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Purpose: To develop a method for automated detection and progression analysis of
chorioretinal atrophic lesions using the combined information of standard infrared (IR)
and autofluorescence (AF) fundus images.

Methods: Eighteen eyes (from 16 subjects) with punctate inner choroidopathy were
analyzed. Macular IR and blue AF images were acquired in all eyes with a Spectralis
HRA+OCT device (Heidelberg Engineering, Heidelberg, Germany). Two clinical experts
manually segmented chorioretinal lesions on the AF image. AF images were aligned to
the corresponding IR. Two randomforestmodelswere trained to classifypixels of lesions,
one based on the AF image only, the other based on the aligned IR-AF. Themodels were
validated using a leave-one-out cross-validation and were tested against the manual
segmentation to compare their performance. A time series from one eye was identified
and used to evaluate the method based on the IR-AF in a case study.

Results: Themethodbasedon theAF images correctly classified95%of thepixels (i.e., in
vs. out of the lesion)with aDice’s coefficient of 0.80. Themethodbasedon the combined
IR-AF correctly classified 96% of the pixels with a Dice’s coefficient of 0.84.

Conclusions: The automated segmentation of chorioretinal lesions using IR and AF
shows closer alignment to manual segmentation than the same method based on AF
only. Merging information frommultimodal images improves the automatic and objec-
tive segmentation of chorioretinal lesions even when based on a small dataset.

Translational Relevance: Merged information from multimodal images improves
segmentation performance of chorioretinal lesions.

Introduction

Punctuate inner choroidopathy (PIC) is a rare
condition that was first recognized by Watzke in 1984

as a group of the White Dot Syndromes.1 The disease
is an inflammatory choroiditis that does not affect
the anterior chamber or vitreous cavity. It gener-
ally affects eyes of young and myopic women and
its cause is unknown.2 It is characterized by the
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appearance of multifocal, well-circumscribed, small
lesions that resolve in a few weeks, leaving atrophic
spots with variable pigmentation. These episodes are
symptomatic, with patients reporting blurred central
vision, flashes of light, and paracentral scotomas.
Symptoms can disappear with the resolution of the
lesion, but about 40% of the patients experience more
severe visual loss with the development of choroidal
neovascularization (CNV).3–5

The detection and monitoring of PIC are assisted
by a number of imaging techniques including optical
coherence tomography (OCT) and fundus autofluo-
rescence (AF).6,7 Whereas OCT provides good three-
dimensional views of the evolution of individual
inflammatory lesions (and detection of CNV), the
AF provides the best overview of the number of
atrophic PIC lesions, their size and the total area of
the macula that has been affected. Specialists there-
fore routinely use the evaluation of hypoautofluores-
cent areas on AF images to estimate disease progres-
sion over time and to assess efficacy of treatment;
additionally hyperautofluorescent areas may indicate
new disease activity although this is a less consistent
phenomenon.8 Visual assessment is, however, signif-
icantly hampered by its subjective nature (based on
direct visual comparison of scans between visits) and is
not supported by any numerical information that could
be used to provide objective indices to support treat-
ment decisions or progression monitoring. Estimates
of lesions in AF can be improved by semiautomatic
segmentation, such as the one provided by the Region
Finder software (Heidelberg Engineering, Heidelberg,
Germany), a region-based segmentation that often
requires manual correction.9 There is also consider-
able interest around the automated segmentation of
geographic atrophic lesions in patients with age-related
macular degeneration.10–19 However, to the best of
our knowledge, there are no published algorithms for
the automated segmentation of chorioretinal lesions in
PIC and similar uveitic syndromes, and clinicians are
therefore currently dependent on subjective, qualitative
assessment to detect change between visits and inform
treatment decisions. This is likely due to the scarcity of
large datasets, rarity of the disease and the morpholog-
ical complexity of these lesions that make the training
of such algorithms a challenging task. Such complexity
would also translate into a taxing endeavor for clini-
cians, required to manually correct segmentations of
multiple sparse lesions.

Chorioretinal atrophic lesions are also visible in
images acquired in infrared (IR) and color modalities.
In these images, lesions appear as sharply demarcated
regions of absent retinal pigment epithelium through
which the choroid or sclera is visible. Although their

appearance in these images might not be as contrasted
as in AF, they provide complementary information
that can improve the performance of algorithms for
automatic segmentation.

In this work, we present a proof of concept for a
machine learning algorithm, which combines the infor-
mation of IR and AF images to produce an automatic
segmentation of PIC atrophic lesions. We demonstrate
that it is feasible to develop and test these methods
using a small dataset. We compare the results of the
proposed method with those from another algorithm,
based on the same model but trained on the AF only.
Finally, we present a case study to explore the potential
benefits of the technique for themonitoring of progres-
sion.

Methods

Dataset

All patients attending the specialist PIC clinic at
University Hospitals Birmingham NHS Foundation
Trust, UK, have a standardized set of scans (the
“Birmingham PIC Protocol”) which comprises: 30°
OCT of macula (“fast macula”) and retinal nerve fiber
layer (RNFL); 30° Bluepeak AutoFluorescence (AF);
30° multicolor (three laser reflectance), 55° wide-field
posterior pole OCT, AF, and Multicolor, Ultrawide
field Optos Color, and AF. This protocol was approved
from theNRESEastMidlands Ethics Committee (Ref:
14/EM/1163). Written informed consent was gathered
from all subjects. This protocol adhered to the tenets
of the declaration of Helsinki. The scans of 16 patients
(with 18 affected eyes) with PIC had at least one visit
with all modalities acquired and were identified for
this study. Each of the 18 eyes had a 6 mm × 6 mm
macular OCT volume with an associated 768 × 768-
pixels IR image and a 768 × 768-pixels AF image.
All volumes and AF images were acquired using a
Spectralis HRA+OCT device (Heidelberg Engineer-
ing, Heidelberg, Germany) using 820 nm and 488 nm
wavelengths for IR and AF, respectively. All patients
enrolled in this study had “classic” PIC with predom-
inantly central lesions; patients who had multifocal
choroiditis without the central lesions or who had
progressive subretinal fibrosis were not included in this
study. All stages of PIC were eligible for inclusion.

Manual Segmentation

A clinical expert (GM) manually segmented the
pixels of chorioretinal lesions on the AF image based
on the appearance of the AF image supported by the
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Figure 1. Rows A and B illustrate data from two of the 18 selected eyes. The first column shows the IR image, acquired with the macular
OCT scan. The second column shows the aligned AF image. The third column shows a combination of the IR and AF, where the magenta
represents intensities in the AF higher than in the IR and vice versa in green. The fourth column shows themanual segmentation as a binary
map of “0” (non-lesion, in black) and “1” (lesion, inwhite). The red circles in the third and fourth columns show the central 22.5°, the area used
for training and testing the automatic classification.

IR and OCT. The segmentation was then reviewed
by a second clinical expert (XL). The task was
carried out using the ImageSegmenter app available
in Matlab R2019a (Mathworks, Natick, MA, USA)
with the Image Processing Toolbox. The segmentation
produced eighteen 768 × 768 binary maps, classifying
each pixel of the IR image as “0” (nonlesion) or “1”
(lesion) (Fig. 1). Areas of peripapillary atrophy were
also classified as lesions. This choice was necessary to
avoid ambiguities in the segmentation of lesions that
merged with these areas (see Fig. 1B).

AF-IR Image Alignment

Matlab image registration function imregconfig was
used to automatically align normalized AF images to
the relative, normalized IR using a 100-step optimiza-
tion process. The function was set to align mono-
modal images, as the information captured by these
two modalities was largely non-complementary, for the
exception of areas with lesions. The clinical grader
(GM) visually inspected the results of the alignment
and performed manual matching where the automated
algorithm failed. Manual alignment was obtained

through the localization of four landmarks on the pair
of images. The landmarks were used to calculate the
parameters of the local weightedmean transformation,
which was then used to align the AF. Control points
and transformation parameters were obtained using
the Image Processing Toolbox functions cpselect and
fitgeotrans, respectively.

Automatic Segmentation Methods

Amachine learning classifier (random forest with 25
trees) was trained to categorize pixels of the images into
two classes, “0” (non-lesion) or “1” (lesion), using the
manual segmentation as the reference.20

Each observation was identified by a pixel location
of the IR and aligned AF and was characterized
by eight attributes. The latter were obtained with an
adaptive histogram equalization of both IR and AF
images operated on 4 differently sized, neighboring
regions: 15 × 15, 31 × 31, 151 × 151 and 301 ×
301 pixels. This process, equivalent to a pre-processing
stage of local-intensity normalization, generated eight
equalized images, four from IR and four from AF.
Therefore, at each pixel location, these images provided
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an attribute that incorporated information of neigh-
boring intensities.

Only pixels within the central 22.5° (3/4 of the field
of view of the lens) were used in the validation of the
model (red circles in Fig. 1). This restriction was intro-
duced to exclude peripheral areas, often noisy due to
scarce illumination, and to guarantee that the included
macular area had been captured by both IR and AF
despite acquisition misalignments.

Finally, a proportion (10%) of randomly selected
observations from the “lesion” class was selected and
matched by the same number of randomly selected
“non-lesions.” This produced balanced training-
datasets while allowing faster training.

The same random forest used for the classification
of AF-IR was trained using the four attributes from
the AF only, obtaining a new classification model.

Validation

The random forest classifiers were evaluated using a
leave-one-out cross-validation: the model was trained
on observations from 17 of the 18 eyes, and was
validated on the eye ‘left-out’, repeating the process for
each eye.21 Results were analyzed to report the percent-
age of correct classifications, sensitivity and specificity
of the model, as well as Dice’s coefficient of similarity
with the segmentation by the grader.22

Case Study

A time series of IR and associated AF images
acquired over 42months from 35 consecutive visits was
identified in the database and used for a case study. The
34 IR from follow-up visits were aligned to the IR of
the first visit. Then, all AF images were aligned to their
associated IR. Resulting pairs of IR-AF were classi-
fied by the trained random forest classifier. The gener-
ated classification-maps were processed to fill the holes
in the segmentation; to remove spurious classifications
of individual pixels as lesions with a morphological
opening and closing; and to force pixels classified as
lesion at a time point to retain the classification for the
rest of the time series. Using the pixel-mm2 conversion
provided by the manufacturer (1 pixel= 0.01118mm2),
the total segmented area at each visit was converted
to millimeters squared. The first derivative of the total
area was calculated to estimate the expansion speed in
mm2/days.

Results

The 16 patients selected for the study were all female
with a mean (range) age of 41 (31, 62) years. All but
one patient had both eyes affected by the condition and
twelve patients were on systemic immunosuppression.

Automatic alignment was successful in nine out of
the 18 AF-IR pairs, with the others requiring manual
intervention. Failed alignments were associated with
the presence of large lesions or large areas with low
illumination in at least one of the two photographs (IR
or AF).

The AF-IR model correctly classified 95.9% of the
pixels in the dataset with sensitivity and specificity of
0.83 and 0.98 respectively. Dice’s coefficient was 0.85,
showing a good similarity between the automatic and
manual segmentations. The AF model correctly classi-
fied 94.6% of the pixels in the dataset with sensi-
tivity and specificity of 0.79 and 0.97, respectively;
Dice’s coefficient was 0.80. For reference, we trained
the same model on IR only. The IR model correctly
classified 90.0% of the pixels; sensitivity and speci-
ficity were 0.40 and 0.98 respectively; Dice’s coefficient
was 0.53 showing poorer correlation with the reference
segmentation than the othermodels. Figure 2 shows the
results of the automatic segmentation for a randomly
selected subset of the dataset. Segmentation results of
the whole dataset are available in the Supplementary
Figure.

Discussion

This work introduces a novel method for the
segmentation of atrophic chorioretinal lesion. We
demonstrate how this method could be feasibly used to
provide clinicians with real-time objective metrics such
as lesion area and growth rate.

PIC was used as a case-example of the wider
group of chorioretinal inflammatory diseases (poste-
rior uveitis) because there is a clear “use case”
here in that the presence or absence of lesions, and
their change over time, directly impacts on treatment
decisions.

Our approach to chorioretinal lesion segmentation
used a combination of two standard scanning laser
ophthalmoscopy (SLO) imaging techniques—IR and
AF—both of which can be routinely acquired from the
Heidelberg Spectralis system. Our automated segmen-
tation technique shows strong agreement with manual
segmentation by a clinical grader while using only 18
images for the training of the algorithm.
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Figure 2. A random subset of five of the 18 selected eyes. The first column shows a combination of the IR and AF. The second column
shows themanual segmentation as a binarymap of “0”(non-lesion, in black) and “1”(lesion, inwhite). The third column shows the automatic
segmentation based on IR andAF for the central 22.5°, delimited by a red circle. The fourth column shows the results of the same classification
model trained on AF only.

The model based on the IR only performed poorly
compared to the other two (AF only and IR-AF) and
this result is consistent with previous literature.8,9 This
report demonstrates new knowledge because merging
the information from multimodal images proved to be
effective, outperforming the classification model based
on AF only. Percentage of correctly classified pixels
and specificity do not highlight major differences in
performance due to the much higher number of pixels
from non-lesions. However, higher sensitivity and
higher Dice’s coefficient achieved by the IR-AF based
model reflects a significant improvement in the segmen-
tation, also clearly visible inspecting the segmentation
results (Fig. 2 and Supplementary Figure). In fact, a
challenge in lesion segmentation with traditional single
modality techniques, is delineating between a patholog-
ical feature and a normal structure such as fovea, optic
disc, and retinal vessels that could be wrongly classified
as lesions. This problem requires particular attention
and can be time-consuming when the task is performed
semiautomatically with the aid of the Heidelberg
Engineering Region Finder software.23 In this task,
our proposed method outperforms the same algorithm
trained on AF only, in part because the combina-
tion of IR and AF reinforces features of normal
structures and differentiation of abnormalities: retinal
features like the fovea and vessels (all darker in AF
images and possibly confused with atrophic lesions)
can therefore be ignored, and pathological features can
be highlighted. In particular, better identification of
lesions in the foveal region is of extreme importance
due to their sight threatening implications. The better
performance of themodel based onmultimodal images
can be explained in part by its ability to exploit the
most informative features provided by each acquisition
modality, such as the generally sharper features of IR
images and the intensities of lesions represented in AF
images.

Although the proposed method still requires some
modest manual intervention for the alignment, this
allows for the tracking of areas that become atrophic
during follow-ups. Thanks to the alignment, newly
developed atrophic areas can be directly identified and
highlighted for each visit (Fig. 3). This tracking not
only increases the level of detail in the monitoring
of the condition but can also represent an impor-

tant quantification tool for outcomes for prospective
research studies.

We have previously reported the use of commer-
cial OCT segmentation software (HEYEX; Heidelberg
Engineering) to identify new inflammatory PIC lesions
on the OCT volume scans, using the heat-map function
including the ability to generate heat-maps of change
from a baseline scan.7 We see these techniques as
complementary, since they provide information about
different aspects of the disease process at different
stages in the pathway. The heat-map technique (and
indeed direct careful perusal of the volume scans) will
identify inflammatory PIC lesions (and PIC-associated
CNV) from a very early stage. At these early stages, the
lesions may not be detected by our IR-AF technique
if they have not caused sufficient disruption to the
RPE to be seen as a hypoautofluorescent signal. The
IR-AF technique detects these lesions slightly later
in their development i.e. once they have caused loss
of the RPE. Yet the technique segments the lesions
themselves rather than the retinal layers and this repre-
sents a significant advantage. In contrast, the heat-map
technique is primarily qualitative as it does not provide
a direct measurement of individual lesions, total lesion
area or change in lesion burden.

Although, to the best of our knowledge, ours is the
first work to combine IR and AF images for semantic
segmentation of PIC, some have used AF images for
semantic segmentation of Geographic Atrophy (GA).
These contributions can be roughly divided into three
categories. First, region-based approaches, level-set
methods and other computer vision techniques;10,15,16
second, heuristic methods and handcrafted features
that are then input to machine learning classifiers;14,17
third, supervised Deep Learning methods, which do
not require handcrafted features, but automatically
learn useful features directly from the input data.18,19
Works in the first category typically achieved lower
accuracy than methods using supervised machine
learning, because they tend to generalize less well to
unseen cases. However, these do not rely on manually
segmented labels for model training and can there-
fore be applied successfully to situations where a large
labeled dataset is difficult or impossible to obtain, as
for example in the case of rare pathologies. Acquir-
ing training labels is typically an expensive step in
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Figure 3. Case study of chorioretinal lesions development in the left eye of a youngwomanwith PIC. The red line shows the total area of PIC
atrophic lesions measured from the segmentation of the time series. The blue line shows the first derivative of the total area, or expansion
rate. The three images on top of the plots show the segmentation of three acquisitions taken just before the peak in the expansion rate.
Black represents nonlesions;white represents lesions already segmented in the previous visit; red highlights newly segmented lesions.

any machine-learning pipeline, and data scarcity led
models in the third category to poor generalization.
Models in the second category can represent a compro-
mise between those in the other two, attempting to
strike a balance between data efficiency and generaliza-
tion. These models are well suited in clinical contexts
where labelled data is scarce. Our results suggest that
the combination of information from different image
modalities can generate a new class of handcrafted
features, which could help improve the performance of
this category of models.

Our methods and the study used to evaluate them
have some limitations.

Although the proposed method was able to train on
a small dataset, calculated performance metrics can be
affected by the small number of images available.

Our estimate for measured sensitivity (0.83)
indicates a limitation of our automated segmenta-
tion technique. This suggests that our technique was
unable to identify all pixels that were classified as
abnormal by the manual approach. This may be due

to the variable reflectivity of larger lesions in the IR,
which could have confused the classification model,
resulting in the underestimation of some atrophic
areas.

One limitation of blue AF images is the masking
from the macular pigment near the fovea (see for
example the misclassification of the foveal lesions
in Fig. 2). The recent introduction of green AF (514
nm wavelength) could overcome this issue and provide
better segmentation results24,25 using essentially the
same methodology but simply pairing the IR with
green (rather than blue) AF.

It should be recognized that the areas provided with
our technique are estimates based on themanufacturer-
provided conversion factor of 1 pixel = 0.01118 mm2.
This is an average conversion factor, because the actual
area that pixels equate to will vary slightly between
patients. Although this means that there is some uncer-
tainty in these estimates of area if comparing between
patients, these conversion factors will remain constant
within the same patient, and therefore the primary
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objective of monitoring disease within the same patient
will likely be unaffected.

In terms of implementation, the main limitation of
the proposed method is the need for aligned images.
The automatic alignment could only complete the task
successfully on nine of the 18 eyes evaluated, and this
is therefore an area that requires further development.
Unless a more robust algorithm is available, manual
alignment may be required in a significant number
of cases. It should be recognized however that the
cases selected in this series are likely to have been
particularly challenging given the advanced stage of
the condition for many of the selected eyes, and that
alignment performance across an unselected popula-
tion would be expected to be better than this. Addition-
ally, although automatic alignment is preferred, manual
alignment is not onerous because it is facilitated with
the selection of only four control points per image
(eight points per alignment) making the process fast
enough even for a clinical setting. We suspect that
most clinicians would find this a reasonable invest-
ment of time in order to gain better objective quantita-
tive metrics of chorioretinal lesions that the technique
provides.

Our case study illustrates the clinical application
of the technique as applied to a patient in their 30s
with PIC over a 3.5-year time period, which we have
visualized in both static and dynamic graphical forms
(Fig. 3 and Supplementary Video). This example shows
how the quantification of the chorioretinal lesions
enabled by our technique could bring greater precision
to monitoring progression including a sharp increase
in the expansion rate, which might have been missed
by simple visual inspection. In PIC and other forms of
sight-threatening posterior uveitis, treatment decisions
depend on the evaluation of these chorioretinal inflam-
matory lesions.

In addition to its value to routine clinical practice,
our approachmay provide a sensitive, reliable, objective
measure for clinical trials which include patients with
PIC or other posterior uveitis syndromes. We think
this is particularly noteworthy. Currently, most such
trials “lump together” all forms of “posterior segment
involving uveitis” (PSIU). One way of dealing with
the wide variation in which these forms of uveitis may
demonstrate disease activity is to include “newor active
chorioretinal lesion” as part of a composite endpoint
of “active disease” or “treatment failure.” This there-
fore reduces a complex disease process (chorioretinitis)
to a binary variable based on a subjective evaluation.
The technique we have described here would provide
objectivity and enable a more nuanced approach to
evaluating impact of any intervention in these condi-
tions.

No test, whether diagnostic or monitoring, should
be considered in isolation, but rather within the
context of the care pathway it supports. Future work
should include the evaluation of this method within its
testing pathway, with consideration of the actual conse-
quences of the provision of this test data to clinicians,
the treatment decisions made and the short and long-
term consequences of those decisions.

Automated segmentation of chorioretinal lesions
using multimodal images shows closer alignment to
traditional manual segmentation than segmentation
based on AF only, as indicated by a high Dice’s coeffi-
cient. The proposed technique provides an automatic
and objective segmentation of chorioretinal lesions
that could offer much-needed quantitative measure-
ments in clinical practice as demonstrated by its perfor-
mance in lesion detection, automated area estima-
tion and progression tracking in the sight-threatening
posterior uveitis syndrome, PIC.
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