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Abstract 

Alpha (8-12 Hz) frequency band oscillations are among the most informative features in 

electroencephalographic (EEG) assessment of patients with disorders of consciousness (DoC). 

Because interareal alpha synchrony is thought to facilitate long-range communication in healthy 

brains, coherence measures of resting-state alpha oscillations may provide insights into a 

patient’s capacity for higher-order cognition beyond channel-wise estimates of alpha power. In 

multi-channel EEG, global coherence methods may be used to augment standard spectral 

analysis methods by both estimating the strength and identifying the structure of coherent 

oscillatory networks. We performed global coherence analysis in 95 separate clinical EEG 

recordings (28 healthy controls and 33 patients with acute or chronic DoC, 25 of whom returned 

for follow-up) collected between two academic medical centers. We found that posterior alpha 

coherence is associated with recovery of higher-level cognition. We developed a measure of 

network organization, based on the distance between eigenvectors of the alpha cross-spectral 

matrix, that detects recovery of posterior alpha networks. In patients who have emerged from a 

minimally conscious state, we showed that coherence-based alpha networks are reconfigured 

prior to restoration of alpha power to resemble those seen in healthy controls. This alpha network 

measure performs well in classifying recovery from DoC (AUC = 0.78) compared to common 

representations of functional connectivity using the weighted phase lag index (AUC = 0.50 - 

0.57). Lastly, we observed that activity within these alpha networks is suppressed during positive 

responses to task-based EEG command-following paradigms, supporting the potential utility of 

this biomarker to detect covert cognition. Our findings suggest that restored alpha networks may 

represent a sensitive early signature of cognitive recovery in patients with DoC. Therefore, 

network detection methods may augment the utility of EEG assessments for DoC. 
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Introduction 

Disorders of consciousness (DoC) result from disruptions to spatiotemporal oscillatory 

networks that underlie both arousal and impairment of processes supporting awareness and 

cognitive function. Bedside behavioral examination does not reliably provide an accurate 

diagnosis for some patient’s level of consciousness1. As a result, there is growing interest in the 

development of systems-specific indicators of the complex functions supporting arousal and 

awareness. Electroencephalographic (EEG) measures of the alpha frequency band (8-12 Hz) may 

be particularly well-suited to assess functions underlying awareness in patients with DoC 

because they are derived from activity implicated in conscious perception and cognition2. Unlike 

slow wave and delta (1-4 Hz) activity, which are considered indices of impaired arousal3, alpha is 

known to be generated by recurrent activity within thalamocortical circuits forming cortico-

cortical networks within sensory systems4,5. Alpha activity reflects attentional selection and 

processing of sensory information6, and the phase cycles of alpha rhythms have been found to 

shape perceptual contents for downstream processing7,8. Posterior alpha connectivity has been 

linked to a variety of sensory and cognitive tasks including attentive and perceptual processes 

thought to be involved in the maintenance and function of conscious brain states8,9, as well as 

other aspects of cognition such as working memory and cognitive control10–12. 

Previous work has shown that alpha-band measures are among the most important 

features in the classification of DoC, showing both prognostic utility13,14 and high performance in 

classification models compared to non-spectral measures such as evoked potentials, connectivity, 

and information theory15. While the functional importance of alpha-band activity is well-

recognized, a main barrier to harnessing it for diagnosis, prognosis, and interpretation is the need 

to reduce its spatiotemporal complexity into a low-dimensional biomarker associated specifically 

with posterior alpha function16. Many correlational studies of the alpha rhythm in DoC have 

measured channel-based spectral power and some have measured coherence17–19, which typically 

involves dissecting network interactions into pairwise relationships between recording channels. 

Measures that quantify modes of neural activity in posterior alpha networks remain 

underexplored for DoC relative to sleep20 and anesthesia21. Here, we apply a dimensionality 

reduction technique called global coherence analysis to estimate coherence-based whole 

networks in multichannel EEG recordings22–24. Used in the clinical setting, posterior alpha 

measures may provide candidate biomarkers tailored to the assessment of brain systems 

supporting conscious awareness16. 
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In this dual-center, longitudinal study, we investigated the characteristics of EEG-derived 

alpha networks in patients with DoC at one or more time points after hospital admission. We 

explored two patient populations; one acute cohort in which patients with DoC were enrolled 

while in the intensive care unit (i.e., recordings obtained within first 2.5 weeks of admission) and 

subsequently followed during the chronic phase (5+ months post-injury), and a second cohort in 

which all recordings were obtained during the chronic stage. EEG recordings were obtained 

during resting-state periods and task-based paradigms. Both cohorts were recorded using 

clinical-grade 10-20 EEG systems. The main objective of our study was to demonstrate the 

utility of global coherence analyses in addition to standard EEG-based spectral analyses methods 

for determination of potential recovery from DoC. A secondary objective was to study the 

network characteristics of alpha oscillations observed during the course of cognitive recovery. 

Using multitaper spectral analysis, we investigated the frequency-domain and topographical 

profiles of EEG activity across patients in our study. Then, we applied global coherence analysis 

to measure the strength and organization of alpha networks. From global coherence outputs, we 

reconstructed spatial maps of regions contributing to the strongest coherence-based networks. 

Next, we measured the similarity between alpha network configurations observed in patients 

throughout the course of recovery. We compared the diagnostic utility of network measures 

derived from global coherence with other types of network metrics, including those based on the 

weighted phase lag index (wPLI). Lastly, we provide proof-of-principle evidence that an alpha 

network-based signature of EEG command-following may be used to detect covert cognition in 

DoC patients. 

Materials and methods 

We analyzed EEG recordings obtained in two previous studies from 33 patients and 28 

healthy controls at two academic medical centers (site A: 19 patients, 16 healthy controls; site B: 

14 patients, 12 healthy controls). The patient recruitment procedures, inclusion/exclusion criteria,  

EEG data acquisition procedures and study paradigms utilized in the two studies have been 

previously described25,26, and key methodological details are reiterated here. 

Subject recruitment and assessment 

We enrolled 28 healthy controls without neurological, psychiatric, or medical disorders 

and 33 patients with DoC at two study sites (designated as sites A and B). The median patient 
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age at time of injury was 27 (IQR = [23.5, 37.5]), and 22 patients were males. At site A, 19 

patients were enrolled after being admitted to the intensive care unit (ICU) for acute severe 

traumatic brain injury (TBI). Of these, 15 patients were enrolled prospectively in the acute phase, 

12 of whom received follow-ups during the chronic recovery phase ranging from 5 to 39 months 

post-injury. Four additional patients were enrolled at the follow-up stage and their acute clinical 

EEG and behavioral assessment data were obtained retrospectively. Criteria for inclusion at this 

site were: 1) age between 18 and 65 years; 2) head trauma with Glasgow Coma Scale score of 3-

8; and 3) no eye opening for at least 24 hours. Criteria for exclusion were: 1) life expectancy less 

than 6 months as estimated by the treating physician; 2) prior neurodegenerative disease or 

severe brain injury; 3) body metal precluding MRI; and 4) lack of English fluency pre-injury.  

At site B, 14 patients were admitted during the chronic recovery phase, 13 of whom had 

one or more follow-up study visits from 0.5 to 4.3 years (median: 2.1 years, IQR = [1.1, 3.1]) 

following the first visit. Including first study visits, EEG sessions at site B were conducted a 

median of 4.5 years (IQR = [2.1, 6.9]) after day of injury. Here, criteria for inclusion were: 1) 

age between 18 and 75 years; 2) the patient’s legal proxy’s fluency in English; 3) diagnosed with 

a severe, non-progressive brain injury; 4) medically stable; and 5) English fluency pre-injury. 

Criteria for exclusion were: 1) a terminal illness diagnoses; 2) a diagnosis of refractory 

generalized epilepsy; 3) dependence on ventilator or dialysis; 4) evidence of Alzheimer’s disease 

or dementia pre-injury; 5) premorbid neuropsychiatric history; 6) significant acute or chronic 

illness; 7) participation in any investigational trial < 30 days prior to enrollment; and 8) 

requirement of physical restraints. All but three of patients in this cohort experienced a TBI and 

the remaining experienced either a hypoxic or hypoxic-ischemic brain injury.  

At both study sites, behavioral assessments were performed with the Coma Recovery 

Scale-Revised (CRS-R)27 by one of the investigators (BLE, NDS). At site A, CRS-R assessments 

were performed immediately prior to each EEG recording session; at site B, they were made 

within 24 hours of the EEG recording session during the same visit. Patients who emerged from 

minimally conscious state (MCS) were assessed with the Confusion Assessment Protocol 

(CAP)28 to determine their confusion status (CS for confusional state or R-CS for recovered from 

confusional state). At site B, confusion status in patients who emerged from MCS was assessed 

with multiple instruments, including the CAP, Galveston Orientation and Amnesia Test 

(GOAT)29, and Mississippi Aphasia Screening Test (MAST)30. Using all test results, we labelled 

each patient’s status on the EEG recording day with one of seven diagnostic classes31: coma, 

unresponsive wakefulness syndrome/vegetative state (VS), MCS without language function 
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(MCS-), MCS with language function (MCS+), CS, and R-CS. Diagnoses of coma, VS, MCS-, 

and MCS+ were derived from the CRS-R assessment, while diagnoses of CS and R-CS were 

derived from the CAP scores in patients who were deemed having emerged from MCS on the 

CRS-R. In some patients where full CAP results were not available (affecting n = 5 recordings), 

GOAT and MAST tests were used to differentiate CS from R-CS. Patients who did not receive 

sufficient additional GOAT or MAST testing to determine R-CS were classified as CS (See 

Table 1). 

All studies were approved by the Institutional Review Boards at the respective study 

sites. Written informed consent was obtained from healthy participants and surrogate decision-

makers. Patients who recovered consciousness at follow-up provided informed consent to 

continue participating in the study. 

Study design 

The two study sites used EEG protocols that incorporated a combination of resting-state 

and task-based paradigms25,26,32, but these protocols differed in detail. At site A, resting-state EEG 

epochs were selected from research recordings in prospectively enrolled patients and healthy 

controls. In a subset of patients, additional resting-state epochs were retrospectively obtained 

from clinical recordings. For the prospectively enrolled subjects, the experimental protocol 

consisted of five, five-minute resting-state epochs and four stimulus-based paradigms (including 

a CRS-R arousal protocol) administered in alternating fashion, with completion of the session 

contingent on clinical care demands of the ICU setting. All subjects were instructed to keep their 

eyes closed. During acute-stage EEGs, sedative, anxiolytic, and/or analgesic medications were 

administered to a subset of patients prior to or during EEG sessions at the discretion of the 

treating clinicians to ensure patient safety or comfort (See Supplementary Table 1.) At site B, 

resting-state and task-based EEG were acquired during study visits lasting several days in length. 

Resting-state data were extracted as either minutes-long epochs or as equal-length non-

overlapping segments of at least three seconds uncontaminated by noise. Epoch and segment 

selections were made by a trained clinical electrophysiologist (MMC). Recordings at site A were 

not screened to exclude sleep, but when multiple clean resting-state blocks existed from a single 

session, the latest block of the session was used to maximize the likelihood of arousal from the 

CRS-R arousal protocol. At site B, the clinical neurophysiologist determined a patient’s level of 

alertness prior to initiating any task-based paradigms, and data selections were made in the 

absence of EEG sleep features. Together, all resting-state data were grouped into distinct 
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recording sessions, totaling 67 sessions across 33 patients across both sites, 25 of whom received 

follow-up recordings (See Table 1). EEG recordings of site A healthy controls were made in the 

resting eyes-closed state, whereas site B controls were instructed to keep eyes open during 

resting and task-based paradigms. 

The structure of the task- and stimulus-based paradigms differed between the two study 

sites. At site A, two stimulus-based paradigms comprising music and language were used.  One 

task-based paradigm was also used, with an instruction to imagine opening/closing the right 

hand.  These stimulus- and task-based paradigms consisted of six alternating 24-second rest and 

stimulus/task blocks. Within each block, subjects were instructed to perform the motor imagery 

task in response to four auditory stimuli delivered in succession, interspersed with 3-second 

periods to respond. At site B, patients were administered a battery of task-based paradigms, 

including instruction to imagine swimming, imagine playing tennis, and imagine opening/closing 

the left and/or right hand33. These paradigms were administered in sixteen alternating ‘on’ and 

‘off’ commands, each of which preceded a silent response period of at least 10 seconds in 

duration. Stimuli and commands were delivered and synced to the EEG recording at both study 

sites. 

Data acquisition and pre-processing 

EEG recordings at both study sites were digitized and amplified using Natus XLTEK 

EEG acquisition systems (San Carlos, CA), but different initial electrode configurations were 

used. At site A, all data were recorded with 19 electrodes arranged in the standard International 

10-20 System montage (double-banana) with a 200, 250, or 256 Hz sampling frequency. At site 

B, the EEG was recorded using the conventional 19-channel montage as site A but augmented 

with additional leads (37 total). The EEG was recorded at sampling frequencies of 200, 250, or 

256 Hz. To enable cross-site comparisons, the standard 19 channels that both datasets shared 

were isolated, reordered into a common sequence, and processed apart from the full channel set 

in a separate dataset. To harness data with higher spatial resolution for task-based analyses, we 

maintained a separate version of the original 37-channel dataset to run in the command-

following analysis pipeline. At both study sites, the FCz electrode was used as the initial 

common reference. After a common channel set was selected, individual channels were band-

passed filtered between 1 and 50 Hz using a third-order Butterworth, zero-phase shift filter. To 

improve measurement from local sources and remove contaminating activity at the reference 

electrode, all channels used in coherence analysis were re-referenced using a Laplacian montage 
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constrained to provide each channel with between three and five nearest neighbors before being 

detrended in each epoch or segment. Data used in wPLI calculations were re-referenced using a 

common average reference, similar to other studies34. Prior to spectral and cross-spectral 

analyses, epochs were sectioned into consecutive windows of 3 seconds and selected segments 

were truncated to 3 seconds. (See Supplementary Figure 1 for schematic diagram of pre-

processing steps.) All data were inspected visually in the frequency domain using channel-wise 

median spectrograms, and windows containing broadband electromyogenic or interference 

artifacts were rejected manually by a single investigator blinded to clinical and behavioral data 

(DWZ). In total, 6.4% of data were rejected. The median total data length used from individual 

recording sessions was 285 seconds (IQR = [123, 303]). Data were pre-processed and cleaned 

using custom code and the Chronux toolbox35 in MATLAB (Mathworks, Natick, MA). 

Data analysis and statistics 

Spectral, coherence, and cross-spectral analyses 

Multitaper spectrograms and coherence matrices were calculated using the Chronux 

toolbox35,36 for 3-second non-overlapping windows. We used five tapers, 2 Hz frequency 

resolution, and 1/3 Hz grid spacing. 

To identify coherence-based networks within the 19-channel multivariate time series, we 

estimated the cross-spectral matrix via the multitaper method and then applied principal 

components analysis, a procedure known as global coherence analysis22,23. We also used extended 

linear algebraic procedures described in 24 for computing frequency-domain bootstraps of the 

cross-spectral matrix and reconstruct coherent power spectral densities from principal 

components of the cross-spectra, portions of which are summarized here. We used the same 

multitaper parameters detailed above to compute Fourier coefficients 𝑋!
(#) of channel 𝑖 ∈ 𝑁 at 

frequency 𝑓 for each non-overlapping time segment and 𝑘 Slepian tapers. From the coefficients, 

we computed the 𝑁 x 𝑁 cross-spectral matrix 𝐶!%
(#)(𝑓) between the 𝑖-th and 𝑗-th channels for 

each respective taper and time segment: 

 𝐂!%
(#)(𝑓) = 	𝑋!

(#)(𝑓)	𝑋%
(#)(𝑓)& (1) 

where 	𝑋%
(#)(𝑓)& is the complex conjugate transpose of the vector of Fourier estimates 

𝑋%
(#)(𝑓). 
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To make statistical inferences regarding network modes identified by global coherence, 

we applied a nonparametric resampling approach to the cross-spectral matrix.  As detailed in37 

and summarized here, this procedure generated  surrogate cross-spectra using a non-overlapping 

block bootstrap in the frequency domain38. We generate 𝐵 = 200 bootstrap replicates 𝐂1!%∗ (𝑓) at 

each given frequency 𝑓 by independently sampling from 𝐂!%
(#,))(𝑓) across 𝐾 tapers and 𝐿 time 

segments, then taking the mean across tapers and median across time segments for the real and 

imaginary components separately39. We computed eigendecompositions of surrogate cross-

spectral matrices per frequency, per session. 

 𝐂1!%∗ (𝑓) = 𝐔∗(𝑓)	𝚺∗(𝑓)	𝐕∗(𝑓)& =	7𝜎*∗(𝑓)	𝐮!∗(𝑓)	𝐯!∗(𝑓)&
+

*,-

 (2) 

These bootstrapped principal eigenvalues and eigenvectors were used to obtain empirical 

distributions of global coherence (defined in 22 as 𝜎-/∑ 𝜎*+ , the fraction of power explained by 

the principal eigenvalue) and the coherent power spectral density (defined in 24 as the channel-

wise power density 𝐶𝑜ℎ𝑆@ !
∗(𝑓) from the diagonal elements of 𝐂!%.∗), as well as the other 

downstream quantities defined below. 

Coherent subspace analysis 

Because eigenvectors of the cross-spectral matrix encode channel-specific phase 

relationships, coherent activity of coordinated alpha generators can be thought to lie within a 

subspace defined by one or more principal eigenvectors40. By using identical channel sets in our 

clinical recordings, we sought to compare coherent subspaces using the principal angle 

 Θ(𝐔* , 𝐔/) = min
0,1

arccos KL𝐮𝒂
(0), 𝐮/

(1)MK (3) 

where 𝐮𝒂
(0) and 𝐮𝒃

(1) are the unitary 𝑝-th and 𝑞-th dimensional vectors within subspaces 

𝐔* and 𝐔/, respectively. Because vector dimensions are interchangeable, the distance measure 

does not take into account spatial organization of the channels; however, the relative positions of 

the recording sites influence the spatial specificity of the orthogonal eigenvectors and, therefore, 

distances between them. In this study we define principal subspaces (or “coherent subspaces”) 

using the single eigenvector representing the largest principal component. For each recording, we 

bootstrapped 200 subspace replicates 𝐮-∗  per EEG recording. Using these replicates, the bootstrap 

median angle between principal subspaces of  separate recordings were computed as measures of 
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distance between recordings (i.e. in separate subjects or sessions). Likewise, empirical median 

between subspace replicates of the same recording were computed to estimate variability of 

subspaces within the cross-spectral matrix. 

Additional distance measures and classification 

To assess and compare the performance of other network measures as classifiers of 

disorders of consciousness, we computed three additional network representations, including two 

based on the wPLI. The first was a summary of channel-wise spectral power in vector form. The 

second and third were derived from pairwise wPLI defined by Vinck and colleagues41, which we 

computed from the bootstrapped cross-spectral estimates at the 10 Hz frequency that we used in 

global coherence analysis. To summarize wPLI networks in vector form, we computed the mean 

channel-wise wPLI (similar to Duclos and colleagues34) as well as the principal eigenvector of 

the wPLI pairwise matrix. As with coherent subspaces, distances between principal wPLI 

eigenvectors can be defined as the subspace angle or principal angle. For channel-wise power 

and channel-wise mean wPLI, we use cosine similarity for distance measurements. For all four 

distance measures, we assessed the effect sizes between within-group distances among controls 

on one hand and between-group distances from controls and patients of each DoC class on the 

other using Cohen’s d. 

These four distance measures were used as scores for two types of classification: 1) 

patients with evidence of substantial cognitive recovery, defined as having CRS-R total score 

above or equal to 22 out of 23, and 2) patients who demonstrated R-CS. Receiver operating 

characteristic (ROC) curves and their AUC values were computed using each of the four distance 

measures in each of the two classification types. 

Group-level analysis 

To estimate group-level empirical distributions of quantities generated during spectral 

and cross-spectral analysis, we used a hierarchical bootstrap approach. The first level bootstrap-

resampled from patients. The second level bootstrap-resampled from time windows (in the case 

of spectral densities) or across replicates (in the case of cross-spectra) 42,43. 

Network-weighted spectral analysis 

To represent the time-frequency activity of channels within a coherent subspace, we 

computed channel weights 𝑤Q!∗(𝑓) from estimates of the coherent power spectral density 𝑐̂!∗(𝑓). 
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We used these weights to define the network-weighted spectrum 𝑛𝑤𝑆@())(𝑓, 𝑔), a channel-wise 

weighted average of multitaper spectra as a function of frequencies 𝑔.To summarize spectral 

activity weighted by channels contributing to a coherent basis, we computed channel weights 

𝑤Q!∗(𝑓) from estimates of the coherent power spectral density 𝑐̂!∗(𝑓). We use these weights to 

define the network-weighted spectrum 𝑛𝑤𝑆@(𝑓, 𝑔), a channel-wise weighted average of 

multitaper spectra across frequencies 𝑔24. 

 𝑤Q!∗(𝑓) = 	
𝑐̂!∗(𝑓)

∑ 𝑐̂*∗(𝑓)+
*

 (4) 

 𝑛𝑤𝑆@∗(𝑓, 𝑔) = 	
∑ 𝑤Q!∗(𝑓)	𝑆V!𝑆V!

())(𝑓)+
!,-

∑ 𝑆V!𝑆V!
())(𝑓)+

!,- (𝑓)
 

             

(5) 

where 𝑆V!(𝑓) is the power spectrum at frequency 𝑓. 

To estimate network-weighted alpha task suppression, empirical distributions of channel 

weights were computed at 𝑓 = 10 Hz across both task ‘on’ and task ‘off’ data segments. Then, 

network-weighted spectra 𝑛𝑤𝑆@∗(10, 𝑔) were estimated for each task ‘on’ and task ‘off’ window. 

Finally, bootstrap differences between task ‘on’ and task ‘off’ network-weighted spectral power 

were computed by subtracting activity between neighboring ‘on’ and ‘off’ periods, and then 

sampling across trials. 

Results 

Patient demographics and clinical characteristics 

Our dataset consisted of 95 separate recording sessions from 61 subjects (28 healthy 

controls and 33 patients). 20 patients received two recordings each (the median). 25 of 33 

patients returned for follow-ups between 5 months and 3 years after their first visit (median = 

1.1, IQR = [0.5, 2.3] years). The patient cohort included 19 acute individuals at site A and 14 

chronic individuals at site B. The median age across both sites was 24 (IQR: 12 years). 11 

patients were female (five and six at sites A and B, respectively). Patients A1, A3-15, and A19 at 

site A were prospectively enrolled in the acute setting as part of a previous study25, and the 

remaining four site A patients were enrolled at follow-up. All site B patients were enrolled in the 

chronic setting. Altogether, 25 patients were studied at follow-up, and the rest did not complete 

follow-up for logistical or medical reasons, or due to being deceased. Acute EEG recordings at 
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site A were taken median 10 days post-injury (IQR: 9.5 days), and the first chronic EEG 

recordings at site B were taken median 919 days post-injury (IQR: 1891.5 days). Follow-up EEG 

recordings at site A were taken median 215 days post-injury (IQR: 236.5 days), and those at site 

B were taken 1804.5 days post-injury (IQR: 1483.5 days). Supplementary Table 1 lists sedative, 

anxiolytic, and analgesic medications administered before and/or during acute EEG sessions at 

study site A. Three site A patients received continuous sedative infusions before or during EEG 

their recordings, and seven site A patients received intravenous analgesic or anxiolytic boluses. 

Of the 95 total EEG sessions, 5 occurred while patients were in coma, 6 while VS, 14 

while MCS- and MCS+ respectively, 18 while CS, and 10 while R-CS. At their first EEG, 

patients spanned the following diagnostic classes: coma (n = 5), VS (n = 2), MCS- (n = 8), 

MCS+ (n = 6), and CS (n = 12); at follow-up, the patients remaining in the study spanned the 

following diagnostic classes: VS (n = 3), MCS- (n = 4), MCS+ (n = 6), CS (n = 3), and R-CS (n 

= 10). (Table 1). CRS-R assessments spanned the entire range of possible outcomes with scores 

ranging from 1 to 23 (Fig. 3A). The upper end of this range included both CS and R-CS patients. 

(One patient (B20) received two follow-up testing sessions and was included in two of the 

follow-up diagnostic classes.) At site A, four patients (A2, A16, A17, A18) were in comatose 

state. This was assessed by the following criteria: lack of eye opening, tracking and fixation 

when eyelids were manually opened, purposeful movement, or response to verbal or noxious 

stimulation rather than CRS-R44. At site B, four subject visits did not have sufficient testing to 

ascertain emergence from CS using the CAP, GOAT, or MAST although CRS-R testing 

indicated emergence from MCS. Of those, one (B21) was nevertheless diagnosed as R-CS at 

follow-up due to full behavioral orientation to space and time. 

Detection of oscillatory networks in clinical EEG using global 

coherence analysis 

In contrast to standard spectral analysis, global coherence analysis uses a dimensionality 

reduction approach to isolate power belonging to a coherent basis within the multi-channel data 

(Fig. 1A). A single principal component of the alpha cross-spectral matrix may summarize more 

than half of the total power at a given frequency (Figs. 1D, F). Alpha spectral power canonically 

has a posterior topographical profile (Figs. 1C, 2A-C). By reconstructing the channel-wise 

estimates of coherent activity, global coherence analysis is able to produce a topographical 

profile of activity belonging to a network synchronized at a given frequency (Fig. 1H). 
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We found that global coherence measures yielded higher signal-to-noise characteristics, 

producing larger alpha peaks relative to background activity for the canonical frequencies of 

interest. At 10 Hz, the principal, or largest, eigenvalues are up to 10 dB greater in power than 

channel mean estimates of spectral power, while widening the contrast between peak and 

background power by up to 5 dB (Figs. 1B, E). We also found that the network reconstruction of 

coherent power, an output of global coherence analysis, yields sharper contrast in its topography 

than standard 10-Hz spectral power (Fig. 1C, H). Across our dataset, we saw that coherent power 

aids in visualization of frequency bands such as alpha compared to classic spectral power (Figs. 

3B, C), while global coherence lowers the background of potentially spurious coherence which 

often contaminates classic pairwise coherence measures (Figs. 3D, E). Comparing measures 

computed from recordings in healthy controls between the two experimental sites, we found no 

difference in the frequency-domain and topographical characteristics of alpha-band spectral, 

coherent power, or global coherence features (Supp. Fig. 2). 

In addition to network strength, global coherence analysis robustly captures network 

structure in the form of motifs that we term “coherent subspaces”. In contrast to standard 

pairwise coherence measures that summarize synchronous relationships between channel pairs, 

global coherence analysis captures network synchrony within the entire channel set within the 

eigenvectors of the cross-spectral matrix (Fig. 1A). These eigenvectors, which define the 

coherent subspace, are complex-valued objects in which each element describes the phase of a 

constituent channel in relation to the network as a whole (Fig. 1I). By resampling the multitaper 

cross-spectral data, we consistently detect similar subspaces within cross-spectra belonging to 

frequency bands such as theta, alpha, and beta that are characterized by oscillations with strong 

cortical synchrony (Fig. 1H). 

Spectral and coherent dynamics across disorders of 

consciousness 

We found that posterior alpha dynamics are a dominant feature of conscious brain 

activity in healthy controls and patients with R-CS. We observed that the alpha topography of 

healthy controls is a posteromedial phenomenon of the resting eyes-closed state (Fig. 2A). Alpha 

power in this posterior region is absent in DoC but present in R-CS (Figs. 2B, C and 4B). At the 

individual level, alpha spectral and coherent features were consistently present in healthy 

controls but generally absent in DoC (Fig. 3). Coherent power and global coherence measures 
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revealed larger group-level differences between DoC patients and controls compared to spectral 

power and pairwise coherence measures, respectively. (Fig. 4A, top). In contrast, robust 

differences in spectral, coherent power, or global coherence between control and R-CS groups 

could not be identified in the alpha frequency band (Fig. 4A, bottom). Although the CS group 

can be differentiated from R-CS patients by lower spectral power in the alpha range (Fig. 3 and 

Supp. Fig. 5), a posterior topography in coherent power exists in both groups (Fig. 4B and Supp. 

Fig. 3). We also found that increases in posterior coherent power can be seen in individuals with 

increased level of consciousness at follow-up (Supp. Fig. 6). Patients comprising the CS and R-

CS groups did not substantially differ in age (means of 33.9 and 28.8, standard deviations of 15.0 

and 12.0, respectively). 

Frequency-domain representations of these measures reveal clearer peak structure in the 

alpha band compared to theta and beta (Supp. Fig. 4). Spectral and coherent power estimates at 

theta and beta frequencies were not reliable measures of loss of consciousness in terms of 

statistically significant differences between DoC groups and both controls and R-CS (Supp. Fig. 

5). In contrast, alpha coherent power was significantly lower in DoC patients than that of either 

controls and R-CS subjects, while spectral power and global coherence measurements in this 

band were significantly different only between DoC and R-CS or controls, respectively (Supp. 

Fig. 5). In the delta frequency band, spectral and coherent power were higher in DoC patients 

than in controls could not reliably distinguish between levels of consciousness (Supp. Figs. 4 and 

5). Both spectral and coherent delta power have a fronto-medial topography but could not be 

associated with any specific levels of consciousness among patients (Supp. Fig. 3). 

Measuring alpha network similarity and classifying DoC 

recovery using coherent subspaces 

We investigated how alpha network configurations varied across our patient population 

using our concept of the coherent subspace. Coherent subspaces of 10-Hz cross-spectral matrices 

from EEGs of healthy controls exhibited low within-group distances, indicating highly consistent 

network structure (Fig. 5). When compared to patient groups, the subspaces of healthy controls 

shared the greatest similarity with those of R-CS as well as a subset of CS patients who scored a 

CRS-R total of at least 22 (Fig. 5C). Within this subset of CS patients, we found a dissociation 

between alpha power and alpha network similarity to controls, where low alpha spectral power 

(Fig. 3B) seemed to coincide with alpha coherent subspaces with higher similarity to those of 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 10, 2024. ; https://doi.org/10.1101/2024.10.08.24314953doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.08.24314953
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 
 
 

control subjects (Fig. 5C). 

To evaluate the ability of alpha-band coherent subspace similarity to classify DoC, we 

compared its performance against other representations of network topography. Functional 

connectivity studies in states of consciousness commonly use real-valued pairwise measures 

such as the phase lag index and its variants, like wPLI34,45,46. To reduce the dimensionality and 

assess the participation of a spatial node to the rest of the brain network, these approaches 

average wPLI estimates between one region and all others. Alternatively, a PCA-based approach 

may be used to represent a network as a dominant basis within the wPLI pairwise matrix. Lastly, 

channel-wise spectral estimates also yield a vector-based readout of network topography without 

using phase information. In total, we compared four types of network representations in distance-

based classifications of DoC: the coherent subspace, channel-wise spectral power, channel-wise 

mean wPLI, and the principal component of the pairwise wPLI matrix. 

First, we assessed the ability of these measures to separate the diagnostic classes. 

Specifically, we compared between-group distances between healthy controls and various DoC 

classes, with the within-group distances. We found that channel-wise spectral power and 

coherent subspaces, when used to measure distance between subjects from different groups, 

demonstrate greatest separation (Fig. 6A). These sizable effects were specific to DoCs and were 

diminished in R-CS to levels close to those of wPLI-based measures. To evaluate the potential 

utility of different network measures to predict degree of recovery, we then used each patient’s 

distance from healthy controls as scores in binary classifiers of either patients with high CRS-R 

score (greater than or equal to 22) or R-CS patients (Fig. 6B). We found that both coherent 

subspaces and channel-wise power perform well as scores to classify R-CS, but coherent 

subspaces are more accurate when used to classify patients scoring highly on the CRS-R, as 

measured by the AUC. Consistent with the observation that emergence of alpha network 

similarity to healthy controls typically occurs earlier in recovery than increases in posterior alpha 

power, coherent alpha subspaces may have greater sensitivity to high CRS-R patients compared 

to channel-wise power. By contrast, we found that both versions of wPLI-based network 

representation exhibit lower classification accuracy than alternatives, similar to other studies of 

wPLI-based classification accuracy34,46,47. 

We then compared the performance of alpha-band coherent subspaces in classifying 

patients exhibiting high levels of recovery against that of other canonical frequency bands such 

as theta and beta (Supp. Fig. 7). At these frequencies, the classification accuracies were 0.64 and 

0.60, respectively, below that of alpha coherence subspaces at 0.78 (Fig. 6B). The subject-wise 
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similarity matrix of theta subspaces reveals some similarity between healthy controls and R-CS, 

as well as clusters of similarity loosely distributed throughout the patient population. For beta, 

healthy controls and most R-CS patients were not similar in their subspace orientations, and the 

group-level similarity was weak compared to alpha (Supp. Fig. 7). 

Alpha network activity yields evidence of command-following 

Previous studies have shown that alpha oscillations are suppressed when conscious 

subjects silently follow commands26,48. Here, we extend the concept of alpha task suppression to 

task-relevant alpha networks by using channel weights identified by the coherent network 

reconstruction method. We used a command-following dataset obtained during the same visits 

from which the resting-state data at site B were collected. Thirteen of the 33 patients in this 

dataset were also reported in Curley et al26. 

We found that alpha networks can be modulated by task performance in healthy controls 

and recovered patients. Figure 7 depicts task-related network dynamics in two subjects, a healthy 

control and a chronic-setting patient who exhibited sufficient behavioral markers to be labelled 

R-CS. All patients previously identified in the Curley et al. study as “command-following 

positive” also exhibited task modulation of the alpha network (Supp. Table 2). However, we also 

found that three of four patients previously reported with negative responses (B22, B27, and 

B28) scored positively in the present study. These four patients were all in MCS+/- states, with 

CRS-R total scores of 5, 8, 10, and 12. Four of 16 patients exhibited positive responses in more 

than one tested paradigm. Among those patients were two VS patients, one CS patient, and one 

R-CS patient who exhibited positive responses in the majority of task blocks tested. These 

patients had a total CRS-R scores of 7, 7, 22, and 23 respectively. In 15 healthy controls, 13 

exhibited positive alpha network responses in at least two out of three task paradigms, with eight 

healthy controls being positive in all three. Importantly, the command-following results reported 

here required use of the original 37-channel set collected at the study site; the command-

following signature did not retain sensitivity when data were reduced to the 19-channel montage 

of the above resting-state analyses. 

Discussion 

In this multi-center study of EEG network dynamics in patients with DoC, we found that  

spatially coherent alpha activity is less prominent in DoC and restored in patients who recover 
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consciousness. Using techniques developed from global coherence analysis, we measured whole 

networks in the alpha band across the spectrum of DoC. In contrast to loss of arousal, which is 

thought to coincide with increases in slow-delta activity during traumatic coma49, loss of higher-

level cognitive function may be associated with attenuation of posterior alpha networks. Our 

findings show, in a subset of CS patients who score highly on the CRS-R, that coherent alpha 

patterns similar to those seen in healthy controls and R-CS patients begins to emerge in patients 

with DoC who recover higher-level cognitive function (i.e., CS and R-CS) before alpha power is 

recovered, suggesting that alpha synchrony may be an early signature of cognitive recovery. 

Finally, we found that the topographic regions that contribute to alpha global coherence exhibit 

task suppression, lending support to alpha network dynamics as a task-related phenomenon 

indicating cognition. Overall, our results demonstrate the diagnostic utility of global coherence 

analysis as sensitive, network-based descriptions of oscillatory dynamics compared to standard 

spectral and coherence measures. 

Global coherence analysis as a network neuroscience approach 

for the clinic 

Global coherence analysis was originally posed as a multichannel coherence estimation 

technique22. In this study, we apply it more broadly as a decomposition technique for oscillatory 

network identification and comparison24,50. By orthogonalizing the cross-spectrum, it is possible 

to interpret principal components as a set of network-level physiological generators contributing, 

in the absence of common voltage sources, to the dominant synchronous activity in the channel 

set. On the other hand, activity represented by smaller principal components may contain either 

networked sources explaining lesser variance or noise that comprise the remaining activity. By 

analyzing the largest component, we rely on the assumption that the posterior alpha component 

typically contributes the greatest amount of coherent alpha activity in healthy waking brains, 

consistent with the vast literature on alpha rhythms since the inception of EEG51. Physiological 

impairment in the sources underlying this component would lead to orientation changes in the 

basis vector, attenuation of the global coherence magnitude, or both. 

Although various functional connectivity methods have been used previously for 

classification of DoC52–55, there is not currently a consensus view favoring any network measure 

over others with respect to interpretational value or diagnostic accuracy. By preserving network 

representations as an integrated set of complex-valued phase relationships, our approach 
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conceptually differs from common methods in functional connectivity such as wPLI, which 

produces separate pairwise calculations without retaining their covarying structure among 

channels. Rather than assigning strengths to individual network edges based on a coupling 

function, coherent subspaces represent estimates of all channels’ phase positions within a 

network represented by the principal component. Using the subspace framework, we were able 

to precisely estimate the structure of a network in reduced dimensionality and achieve larger 

statistical effects at the group level compared to measures based on wPLI. 

Potential mechanistic basis of reduced alpha coherence in DoC 

We may interpret these findings on alpha functional networks in DoC in the context of 

sensory neurophysiology. Alpha rhythms are thought to be generated by recurrent 

thalamocortical interactions that create coherence through feedback from the cortex56,57. 

Thalamocortical circuitry constitutes the upper portion of the mesocircuit model, in which 

disruptions have been linked to DoC58–60. In this model, the central thalamus, which receives input 

from the ascending arousal network61, mediates broad arousal of the frontal cortex during the 

wake state62. Evidence in macaques has shown restoration of long-range fronto-parietal alpha 

coherence when the central thalamus is electrically stimulated at high frequency63. Our study 

places particular focus on a posterior region spanning parietal and occipital cortices as where 

coherent alpha networks associated with consciousness are situated. Although our recordings 

cannot spatially resolve cortical sources of posterior alpha, they point to a posterior and parietal 

spatial distribution situated in conscious subjects among electrodes O1, O2, and Pz of the 10-20 

system (Fig. 1C). The mesocircuit, which comprises connections from anterior and intralaminar 

thalamus to anterior cortical regions to a greater degree, may not directly drive the posterior 

alpha network but instead interface with it indirectly through the frontoparietal network. 

Functional MRI studies have suggested that DoC may be associated with lower functional 

connectivity in posterior nodes of the frontoparietal or the default mode network, such as the 

precuneus or posterior cingulate64,65. 

Brain injuries, particularly those of traumatic nature, may disrupt coordination between 

posterior thalamocortical regions through a number of mechanisms, including: 1) disruption of 

long-range feedback interactions from higher-order cortex via a frontoparietal network, possibly 

by thalamic means11,65–67, 2) disruption of short-range feedback by interrupting traveling alpha68, 

3) structural or functional deafferentation of posterior cortex due to degradation of thalamic 

inputs16,69,70, or 4) dysregulation of ascending or descending arousal to sensory thalamic nuclei, 
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disengaging the high-threshold bursting state71. These possibilities are not mutually exclusive. 

For example, deafferentation of thalamus may impair frontoparietal network feedback, because 

long-range coherence has been shown to involve thalamus63,72. Alternatively, focal injury to fibers 

between occipitoparietal cortex and thalamus may dysregulate alpha by degrading mutual 

excitation to both regions16. Separately, forms of coma where alpha activity is present, termed 

“alpha pattern coma” (APC) are known to occur73. APC, observed mostly in acute settings, is not 

universal to DoC and has been characterized notably by a widespread bilateral spatial 

distribution that distinguishes it from the dynamics reported here74. The circuit layout and 

mechanisms of APC are unclear. Other states of unconsciousness in which alpha is increased 

relative to baseline include propofol anesthesia, which has been shown to be associated with a 

separate set of frontal thalamocortical connections and, thus, linked to distinct mechanisms24. 

Partial restoration of posterior alpha networks  

Coherent alpha networks may serve as a neural activity biomarker of cognitive recovery, 

augmenting diagnostic capability when neuropsychological assessments do not detect emergence 

from DoC. We found that alpha power and synchrony are dissociable in CS patients with high 

levels of recovery (with a CRS-R total of 22 or above), who may have been grouped into CS or 

R-CS classes. Before alpha rhythms regain full power in R-CS, activity in these high-scoring CS 

patients appear to synchronize and organize in the posterior region, resulting in orientations of 

the coherent subspace resembling the posterior alpha seen in healthy individuals. A study by 

Shah et al. identified a posterior medial complex in which high delta-alpha ratios (i.e., low 

relative alpha) are associated with severity of post-traumatic confusional state16, supporting our 

finding that alpha dysfunction within this region may cause patients in severe confusional states 

to exhibit disorganized alpha activity. While age may correlate with lower alpha power in the 

broader population, our CS and R-CS patients have nearly identical age distributions. The 

physiological basis of alpha network synchrony emerging in settings of low alpha-band power is 

unclear but may indicate partial dendritic reconnection between thalamus and cortex prior to full 

afferentation75. The neurophysiological mechanisms underlying alpha network changes merit 

further investigation in the context of cognitively impaired states. 

Comparison to theta and beta coherent network activity 

In addition to alpha, theta and beta oscillations also form coherence-based networks 
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generated by cortical-subcortical circuitry76,77. These three oscillatory bands are major 

components of the ‘ABCD’ model of neurological recovery from DoC, whereby the course of 

recovery follows an ascending hierarchy of oscillatory states, with theta preceding alpha and 

beta44,48. In this model, alpha oscillations appear only in ‘D’-type dynamics, occurring closest to 

the recovery stage. A previous analysis of a subgroup of patients included in the present study 

showed correspondence between ABCD classifications and oscillatory dynamics in these 

frequency bands44. Our findings further demonstrate that, in addition to alpha oscillations, theta 

and beta oscillations underlying ABCD dynamics may have coherent network representations as 

well. Some degree of network similarity is recovered in theta and beta frequency subspaces 

across DoC at the group-level (Fig. 5B and Supp. Fig. 7). However, comparisons at these 

frequencies suggest that theta networks are less specific to recovery of consciousness and states 

of improved cognitive function, whereas beta networks are less sensitive to recovery of patients 

in general (Supp. Fig. 7). The functional roles of theta and beta networks may differ from that of 

alpha in the context of neurological recovery of awareness. Rather than signifying cognitive 

functional level, theta networks may represent an early prerequisite to orientation and cognitive 

control78, whereas beta networks may represent more transient and functionally specific cognitive 

states involving frontal regions79. 

Limitations and future directions 

Coherence-based signatures of network dynamics have potential clinical applications in 

the diagnosis, prognosis and treatment of patients with DoC31. Applied to alpha signals, these 

measures are sensitive to recovery of consciousness and are potential biomarkers of cognitive 

function during states of confusion or cognitive motor dissociation. Although previous studies 

have applied global coherence to higher-density recordings such as 64-channel EEG and 

electrocorticography21,23,24, we successfully derived consistent resting-state measures of brain-

wide coherence in low-density 19-channel clinical recordings. Task-relevant effects, in contrast, 

may require higher-density channel sets as in Curley et al26 to achieve greater sensitivity by 

detecting task-related network interactions at finer scales within spatially confined parietal or 

occipital regions. 

Several limitations to this study arise from the challenges inherent in combining datasets 

collected by different designs and procedures. Notably, site A’s experiment was initially 

designed as a study following DoC patients between the acute and chronic settings, whereas site 

B’s experiment was conducted entirely in the chronic setting. Three CS patients with CRS-R >= 
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22 and no R-CS patients were recorded in site A’s acute setting; the rest were recorded in the 

chronic setting. Due to these sample sizes, the distribution of subjects at a given LoC across 

settings may be a confounder. While data processing procedures were identical between the 

datasets, other differences between data collection at the two sites, such as inconsistent 

neuropsychological assessment, original EEG channel sizes, and data segmentation procedures, 

must be acknowledged. The extent of this limitation is somewhat mitigated by the fact that 

features we measured were consistent in healthy controls between the two sites. 

Alpha network function may be relevant to the development of therapeutic interventions 

to promote cognitive recovery in patients with DoC. Cortical networks identified by global 

coherence methods are conceivable targets for next-generation phase-locked brain stimulation, 

which may be able to reorganize alpha networks by innervating particular regions of cortex at 

phase offsets determined to be linked to conscious function80,81. Subcortically, stimulation of the 

central thalamus has been shown to increase thalamocortical alpha coherence and restore 

consciousness in anesthetized macaques63, and enhance behavioral responsiveness in a chronic 

MCS patient82, but the extent to which such findings can be applied to cognitive recovery in DoC 

is unclear. To what degree healthy network interactions require regeneration of specific 

corticocortical or thalamocortical pathways remains unclear. More detailed electrophysiological 

and imaging studies are required to decipher the precise layout of relevant cortical and 

thalamocortical alpha circuitry in the context of DoC. 

This study demonstrates the utility of global coherence methods applied to the diagnosis 

of DoC and establishes a novel network signature of cognitive recovery based on alpha 

coherence. Global coherence measures, as a natural extension of multitaper spectral analysis, 

may be used to aid clinical interpretation of EEG generally, given the mechanistic basis of 

coherence for rhythms such as the alpha. Alpha networks may indicate consciousness-supporting 

neural circuitry, warranting further study as EEG-based clinical biomarkers.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 10, 2024. ; https://doi.org/10.1101/2024.10.08.24314953doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.08.24314953
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 
 
 

Figures and Tables 

Subjects 
Age 

Range at 
Injury 

Sex Etiology 
Day(s) Post-Injury of EEG LoC(s) at EEG Total CRS-R Score(s) 

at EEG 

Initial Follow-up(s) Initial Follow-
up(s) Initial Follow-

up(s) 
A1 26-30 m TBI 17 206 CS R-CS 23 23 

A2 21-25 f TBI 4⁺ 224 Coma MCS- 1 9 

A3 21-25 m TBI 2 174 MCS- R-CS 4 23 

A4 16-20 f TBI 4 371 Coma R-CS 1 23 

A5 16-20 m TBI 10 576 CS R-CS 22 23 

A6 31-35 m TBI 16 - VS - 3 - 

A7 26-30 f TBI 10 656 MCS+ R-CS 11 23 

A8 41-45 m TBI 14 - MCS+ - 18 - 

A9 31-35 m TBI 8 - CS - 20 - 

A10 31-35 m TBI 13 - MCS+ - 15 - 

A11 21-25 m TBI 13 - MCS- - 10 - 

A12 21-25 f TBI 14 187 CS R-CS 22 23 

A13 16-20 m TBI 6 - CS - 21 - 

A14 26-30 m TBI 8 235 MCS+ R-CS 7 23 

A15 31-35 m TBI 4 191 CS R-CS 14 23 

A16 26-30 m TBI 5⁺ 182 Coma MCS+ 1 15 

A17 21-25 f TBI 4⁺ 160 Coma VS 1 5 

A18 26-30 m TBI 14⁺ 1172 Coma MCS- 1 5 

A19 26-30 m TBI 28 - CS - 18 - 

B20 56-60 f hypoxia 377 602; 975 MCS- MCS+; 
CS 

14 19; 22 

B21 21-25 m TBI 753, 754 2316 CS* R-CS 
** 

16 23 

B22 16-20 m TBI 2915, 2916, 2917 3364 MCS- VS 8 7 

B23 51-55 m TBI 302 1434, 1435 CS MCS+ 22 21 

B24 16-20 f TBI 2412, 2413 - VS - 7 - 

B25 21-25 m TBI 1976, 1977 2334, 2335 CS* MCS+ 17 14 

B26 11-15 f TBI 3858 4936 MCS- MCS- 12 12 

B27 16-20 m TBI 1590 2834 MCS+ MCS+ 5 5 

B28 16-20 f TBI 515 1669 MCS- CS* 10 22 

B29 21-25 m TBI 1085 1940 MCS- MCS- 11 11 

B30 21-25 m TBI 349 1156 MCS+ MCS+ 17 11 

B31 51-55 f anoxia 218 953 CS R-CS 22 23 

B32 56-60 m anoxia 679, 680  1435 CS CS 23 23 

B33 21-25 f TBI 5879 6045 MCS- VS 10 3 

Summary (Median; IQR) 24; 12 - - 16; 671 964; 1645 - - 12; 12 21; 13 

 

Table 1. Patient demographics and clinical information. Sessions within a single visit 

are separated by commas; sessions from multiple visits are separated by semicolons. Level of 
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Consciousness (LoC) marked with * represents insufficient testing to ascertain recovery from 

confusional state (CS). LoC marked with ** determined by clinical emergence from CS. Initial 

visits marked with ⁺ represent earlier EEG sessions obtained from patients enrolled at follow-up. 
Days post-injury of EEG summary statistics were taken with the first date per visit (consecutive 

days) for each subject, with subject B20 received two follow-up visits. Other abbreviations: 

traumatic brain injury (TBI), vegetative state (VS), minimally conscious state (MCS), recovered 

from confusional state (R-CS). 
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Figure 1. Using cross-spectral matrix eigendecomposition to extend standard spectral 

analytical methods. (A) The relationship between multitaper spectral analysis and global 

coherence analysis, with their respective outputs. Multitaper spectral analysis yields spectral and 

cross-spectral estimates, which can be plotted as spectra (channel-averaged here) or 

topographical plots (B-C). By performing principal component analysis on the cross-spectrum of 

a 19-channel EEG recording of a healthy control, the majority of total 10-Hz power can be 

summarized within the first principal component (D). The resulting eigenvalues and eigenvectors 

represent power of coherent bases (E) and phase relationships between channels in the network 

(I), respectively. These outputs can be used to produce additional quantities such as the global 

coherence (GC) (F), the coherent power (CohS) (G), and the angular distance (Θ) (H). Shaded 

boundaries represent the 5% and 95% confidence intervals of the median standard error.  
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Figure 2. Spectral and coherence analysis of healthy subjects and patients with 

disorders of consciousness reveals posterior alpha component in conscious subjects. (top) 

Spectral topographical characteristics of 19-channel EEG recordings in a healthy control (A), an 

acutely comatose TBI patient (B), and a patient (C) after emerging from the confusional state. 

(bottom) Coherence matrices and coherence spectra between posterior channels recorded in the 

same subjects. Pairwise coherence plots and their corresponding matrix element are linked by 

blue and magenta colors. 
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Figure 3. Subject-level comparisons between median multitaper spectra, the spectra 

of the principal eigenvalue, and the global coherence. (A) CRS-R total scores associated with 

each recording in the dataset. (B) The mean multitaper spectral power was computed across 

channels, and the median was computed across time. (C) Power of the principal eigenvalue. As 

in median spectral power, large eigenvalues in the alpha band can be found in most healthy 

controls and R-CS patients, but are lacking in patients in DoC groups between the coma to CS 

levels. (D) Mean pairwise coherence among the posterior O1-Pz and O2-Pz pairs. (E) Global 

coherence is defined as the proportion of the total power represented by the principal eigenvalue. 
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Figure 4. Spectral, cross-spectral, and global coherence features are sensitive to loss 

of posterior alpha activity in DoC. (A) Group-level differences between DoCs and controls 

(top) reveal loss of posterior alpha activity across measures. Shaded boundaries denote 5% and 

95% confidence intervals. Group-level differences between R-CS and controls (bottom) do not 

exceed confidence bounds for spectral density, principal eigenvalue, or global coherence 

estimates. (B) Group-level median 10-Hz spectral (top) and coherent power (bottom) 

topographical plots across diagnostic classes, including coma, vegetative state (VS), +/- 

subclasses of minimally conscious states (MCS), confusional state (CS), and recovered from 

confusional state (R-CS). The posterior alpha component is visible in control, CS, and R-CS 

groups. 
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Figure 5. Between-subject and between-group distances measured using the principal 

angle between coherent subspaces. (A) The principal angle between principal eigenvectors 

(subspaces) from two subjects represents a distance measure ranging from 0 to pi/2 at the 

maximum. (B) Median distances across frequency between and within subspaces drawn from 

each subject group. In each plot, median distances between healthy control subspaces are plotted 

in gray. (C) At the 10-Hz frequency, distances are lowest between healthy controls and patients 

with high levels of recovery (both R-CS patients and CS patients with CRS-R total scores greater 

or equal to 22 during the visit). Consistent network structure representing healthy alpha network 

activity is represented by low within-group distances for controls and R-CS. 
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Figure 6. Coherent subspace and other distance measures in classification of recovery 

to high-functioning confusional state and beyond. (A) Effect sizes (Cohen’s d) comparing 

within-group distances among healthy controls and between-group distances between controls 

and DoC patient classes using four types of brain measures: 10-Hz coherent subspaces (gcoh 

PC), mean channel-wise 10-Hz multitaper power spectral density (PSD chans), mean channel-

wise weighted phase lag index (wPLI means), and the principal eigenvector of the wPLI matrix 

(wPLI PC). Coherent subspaces and channel-wise alpha spectral power exhibit the largest effects 

in representing standardized differences between multichannel EEG of healthy and DoC 

populations. (B) Comparative performance of the multichannel measures as binary classifier 

scores for high CRS-R (scores greater than or equal to 22) or R-CS levels. Both coherent 

subspaces and channel-wise power effectively classify R-CS, but channel-wise power's accuracy 

is lower for CRS-R >= 22 patients, evidenced by the AUC values. 
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Figure 7. Examples of network-weighted alpha task suppression in a healthy control 

and a patient with chronic DoC. During the tasks shown, both subjects were instructed to open 

and close either the left or right hand, followed by instruction to rest (right). The spectral power 

weighted by channels representing global coherence networks (left) was suppressed in the alpha 

range (8-12 Hz) when subjects performed the task, as shown by bootstrap differences between 

network weighted power observed during neighboring tasks (middle). * denotes clinical 

emergence from CS but was not assessed with behavioral assessment. 
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Supplementary Material 

Site + ID Medications Administered 
Before EEG 

Medications Administered 
During EEG 

A1 None None 
A2 N/A N/A 
A3 morphine 2 mg IV None 

A4 propofol 100 mg/hr IV gtt 
propofol 100 mg/hr IV gtt + 

propofol 10 mg IV bolus 
before motor imagery 

A5 None None 
A6 oxycodone 5 mg PGT quetiapine 25 mg PGT 
A7 hydromorphone 0.5 mg IV None 
A8 quetiapine 12.5 mg PGT None 

A9 propofol 300 mg/hr IV gtt propofol 300 mg/hr IV gtt + 
hydromorphone 0.5 mg IV 

A10 None None 
A11 None None 

A12 lorazepam 1 mg IV + 
haloperidol 5 mg IV None 

A13 None None 
A14 None None 

A15 propofol 300 mg/hr IV gtt + 
fentanyl 50 mcg IV bolus propofol 300 mg/hr IV gtt 

A16 N/A N/A 
A17 N/A N/A 
A18 N/A N/A 
A19 N/A N/A 

 

Supplementary Table 1. Sedative, anxiolytic and analgesic medications administered 

before and during EEG at study site 1. 
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Supplementary Figure 1. Pre-processing and analysis steps applied to recordings at 

both study sites.  
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Supplementary Figure 2. Group-level frequency-domain and topographical plots of 

spectral power, principal eigenvalue, and global coherence in healthy controls at each 

experimental site. 
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Supplementary Figure 3. Group-level topographical representations of frequency-

dependent spatial components of spectral and coherent spectral power. Representative 

frequencies were chosen at 2, 6, 10, and 18 Hz representing center frequencies of delta, theta, 

alpha, and beta bands, respectively. 
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Supplementary Figure 4. Group-level frequency-domain plots of spectral, cross-

spectral, pairwise coherence, and global coherence estimates. Red vertical lines denote the 2, 

5, and 10 Hz frequency positions. Posterior pairwise coherence was computed from the mean 

among the posterior O1-Pz and O2-Pz pairs. 
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Supplementary Figure 5. Subject-level spectral, cross-spectral, and global coherence 

estimates at canonical frequency bands. Each violin plot corresponds to a group-level feature 

distribution of a given frequency. Dots within each violin plot represent mean estimates for a 

single subject. Upper horizontal line groups in each subplot denote significant differences 

between control group distributions and patient group distributions, and lower horizontal line 

groups represent significant differences between R-CS and DoC group distributions. All 

hypothesis tests were conducted with two-sided Mann-Whitney U tests, corrected for multiple 

comparisons using the Benjamini-Hochberg procedure across all frequencies, feature types, and 

group pairs. Black lines denote significance at a p < 0.05 level, dark gray at a p < 0.01 level, and 

light gray at a p < 0.001 level, respectively. Definitions of delta, theta, alpha, and beta are 

identical to those in Supp. Fig. 3. 
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Supplementary Figure 6. Changes in 10-Hz posterior coherent power between visits 

among selected individuals. Subjects recover coherent alpha power in posterior channels upon 

improvement across various levels of consciousness (left). Many subjects who do not improve 

from DoC to R-CS (right) show lesser degrees of coherent power increase in posterior areas. 
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Supplementary Figure 7. Subject-wise comparisons between subspaces at theta and 

beta frequencies. Like the alpha, theta and beta rhythms also form coherence-based networks 

across the brain. However, coherent subspaces at theta are less specific in revealing similarity 

between conscious subjects, whereas subspaces at beta are less sensitive to similarity between 

controls and R-CS subjects. 
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Subjects 
Tasks blocks with 
alpha suppression 

(37 ch) 

Total task 
blocks 
tested 

Paradigms with 
alpha 

suppression 

Total 
paradigms 

tested 

EEG CF Positive in Curley 
2018 

Total 
CRS-R 
Score at 

EEG 

LoC  

B21 4 5 2 2 Y 23 R-CS** 

B22 1 5 1 3 N 8 MCS- 

B22 2 15 2 3 Y 7 VS 

B23 0 5 0 2 - 21 MCS+ 

B24 2 11 2 3 - 7 VS 

B25 1 12 1 2 Y 17 CS* 

B25 1 10 1 2 Y 14 MCS+ 

B26 1 14 1 3 Y 12 MCS- 

B26 0 17 0 3 N 12 MCS- 

B27 1 11 1 2 N 5 MCS+ 

B27 1 16 1 3 Y 5 MCS+ 

B28 1 13 1 2 N 10 MCS- 

B29 0 6 1 2 Y 11 MCS- 

B30 1 9 1 3 Y 17 MCS+ 

B31 2 12 2 3 Y 22 CS 

B32 1 9 1 2 - 23 CS 

C1 4 11 3 3       

C2 7 11 3 3       

C3 5 8 3 3       

C4 8 12 3 3       

C5 7 9 3 3       

C6 7 11 2 3       

C7 7 10 3 3       

C8 1 5 1 3       

C9 4 10 2 3       

C10 1 5 1 3       

C11 2 5 2 3       

C12 8 11 3 3       

C13 5 5 3 3       

C14 5 9 2 3       

C15 3 5 2 3       

Supplementary Table 2. Summary of network-weighted alpha task suppression results 

in 37-channel EEG recordings of DoC patients and healthy controls. Level of Consciousness 

(LoC) marked with * represent insufficient testing to ascertain recovery from confusional state 

(CS). LoC marked with ** determined by clinical emergence from CS. Healthy controls are 

listed as subjects C1 through C15.  
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Software materials and availability 

The cross-spectral resampling, global coherence, and subspace analytical techniques used 

in this study can be found in the gcoh+: Global Coherence Toolbox Plus GitHub repository 

(https://github.com/dvwz/gcoh_plus). Data are available upon request from the corresponding 

author. 
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