons in two dimensions (2D).
For instance, quantum confinement can be achieved in semiconductor heterojunctions, such as GaAs
and AlGaAs. At room temperature, the bandgap of GaAs is 1.43 eV, while it is 1.79 eV for AlxGa1−x
As (x = 0.3). Thus, the electrons in GaAs are confined in a 1D potential well of length L in the
z-direction. Therefore, electrons are trapped in 2D space, where a magnetic field along the z-axis can
be applied [45].

On the other hand, a more realistic approach can be given if we consider an ensemble
of non-interacting electrons trapped in a quantum dot, this being due to the control that can
be achieved regarding the number of electrons that each quantum dot can have individually.
Moreover, the advances in technology allow these systems to work below T = 1 K [46–49].

In this work, we report the MCE effect for two systems: the first one corresponds to the case of
the very well-known Landau problem considering the degeneracy effects in their energy levels and in
the second one the case of an electron in a quantum dot subjected to a confining potential modeled as
a parabolic potential in two dimensions, which is the standard approach to semiconductor quantum
dots. This study is based on the fact that thermodynamics for this system can be solved by the exact
calculation of the partition function, the free energy and the entropy, in such a way that the variation
of the temperature with the magnetic field can be thoroughly analyzed. In particular, we found that
the effect of degeneracy in the energy levels for the Landau problem modifies the magnetocaloric
effect from normal to an inverse case. For an electron trapped in a quantum dot, we treat the different
scenarios that were obtained due to the competition between the cyclotron frequency and the frequency
related to the intensity of the parabolic trap inside the dot, finding a good inverse MCE in concordance
with our results obtained for the highly degenerated Landau problem. Finally, to reinforce the idea of
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the role of the degeneracy on energy levels on the MCE, we consider the electron spin, thus including
cases with Zeeman energy. As a consequence, there is now a competition between the diamagnetic
and paramagnetic effects. This allows us to explore a broader range for the intensity of the controllable
external magnetic field. Due to the splitting of energy levels and therefore a decrease in the energy
levels’ degeneracy, we found MCE transitions from normal to inverse to normal form, for a particular
range of temperatures and characteristic cyclotron frequency.

2. Model

We consider the case of an electron with an effective mass m* and charge e placed in a magnetic
field B, where the Hamiltonian of this problem working in the symmetric gauge leads to the known
expression (the Landau problem):

Ĥ =
1

2m∗

[(
px −

eBy
2

)2
+

(
py +

eBx
2

)2
]

, (1)

where we use the minimal coupling given by ~p → ~p + e~A, being ~A the magnetic vector potential.
The solutions for the eigenvalues of energies, which is obtained solving the Schrödinger equation,
are the corresponding Landau levels of energy, the expression of which is given by:

En = h̄ωB

(
n +

1
2

)
. (2)

Here, n = 0, 1, 2,... is the quantum number, and:

ωB =
eB
m∗

(3)

is the standard definition for the cyclotron frequency [50–53]. With the definition of the parameter
ωB, we can define the Landau radius that captures the effect of the intensity of the magnetic field,
given by lB =

√
h̄/(m∗ωB). The energy spectrum for each level is degenerate with a degeneracy g(B)

given by [53]:

g(B) =
eB

2πh̄
A, (4)

with A being the area of the box perpendicular to the magnetic field B. Therefore, with this approach,
it is straightforward to calculate the partition function for the Landau problem, and it turns out to be:

ZL =
m∗ωBA

4πh̄
csch

(
βh̄ωB

2

)
, (5)

which corresponds to the standard partition function for a harmonic oscillator in the canonical
ensemble, with a degeneracy of the level equal to g(B), and β corresponds to the inverse temperature
1/kBT. In Figure 1, we display a pictorial description of our studied systems.

Another interesting and highly degenerate problem corresponds to the case of a single electron
trapped in a quantum dot, the non-relativistic version of which can be simply obtained if we modify
the Hamiltonian of Equation (1) by adding a parabolic potential of the form:

V(x, y) =
m∗

2
ω2

d

(
x2 + y2

)
, (6)

where ωd is the frequency associated with the parabolic trap and m∗ is the effective mass of the electron
(Figure 1, right panel). In this case, the eigenvalues of the energy correspond to the very well-known
Fock–Darwin energy levels given by:

En,m = h̄Ω(2n + |m|+ 1)−m
h̄ωB

2
, (7)
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where n = 0, 1, 2, ... and m = 0,±1,±2, ... represent the radial and the azimuthal quantum number,
respectively. The “effective frequency” Ω is defined in the form:

Ω =

√
ω2

d +
ω2

B
4

, (8)

and the effective magnetic length (or effective landau radius) is given in this case by lB =
√

h̄/(m∗Ω).
The calculation of the exact partition function has been already discussed in previous works [50,51,53].
We highlight the works of Kumar et al. [53] and Muñoz et al. [51], where the first one calculated
the partition function from a functional-integral approach and the second one by substituting the
quantum numbers (n, m) for two new integer numbers n+ and n−. These two approaches lead to a
thermodynamical system characterized by two frequencies, called ω+ and ω−, given by the expression:

ω± = Ω± ωB
2

, (9)

and the partition function has the following form:

Zd =
1
4

csch
(

h̄βω+

2

)
csch

(
h̄βω−

2

)
. (10)

Figure 1. Pictorial representation of the systems. The left panel depicts the Landau problem. We recall
that in our formulation, we do not consider the edge effects. Red arrows represent the external magnetic
field perpendicular to the sample. The right panel depicts an electron with spin (blue arrow) trapped
in a parabolic potential that represents an electron in a quantum dot.

Note that the partition function has a divergence when ωd → 0, but none of the thermodynamic
quantities that are expressed as derivatives of Zd suffer from this problem. On the other hand,
it happens to be that the entropy, obtained from the Equation (10), diverges for ωd → 0, but we recall
that this case represents a quantum harmonic oscillator of zero frequency, due to the fact that when
ωd → 0, we have ω− → 0, and it does not represent a real physical system.

To obtain a more precise calculation, especially when we consider the case of strong magnetic
fields for the electron trapped in a quantum dot, we also take into account the electron spin of value
h̄σ̂
2 and magnetic moment µB, where σ̂ is the Pauli spin operator and µB = eh̄

2m∗ . Here, the spin can
have two possible orientations: ↑ or ↓ with respect to the applied external magnetic field B in the
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direction of the z-axis. Therefore, we need to add the Zeeman term in the Fock–Darwin energy levels
Equation (7). Consequently, the new energy spectrum is given by:

En,m,σ = h̄Ω(2n + |m|+ 1)−m
h̄ωB

2
− µBσB. (11)

The partition function for this case includes only one additional term as compared to the one
given in Equation (10) and is given by:

ZdS =
1
2

csch
(

h̄βω+

2

)
csch

(
h̄βω−

2

)
cosh

(
h̄βωB

2

)
. (12)

It is important to mention that this partition function, Equation (12), includes two physical effects
associated with the electron trapped in the quantum dot, the diamagnetic response associated with the
“csch” terms and the paramagnetism in the “cosh” term.

Magnetocaloric Observables

To understand the expressions that we use to describe the MCE, we can think of a general
non-deformable system under the action of an external magnetic field of intensity B at a temperature T,
the magnetothermic properties of which can be extracted using the Gibbs free energy G. Hence, we can
define the specific heat in a constant magnetic field as the second partial derivative of G with respect
to temperature T:

CB = −T
(

∂2G
∂T2

)
B

. (13)

Having knowledge of how the heat is transferred between the material and its environment,
it is essential to understand and optimize the efficiency of the thermal machines and other systems that
require the generation of temperature gradients. CB could give us further insights into such processes,
as well as allow us to witness phase transitions between different magnetic orders as a function of
different external or intrinsic parameters.

We emphasize that we work here with an entropy S as a function of state that depends only
on two thermodynamical variables; thus, we have S ≡ S(T, B). This allows us to write the total
differential expression for the entropy,

dS(B, T) =
(

∂S
∂B

)
T

dB +

(
∂S
∂T

)
B

dT. (14)

From Equation (14), we can now derive the magnetocaloric expressions that arise from considering
two thermodynamical paths, i.e., an adiabatic and an isothermal one. Correspondingly, for the adiabatic
paths, we can make Equation (14) equal to zero. Using then the relation given by

(
∂2G
∂T2

)
B
= −

(
∂S
∂T

)
B

in Equation (13) for the specific heat and the Maxwell relation
(

∂M
∂T

)
B

= −
(

∂S
∂B

)
T

, where the

magnetization of the system has the form M(T, B) = −
(

∂G
∂B

)
T

, we can obtain the adiabatic change
in the temperature ∆T for the system with respect to the variations of the external magnetic field;
such an expression is given by:

∆T = −
∫ B f

Bi

T
CB

(
∂M
∂T

)
B

dB. (15)

For the isothermal path, we can obtain from Equation (14) that the change of entropy between
two magnetic field is given by:

∆S =
∫ B f

Bi

(
∂M
∂T

)
B

dB (16)
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Moreover, we can obtain the change in the entropy for a trajectory with a constant magnetic field
(i.e., isomagnetic strokes) from Equation (14):

∆S =
∫ Tf

Ti

(
CB
T

)
dT (17)

Now, there are two different paths for the magnetothermic cycles for the degenerate and
non-degenerate cases of the Landau problem, respectively, which we describe in Figure 2. These two
cases arise for the very noticeable difference in the behavior of the adiabatic trajectories discussed
previously in [37]. Specifically, when we make Equation (14) equal to zero, we can construct a
differential equation relating the magnetic field and the temperature for adiabatic processes in the
scenario of a degeneracy, which has the form:

dB
dT

= −
C2

1
B2

T3 csch2
(

C1
B
T

)
1
B − C2

1
B
T2 csch2

(
C1

B
T

) , (18)

where C1 is a constant given by C1 = eh̄
2kBm∗ . This previous equation has an analytical solution given by:

C1
B
T

coth
(

C1
B
T

)
+ ln (C1B)− ln

[
sinh

(
C1

B
T

)]
= C2, (19)

where C2 is an integration constant. Note that the additional term in the differential equation that
provides the degeneracy, g(B), is the factor (1/B) in the dominator of Equation (18). If this term
vanishes, the differential equation has a simpler form dB

dT = B
T with a linear dependence between

the changes of the magnetic field and the temperature, correspondingly. Because of this, we explain
these two different cases separately and propose a schematic representation of the cycles for a better
understanding. It is important to recall that these two proposed cycles that we discuss next are two of
the many cycles that can be envisioned for magnetocaloric heating or cooling to exploit direct or inverse
MCE, and the reason for showing them is to reinforce the idea of the different behaviors that take the
system under the external magnetic field, in the isoentropic trajectories, due to the degeneracy effect.

Non-degenerate case: In this case (Figure 2, left panel), the system, having a temperature of
(T1), is magnetized adiabatically; therefore, the final temperature (T2) is greater than the initial
one (T2 > T1). At this point, the system is put in contact with a cold reservoir so that it reaches a
lower temperature (T3 < T2). From there, an adiabatic demagnetization occurs, cooling the system
again, reaching a final temperature of (T4), which is less than the initial temperature of (T4 < T1).
Here, we use a system to cool a sample (gas or solid material), then the system reaches a final
temperature of (T5 = T1 (theoretically)), and therefore, our magnetic system is heated up again
beginning with the initial temperature (T1), and a new cycle starts.

Degenerate case: In this case (Figure 2, right panel), our magnetic system is at temperature T1.
When we subject the system to an adiabatic magnetization, the system reaches a temperature of
T2 < T1. At this moment, we use our system to cool a sample (gas or solid material); therefore,
this adds heat to our magnetic system, reaching a temperature of T3 (T3 > T2 > T1). Now, we start
from here, performing an adiabatic demagnetization process, and our system therefore reaches a final
temperature of T4, higher than the temperature T3. At that moment, the system should be put in
contact with a reservoir at temperature T1 or less in order to reach that temperature quickly, so that the
cycle can be started again. Thus, we are able to cool a material.
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Figure 2. General description of the idea of the magnetocaloric effect (MCE). (Left panel) Standard
MCE: We start with our system at T = T1 and B = B1. By performing an adiabatic stroke to B = B2,
the system heats up reaching T = T2, the system is in contact with a thermal reservoir reaching
a temperature of T = T3. Now, we proceed with an adiabatic demagnetization stroke back to B = B1;
therefore the system cools down to T = T4. Then the system is in contact with a sample to cool down;
therefore our system reaches again a temperature of T = T1. (Right panel): Inverse MCE: We start
with our system at T = T1 and B = B1. By performing an adiabatic stroke to B = B2, the system cools
down to T = T2 (this is due to the decrease of the entropy of the system’s phonons). Here, the system
is in contact with a sample to cool down; therefore our system reaches T = T3. Now, we proceed with
an adiabatic demagnetization stroke back to B = B1; therefore the system now heats up to T = T4.
The system is in contact with a thermal reservoir, therefore reaching again a temperature of T = T1.

For the case of an electron trapped in a quantum dot, we treat two instances: the case with and
without an intrinsic spin. We report that, if we do not consider the Zeeman effect, the system responds
like in the degenerate case of the Landau problem. When the Zeeman term is taken into account,
the system’s experiment reflects both direct and inverse MCE.

It is important to recall that in our thermodynamic analysis, all the thermal quantities are derived
from the partition function Z . In the generic form:

S(T, B) = kBT
(

∂ lnZ
∂T

)
B

, (20)

CB =

(
∂U
∂T

)
B

, (21)

where U = kBT2
(

∂ lnZ
∂T

)
B

and, finally:

M = kBT
(

∂ lnZ
∂B

)
. (22)

Before presenting the results, it is important make a clarification. Our adiabatic paths are classical,
that is where the process is identified in terms of the conservation of the entropy and the isolation of
the system from heat exchange with the thermal bath [37]. We recall that we work in a semi-classical
scenario where the quantum part is related to the nature of the working substance and the classical
part is due to the condition imposed over the adiabatic strokes along the MCE that we propose.
We emphasize that the MCE is (until now) a classical effect.
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3. Results and Discussion

3.1. Landau Problem: Influence of Energy Degeneracy on the MCE

From Equation (5), we straightforwardly calculated the thermodynamic quantities for the
non-degenerate case. First, we analyzed the MCE starting with the corresponding thermodynamic
entropy, which is given by:

S(T, B) =
h̄ωB
2T

coth
(

βh̄ωB
2

)
+ kB ln

[
csch

(
βh̄ωB

2

)]
(23)

The entropy as a function of the temperature shows two behaviors. First, it grows as a function of
the temperature, and second, it decreases at a fixed temperature when the intensity of the external
magnetic field increases, as we show in the left panel of Figure 3. If we consider an isoentropic trajectory,
represented for example by a straight horizontal line in Figure 3, as the magnetic field increases,
the different curves of the entropy cut the straight horizontal line at successively higher temperatures.
This explains the linearity that we obtained from the solution of the trivial differential equation of first
order given in Equation (18) when we do not have the extra term 1/B in the denominator of the same
equation. In the right panel of Figure 3, we observe that for all temperature ranges, the values for −∆S
are positive, so we expect a normal MCE, as we see in Figure 4 with corresponding positive values for
∆T. In real low dimensional systems, just small changes of temperature are often achieved. If we use
the above argument, that would mean that the usual work temperatures are also small, as indeed they
are. To obtain a realistic value for ∆T, we need to work at low temperatures. This is a consequence of
the linear relationship between B and T in the adiabatic paths for this ideal system. The physical reason
for this is that we are dealing with an ideal and perfect diamagnetic system. In particular, for this
section, we use the regular mass for the electron corresponding to me ≡ m∗ = 9.1094 × 10−31 kg.

Figure 3. (Left panel ) Entropy (in kB units) for the non-degenerate case of the Landau problem,
as a function of temperature (in Kelvin) and for different values of external magnetic field intensity
(measured in Tesla) from 0.1 T to 5 T. The straight horizontal line represents the adiabatic line
S(T, B)/kB = 2, cutting different magnetic fields’ entropies at different temperatures. The inset
shows the entropy in the temperature range from T = 0 K to T = 10 K. (Right panel) Entropy
change, −∆S, according to Equation (16), as a function of the temperature for the non-degenerate
case, where ∆B = B f − Bi. We display this figure with an initial value of the external magnetic field
of Bi = 0.01 T to B f (from 0.1 T to 5 T) and for temperatures from T = 0.01 K to T = 10 K. The inset
depicts the values for ∆S from T = 40 K to T = 300 K.

The magnetization for the non-degenerate case is simply given by the expression:

M(T, B) = −µB coth
(

h̄ωB
2kBT

)
, (24)



Entropy 2018, 20, 557 9 of 18

where µB = eh̄/2m∗ is the Bohr magneton. We plot this magnetization behavior in the inset figure of
Figure 4 in the range of low temperatures and low magnetic fields. As can be appreciated, the absolute
value of the magnetization decreased as the external magnetic field increased. The explanation of this
conduct is the diamagnetic response. We need to remember that we have spinless electrons, so the
magnetization is associated with a circular constant current I (charge times velocity) of section A in
the form of M ∼ IA, where A can be written as:

A = πl2
B, (25)

where lB is the Landau radius. Therefore, the higher the magnetic field, the smaller the effective
area A is, in order to localize the electron in a smaller region in space and vice versa. Therefore,
the magnetization decreases by increasing the external magnetic field, as we see in the inset of Figure 4.

Figure 4. MCE for the non-degenerate case of the Landau problem as a function of temperature.
We display ∆T with an initial value of the external magnetic field Bi = 0.5 T to B f from 1 T (blue)
to 2 T (red). The inset shows the values for M(T, B) for external magnetic fields ranging from B = 1 T to
B = 2 T.

The effect of the degeneracy in the energy levels of the Landau problem modifies all the results
previously presented. The entropy for this case is given by:

SL(T, B) =
h̄ωB
2T

coth
(

βh̄ωB
2

)
+ kB ln

[
g(B)

2
csch

(
βh̄ωB

2

)]
, (26)

where this expression only differs from Equation (23) in the logarithmic term by the additional factor
g(B)/2. This entropy is shown in the left panel of Figure 5, where we clearly see an important
feature at low temperatures, i.e., the entropy of the Landau problem with degeneracy satisfies the
following relation:

SL(T, B)T→0 ≡ S(B) ∼ kB ln (g(B)) . (27)

This entropy depends only on the external magnetic field and at T = 0 simply represents the
residual entropy of the ground state. It grows if the intensity of the external field grows, contrary to
the non-degenerate case. This can be explained by the fact that for low temperatures, the strong linear
degeneracy dependence on the field implies more available states, so consequently, the entropy must
increase as the field increases. On the other hand, in the high temperature range (see the inset in the
left panel of Figure 5), the entropy for different magnetic fields approximately collapses to the same
value, but there still exists a finite ∆S > 0, allowing the analysis of the MCE at higher temperatures.
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Figure 5. (Left panel) Behavior of the entropy SL(T, B) for the Landau problem with degeneracy.
We show SL(T, B) in the range of B between 0.1 T to 5 T and for a temperature up to 10 K (the area
used was A ≡ 1 mm2). It is clearly observed that the entropy grows with the magnetic field and
approximately collapses to the same value at high temperatures, as we see in the inset graphic.
(Right panel) ∆SL for the degenerate scenario of the Landau problem. We show −∆SL(T, Bi, B f ) in
a range of the external magnetic fields, for Bi = 0.01 T and B f = 0.1 T to B f = 5 T and up to 10 K in
temperature. The inset figure shows the variation of entropy for a range of temperatures between 10 K
and 100 K, where we can clearly observe that the variation of −∆S decreases approximately by a factor
of 100 as compared to the low temperature behavior, as expected.

As we see in the right panel of Figure 5, we obtain negative values for −∆S, opposite to
the non-degenerate case (see Figure 3). Therefore, when we analyze the MCE for this system,
we obtain negative values for ∆T, as presented in Figure 6. Here, we discuss two possible scenarios:
low temperature and high temperature behavior for the same range of external magnetic fields. In the
case of low temperature, we obtained larger values for ∆T, but it is important to point out that we had
only a region of physical validity to avoid negative temperatures. Approximately from a temperature
of T ∼ 2 K and above, we can work with all the proposed range of magnetic fields (from B = 0.01 T to
B = 5 T), as we see in Figure 6, because all the values of ∆T were acceptable (i.e., Tf = Ti + ∆T > 0 K).
If we decrease the value of the initial temperature T beyond this value, we must proceed carefully.
At lower temperature, the physically acceptable solutions cannot take higher values for the external
magnetic field in order to avoid final negative temperatures, as we clearly appreciate in Figure 6.

Figure 6. MCE for the Landau problem with degeneracy as a function of temperature. The main figure
shows ∆T in a range of the external magnetic fields, from B f = 0.1 T to B f = 20 T at fixed Bi = 0.01 T,
and up to 10 K in the temperature scale. The inset shows the values for M(T, B) for external magnetic
fields ranging from B = 0.01 T to B = 5 T.
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3.2. MCE for Electrons Trapped in a Quantum Dot

In this section, we now develop the case of an electron trapped by a quantum dot.
From Equation (10), it is straightforward to derive the entropy, Sd(T, B), for this problem:

Sd(T, B)
kB

=
h̄ω+

2kBT
coth

(
h̄ω+

2kBT

)
− ln

(
2 sinh

(
h̄ω+

2kBT

))
+

h̄ω−
2kBT

coth
(

h̄ω−
2kBT

)
− ln

(
2 sinh

(
h̄ω−
2kBT

))
.

(28)

Figure 7 shows the entropy, magnetization (from Equation (22)) and specific heat
(from Equation (21)) as a function of temperature. We clearly appreciate that the entropy function
grows with the magnetic field as in the case of the Landau problem with the degeneracy effects.
Thence, by calculating −∆S = S(T, Bi)− S(T, B f ) with B f > Bi, we obtain negative values. This result
was expected due to the strong degeneracy of the Fock–Darwin levels reflected in the dependence of
the spectrum of Equation (7) in the azimuthal quantum number m. The partition function captures this
effect when we write the quantum numbers (n, m) in the form of two new numbers (n+, n−) in order
to form two frequency oscillators given by ω+ and ω−. For the next two sections in the manuscript,
we consider an effective mass m∗ ∼ 0.067 me. This effective mass is associated with a cylindrical
quantum dot of GaAs with a typical radius of 20 to 100 nm [54,55]. For the characteristic frequency of
the trap ωd, we use the value of 1.6407× 1012 s−1, which in terms of energy represents approximately
h̄ωd ∼ 1.07 meV. The selection of this particular value is to compare the intensity of the trap with the
typical energy of intra-band optical transition of the quantum dots. The order of this transition is
approximately around ∼1 meV for GaAs quantum dots [54].

Figure 7. Spinless electrons in a quantum dot. Entropy Sd(T, B) (left panels), M(T, B) (middle panels)
and CB(T, B) (right panels) as a function of temperature (T) from 0 K to 30 K for different values
of magnetic fields in the range of 0.1 T to 5 T. In the middle panels of the graphs, we selected the
representative value for the characteristic frequency of the harmonic trap in ωd = 1.6407× 1012 s−1,
which in terms of energy represents an approximate value of 1.07 meV. For the top panels, we use the
value ωd

4 and in the bottom panels the case of 4ωd for the characteristic frequency of the dot structure
(ωB = eB

0.067me
≡ 2.63× 1012 B s−1, where B is in Tesla units for comparison).
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For the analysis of the ∆S, it is convenient to analyze the results in three cases due to the
competition between ωd and ωB. In order to do this, we plot the variation of the entropy as a function
of temperature for the case of a characteristic dot frequency of ωd = 1.6047× 1012 s−1, the value of
which is associated with a cyclotron frequency for B = 0.625 T (i.e., ωB = 2.63× 1012 B s−1, with B
in units of Tesla) of the external magnetic field intensity. Thereby, to analyze the different regions of
−∆S, we plot this quantity in the three insets of Figure 8 using an initial value of the external magnetic
field of Bi = 0.01 T, Bi = 0.45 T and Bi = 0.61 T in the left, center and right panel, respectively. This is
in order to satisfy the three regimes of frequencies. The left panel is associated with a range of final
external fields corresponding to B f between 0.02 T and 0.49 T (i.e., ωd > ωB), the middle panel a range
of final external fields corresponding to B f between 0.49 T and 0.71 T (ωd ∼ ωB) and the right panel
for B f from 0.72 T to 3 T (i.e., ωd < ωB). We observe that the magnitude of −∆S increases (in absolute
value) for higher magnetic fields, as we see from the diagram for S(T, B) of Figure 7, and is more
pronounced in the range of temperature from T ∼ 2 K to T ∼ 4 K.

For the MCE observable ∆T, in coherence with the values of −∆S, we obtained a major increase
at higher values of the external magnetic field. At a field value of B = 3 T, we approximately obtained
∆T of 5.5 K (in absolute value). This can be appreciated in the right panel of Figure 8. We recall that
we obtained an inverse MCE due to the strong degeneracy of this problem, and this is in concordance
with the result previously discussed for the case of the Landau problem with degeneracy.

Figure 8. MCE effect for spinless electrons in a quantum dot. ∆T for: (i) ωB < ωd (left panel),
(ii) ωB ∼ ωd (middle panel) and (iii) ωB > ωd (right panel). The insets of all graphics in this figure:
−∆S in units of kB as a function of temperature for: (i) ωB < ωd (left panel), (ii) ωB ∼ ωd (middle panel)
and (iii) ωB > ωd (right panel). For all graphics presented in this figure, we have selected the value of
h̄ωd ∼ 1.07 meV (i.e., ωd = 1.6407× 1012 s−1).

3.3. MCE for Electrons with Spin Trapped in a Quantum Dot

In this case, the entropy has the following form as displayed in Equation (12):

SdS(T, B)
kB

=
Sd(T, B)

kB
+ ln

(
2 cosh

(
h̄ωB
2kBT

))
− h̄ωB

2kBT
tanh

(
h̄ωB
2kBT

)
, (29)

where Sd(T,B)
kB

is given by Equation (28). We can see two new terms in the last expression for the entropy
when comparing to the previous case for Equation (28). These terms represent the paramagnetic
contribution to the entropy arising from the spin coupled to the magnetic field. We will see below that
they play a fundamental role in the results for the MCE. As the entropy of a paramagnet vanishes as a
function of the magnetic field at any finite temperature, the behavior of −∆S will always be positive
for the paramagnetic contribution.

In Figure 9, we show the entropy (Equation (29)), magnetization (from Equation (22)) and specific
heat (from Equation (21)) as a function of temperature. We see in the figure different behaviors of
these thermodynamic quantities as a function of temperature for different magnetic field ranges.
We considered three different characteristic dot frequencies as we did before in the case of the spinless
electron in the quantum dot. In the middle panels, we consider the characteristic dot frequency of
ωd = 1.6407× 1012 s−1, the value of which can be assimilated as a cyclotron frequency for B = 0.625 T
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(i.e., ωB = 2.63× 1012 B s−1). For the top panel of Figure 9, we use the value ωd
4 , and for the figures

in the bottom panels, we use the value of 4ωd for the characteristic frequencies of the dot structure.
The insets (for the left and right panel) show the same quantities in an extended temperature range,
from T = 0 K to T = 100 K.

In Figure 10, we show the quantity −∆SdS for three characteristic dot frequencies ωd. We clearly
observe a transition for −∆SdS, from positive to negative and back to positive values, indicating that
we have different MCE effects.

We also see the interesting effect that the characteristic dot frequency plays in the transition
between the direct MCE (∆T > 0) to the inverse behavior of the MCE (∆T < 0). For the lower values
of ωd (left and middle panel in Figure 10), a transition (change of sign) occurs at low temperatures.
For the high value of ωd, we did not see a sign change and therefore always obtained the normal MCE
(in the considered experimental range for the external magnetic fields). The aforementioned effect
provides a form to control the type of MCE. If we focus on the results of the central panel of Figure 10,
corresponding to h̄ωd ∼ 1.07 meV, we observe that the transition from the normal to the inverse
case does not occur for all magnetic field values. Under 2.5 T, we do not observe an inverse MCE.
Above 2.5 T, we get two zero points for the difference −∆SdS and therefore a small temperature region
with inverse MCE. For example, when we calculated the entropy difference between B f = 5 T and
Bi = 0.01 T, the inverse MCE region obtained was approximately between 1.2 K and ∼18 K. This can
be better understood if we plot the function SdS(T, B) for the two magnetic fields under discussion:
SdS(T, 0.01) and SdS(T, 5), as can be appreciated in Figure 11.

Figure 9. Electrons with spin trapped in a quantum dot. Entropy SdS(T, B) (left panel), M(T, B)
(middle panel) and CB(T, B) (right panel) as a function of temperature (T) from different regions of
temperature between 0 K to 80 K for different values of the magnetic field in the range of 0.1 T to 5 T.
In the middle panels of the graphs, we selected the representative value for the characteristic frequency
of the harmonic trap in ωd = 1.6407× 1012 s−1, which in terms of energy represents an approximate
value of 1.07 meV. For the top panels, we use the value ωd

4 , and in the bottom panels, the case of 4ωd for
the characteristic frequency of the dot structure is used. The insets show the thermodynamic quantities
(in the left and right panel) in an extended temperature range between T = 0 K and T = 100 K.
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Figure 10. −∆SdS
kB

as a function of temperature for different values of characteristic dot frequencies.
The middle panel corresponds to a value of ωd = 1.6407× 1012 s−1. For the left panel, we selected the
value of ωd

4 and for the right panel the value of 4ωd. The range of the external magnetic field values,
B f , is between 0.02 T and 5 T, and Bi = 0.01 T. The temperature range is from T = 0.01 K to T = 30 K.

In Figure 11, we appreciate the different regions that we obtain for −∆S for the characteristic
dot frequency of 1.07 meV. The entropy for a low magnetic field is not always greater than
the corresponding one at a higher magnetic field. Between T = 0.01 K and T = 1 K, we have
that SdS(T, 0.01) > SdS(T, 20), then approximately from T = 1.2 K to T = 17.6 K, we have
that SdS(T, 0.01) < SdS(T, 20), and finally, from T = 17.6 K onwards, we have the behavior
SdS(T, 0.01) > SdS(T, 20).

0 5 10 15 20 25 30

0

1

2

3

4

T

S
d
S

K
B SdS (T,0.01)

KB

SdS (T,5)

KB

Figure 11. Entropy function SdS(T, B) of an electron with spin trapped in a quantum dot. We plot the
entropy for two different values of the external magnetic field as a function of temperature. We use
the characteristic value of ωd = 1.6407× 1012 s−1. The dot-dashed line corresponds to the external
magnetic field B = 0.01 T, and the dashed line corresponds to the value of B = 5 T.

In Figure 12, we display ∆T as a function of temperature. The three panel are in coherence
with the values of −∆S, as shown in Figure 11. We clearly see the behavior of ∆T from positive to
negative and back to positive values as a function of temperature (left and middle panels). In particular,
we highlight the middle panel, which shows a peak for ∆T with a value of approximately ∆T = 4 K.
This peak is higher as the value of the characteristic frequency of the dot increases, as we see for the
extreme value for h̄ωd close to 4.8 meV in units of energy. Finally, another important discussion can
be extracted from Figure 12: the effect of the parabolic trap in the oscillation that we observe for the
MCE in the left and middle panel of that figure. We clearly observe a positive peak for ∆T close to
zero temperature that can only be appreciated for h̄ωd ≥ 1 meV; under this value, it tends to disappear.
The oscillation in MCE (sign change) was only obtained near the value of 1 meV for the quantum dot
trap. For higher values of the trap frequency, we only observed the normal MCE for all the range of
temperatures. Therefore, we can conclude that the strong energy trap of the quantum dots destroyed
the oscillatory behavior of the MCE, and this conclusion is reinforced with the entropy differences in
behavior shown in Figure 10.
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We remark that the result presented for quantum dots with an intrinsic spin, when we obtain a
different type of magnetocaloric response, can be used for adiabatic demagnetization refrigerators
and magnetic field sensors [56]. It is important to note that our approach must be refined to take into
account a many-electron scenario, which yields a more precise model. However, the non-interacting
electron case is important due to its simplicity and the arising of a rich physics for comparatives
cases. Moreover, these problems can be extended, for example, considering the edge states of the
system. In particular, if we decrease the size of the dot radius (lower than the value of 20 nm), the edge
states of the systems and their contributions will be significant in the results. These edge effects in
the energy levels can be captured with the tight-binding approximation [57] (for example), and with
these new levels of energy, we can construct the adequate thermodynamics and calculate the MCE for
those cases. In addition, spin-orbit coupling can be taken into account in the formulation for a more
realistic approach.

Figure 12. MCE effect for electrons with spin trapped in a quantum dot. ∆T as a function of
temperature for different values of characteristic frequencies. The middle panel corresponds to a value
of ωd = 1.6407× 1012 s−1. The left panel corresponds to the value of ωd

4 , and the right panel depicts the
results using the value of 4ωd. The range of the external magnetic field values, B f , is between 0.02 T and
5 T, and Bi = 0.01 T. The temperature range is from T = 0.01 K to T = 120 K. The insets show ∆T values
zoomed in to a smaller range of temperatures and for near room temperature (left and middle panel).

4. Conclusions

In this work, we explored the MCE for the non-degenerate and degenerate Landau problem
and for an ensemble of non-interacting electrons (with and without intrinsic spin), where each one is
trapped inside a semiconductor quantum dot modeled by a parabolic potential. We analyzed all the
thermodynamics quantities and obtained the variation of the entropy and the temperature along the
adiabatic strokes that characterize the MCE. In particular, we focused our investigation on the role of
the degeneracy effects in MCE, finding that a strong degeneracy is related to an inverse MCE.

Finally, we showed that the inclusion of the spin term allowed us to find transitions of the MCE,
from normal to the inverse case, due to the competition between the diamagnetism (case without
spin) and the additional terms associated with paramagnetism (the case with spin). In terms of the
degeneracy, we expected this result, due to the Zeeman split into the energy levels decreasing the
degeneracy of the energy levels involved in the study, so the results must converge to normal MCE.
Additionally, we can modify the characteristic frequency of the dots, to obtain a particular type of
MCE (normal or inverse), allowing their use for a specific physical application (cooling or heating up).
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