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ABSTRACT: The air−nasal mucus partition coefficient is a crucial
property among all of the interaction mechanisms between odor
molecules and olfactory receptors, since this property contributes
to our sense of smell. Due to the complexity of the mucus
composition, in vivo determination of the air−mucus partition
coefficient is a technical challenge. A predictable model of the air−
mucus partition coefficient can provide valuable insights into the
chemical properties that govern olfactory perception and can help
design desired odorants. In this study, we propose a novel model
based on the deep-layer neural network (DNN) algorithm to
predict the air−mucus partition coefficients for a range of odor
compounds. The molecular surface charge density (σ-profile) calculated from the COnductor like Screening MOdel for Real
Solvents (COSMO-RS) thermodynamic package was adapted as descriptors of structural features of odor molecules. The results
revealed that the air−mucus partition coefficients are highly correlated to the σ-profile of the studied compounds. The information
obtained from the study provided interpretable results, which not only help in identifying the molecular features that contribute to
the air−mucus partition coefficient of odorants but also aid in the design of compounds with the desired odor properties.

■ INTRODUCTION
Odor molecules inhaled into the nose must first dissolve in the
mucus layer that lines the nasal cavity before they can reach the
olfactory receptors.1−4 The air−mucus partition coefficient of
odorants is a crucial factor in determining the distribution of
odorants within the olfactory region of the nose and ultimately
influences the ability of the olfactory system to detect and
distinguish different odorants. In general, a low air−nasal
mucus partition coefficient means that the odorant tends to
dissolve readily in the mucus layer and is likely to come into
contact with the olfactory receptor cells that are embedded in
the mucus. Consequently, there is a high likelihood of such an
odorant being detected by the olfactory system.

Although in vivo determination of the air−mucus partition
coefficient of odorants provides valuable insights into the
olfactory system, the in vivo measurement of air−nasal mucus
partition coefficients requires careful and specialized techni-
ques. The chemical composition of nasal mucus is complex,
typically containing a mixture of water, mucins, globular
proteins, salts, carbohydrates, etc.5−10 The properties of the
mucus layer can vary depending on several factors, such as the
location of the sample in the nasal cavity, the health status of
the subject, and the adsorption of other substances in the
mucus. It may be a source of significant error and uncertainty
due to the complex and dynamic environment of the nasal
mucus layer. Many researchers usually use the air−water
(PA/W) or octanol−water partition (PO/W) coefficient to
approximate the air−mucus partition coefficients. However,

the air−mucus partition coefficient of odorants cannot be
simply substituted by their log PA/W or log PO/W in most cases
because of the complexity of the components in the mucus
layer. For example, Mozell and Hornung11 showed that the
solubility of odorants in mucus or mucosa can be
approximated by that in water for hydrophilic odorants;
however, for hydrophobic odorants, the solubility in mucus or
mucosa can be considerably higher than their aqueous
solubility. They assumed that the difference may come from
the interaction between odor molecules and the mucopoly-
saccharide and lipophilic carrier proteins contained in the
mucus layer. Kurtz et al. investigated the odorant mucosal
solubility and odorant diffusive transport in the mucosa by
means of experimental and computational fluid dynamics
(CFD) techniques.12 They indicated that the transport of odor
molecules in nasal mucosa clearly differs from that within an
aqueous layer. These investigations suggest that the factors
influencing odorant absorption/solubilization phenomena in
the mucus layer are complex and multifactorial; there is not a

Received: October 5, 2023
Revised: March 22, 2024
Accepted: June 25, 2024
Published: July 9, 2024

Articlehttp://pubs.acs.org/journal/acsodf

© 2024 The Authors. Published by
American Chemical Society

31328
https://doi.org/10.1021/acsomega.3c07722

ACS Omega 2024, 9, 31328−31334

This article is licensed under CC-BY-NC-ND 4.0

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Junwei+Shen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yuki+Harada"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shinichiro+Nakamura"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.3c07722&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07722?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07722?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07722?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07722?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07722?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/9/29?ref=pdf
https://pubs.acs.org/toc/acsodf/9/29?ref=pdf
https://pubs.acs.org/toc/acsodf/9/29?ref=pdf
https://pubs.acs.org/toc/acsodf/9/29?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.3c07722?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


straightforward way to deal with the air−mucus partition
coefficients based on their log P values.

A predictable model of the air−mucus partition coefficient
provides valuable insights into the chemical properties that
govern olfactory perception. Therefore, it also helps to design
the desired odorants. It gives an understanding of the
environmental factors of odor recognition. A good predictable
model usually relies on both the quantity and quality of the
input data. In the case of air−mucus partition coefficients,
there are multiple chemical properties that influence the
partitioning behavior. There are only limited experimental data
available due to the technical challenges. The lack of available
data will make it difficult to develop accurate models for the
air−mucus partition coefficients of odor molecules. By using
reliable computational models presented previously, it is
possible to obtain reliable estimates of the physical properties
of odor molecules, particularly in cases where the experimental
data are missing or incomplete.

The COnductor like Screening MOdel for Realistic Solvents
(COSMO-RS) theory is an established method for predicting
the thermodynamic properties of fluids.13 In the COSMO-RS
model, the molecular surface is divided properly in segments,
and each segment has an average over one pixel charge density
obtained from the electrostatic potential of the molecular
electron density by means of quantum chemical calculations. A
conductor screening charge density profile (so-called “σ-
profile”), reducing the three-dimensional (3D) charge
distribution to a two-dimensional (2D) histogram, character-
izes the electrostatic polarity and charge distribution of the
molecule of interest.

A representative example of the σ-profiles is shown in Figure
1 for nonpolar hexane, benzene, and polar water molecules.

The entire σ-profile areas can be roughly divided into three
regions: the electronic basicity region, the nonpolar region, and
the electronic acidity region from the negative to positive-σ
range. As illustrated in Figure 1, the σ-profile of the water
molecule has a relatively broad distribution, with two almost
symmetrical peaks in the negative and positive regions,
attributed to two polar hydrogen and one oxygen atom,
respectively. On the other hand, the nonpolar benzene
molecule shows two symmetrical picks in the region slightly
off the center, where the pick in the positive σ-region can be
assigned to a delocalized π-electron in benzene. For hexane,
there is a narrow distribution of nearly neutral charge density

around zero, with a shoulder appearing in the slightly positive
region arising from the carbon atoms of hexane. The σ-profiles,
being capable of taking into account solvation behavior, are
quite suitable for universal descriptors in the studies of
quantitative structure−property relationship.14−16 Notice that
several studies of machine learning have been carried out by
using molecular σ-profiles as descriptors in the prediction of
various properties such as viscosity of ionic liquids17 and heat
capacity.18

To date, deep learning technology has been successfully
applied to solve complex problems in many scientific areas of
interest due to its ability to handle large amounts of data,
capture nonlinear relationships, extract meaningful features,
transfer knowledge across domains, and generalize to new
data.19 Over the last few decades, a number of deep learning
models for predicting partition coefficients of organic
compounds have been developed.20,21 There are also several
studies that have explored the use of deep learning methods for
predicting the olfactory properties of molecules.22−24 The deep
neural network (DNN) is a mathematical model that functions
as a universal approximator. The DNN and its associated
algorithms are already successfully used in various chemo-
informatic applications. In environmental risk assessment,25−27

DNNs should have similar performance in the prediction of
air−mucus partition coefficients of odor compounds.

In this work, we report an approach to a deep learning
model for the prediction of the air−mucus partition
coefficients of odorants. We emphasize the useful σ-profile as
a descriptor. Figure 2 briefly depicts the overall framework of
this work. First, the σ-profiles of odorants were directly
collected from the precalculated COSMO-RS database or
generated by using the quantum chemical density-functional-
theory (DFT) calculations. The data sets of σ-profiles of
odorants with molecular weights were divided into training and
test sets. The DNN model was then trained and optimized by
using the training data set. Since only little data is available in
training sets, overfitting may become an issue, which leads to
poor performance on test or prediction results. To prevent
overfitting and improve the generalization performance of the
model, the early stopping technique was adopted to monitor
the validation loss during training and to stop it when the
validation loss starts to increase before the overfitting of the
training data. To ensure reliability and accuracy, the previously
established model was validated with the same test data set. In
addition, the accuracy of predicted results was compared with
the traditional method using macroscopic property-based
descriptors such as vapor pressure, Henry’s law constant, and
octanol−water partition coefficient.

■ COMPUTATIONAL DETAILS
The air−mucus partition coefficients of 66 odorants were
taken from the estimated values of Scott et al.,28 since there is
only a small amount of experimental data available. They
showed the correlation of a linear relationship of log PO/W on
the difference between log PA/M and log PA/W values with a
regression of R2 = 0.81 to the experimental data for 12 odor
molecules,12 where the log PO/W and log PA/W values used in
the estimations were obtained through the U.S. Environment
Protection Agency database.29 In this work, we used these
estimated values as target variables in training and validation.

The σ-profiles of 66 odor molecules were directly collected
from the precalculated COSMO-RS database or generated by
using DFT calculations at the same level (BP86/def2-

Figure 1. Three representative σ-profiles of nonpolar (hexane,
benzene) and polar (water) molecules.
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TZVP).30 In several previous studies that used the σ-profiles as
descriptors, the σ-profile range (−0.025 to +0.025 e/Å2) was
usually divided into 6 or 10 equal segments (e.g., Zhou et
al.).15 However, we anticipate that a low resolution of the
segmentation might result in the loss of electrostatic
characteristics of the molecule. After examining the depend-
ence of the σ-profile segmentation size on model performance,
we divided the entire σ-profile range of the molecule into 20
areas to present molecular features accurately. Thus, a total of
20 feature vectors (S1, S2, ···, S20) were obtained for each
odor molecule by integrating those regions. Afterward, a min−
max normalization process was applied to these σ-profile
descriptors to ensure that all feature variables have the same
scale, and then we added one more element of the molecular
weight to each molecule.

The DNNs can provide an efficient architecture to predict a
variety of physical properties. The optimal number of hidden
layers and neurons in a DNN model is usually dependent on
the property of the problem and the size and complexity of the
data set. In most cases, one or two hidden layers are sufficient
to handle the prediction of the compound properties. In this
study, a DNN architecture (Keras model, python3.9) was
designed with two hidden layers. The number of neurons was
set as 100 in each hidden layer, and the rectified linear unit
function was adopted for the activation function of the hidden
layers. The stochastic gradient-based optimizer (adaptive
moment estimation, “adam”) was used as a solver for weight
optimization, and the maximum number of solver iterations
was set to 1000 epochs. The cross-validation techniques
monitoring the mean square error (MSE) were applied to
evaluate the generalization performance of the model.

To examine and evaluate the performance of the thus-
obtained DNN model, the predicted results were compared
with the traditional approach that uses macroscopic property-
based descriptors (such as Henry’s law constant, octanol−
water partition coefficient, etc.) instead of σ-profiles. These
thermodynamic properties of 66 odorants were also predicted
by the COSMO-RS approach and validated with the available
experimental data.

■ RESULTS AND DISCUSSION
To obtain an unbiased estimation of the model performance,
we need to evaluate it with the data independent of training
sets. In this work, two cross-validation techniques were applied
for model and parameter selection and accuracy estimation.
The first one is the hold-out method, which is the simplest
kind of cross-validation to evaluate a regression. It randomly
partitions the 66 data sets into two subsets (53 training and 13
validation data sets) in a given ratio of 8:2. Another is the
leave-one-out (loo) cross-validation, in which at a time only
one test set input datum is used, while the rest 65 data are used
to train the model; thus, the validation was performed over all
data sets.

Figure 3 shows the training and testing results of a DNN
model using a hold-out (split ratio 8:2) validation method for

Figure 2. Deep learning scheme for the prediction of the air−mucus partition coefficient based on the σ-profile descriptors of odor molecules.

Figure 3. Example of the training and test results of a DNN model
using hold-out validation technique (R2 = 0.936 ± 0.017).
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the air−mucus partition coefficients based on the σ-profiles of
odorants. The correlation coefficient for the model with
nested/repeated 10-fold cross-validation (10 different splits of
the data into 10 independent cross-validation testing sets) is
0.936 ± 0.017. A representative curve for the loss function as a
function of the epoch number in training and testing the model
is shown in Figure 4. It is clearly shown that both training and

test curves of loss function declined rapidly and flattened out at
approximately 300 epochs. It indicates that the model has a fast
convergence and high stability.

The results of loo validation are shown in Figure 5. The
spots are shown in red (test) and in blue (train) at each time.
Notice that the blue spots are the best correlation result,
whereas the red spots are the values for each validation. Taking
an average over each test run, we obtained a correlation of
0.957 ± 0.019.

According to the results for two validations, it is shown that
the loo method seems to be more appropriate than hold-out
for the current study, since the loo can use more training data
in each iteration. It enables the model to become better
representations of the air−mucus partition coefficients. The
best result predicted by the loo method is shown in Figure 6.

We performed the quantitative analysis of the prediction
performance by using the training values to understand those
that are important and critical features of odor molecule on its
air−mucus partition coefficients. Permutation feature impor-

Figure 4. Example of the loss function for the model with training and
test data iterating over each epoch.

Figure 5. Best training result (blue dots) with test result (red dots) of
a DNN model using leave-one-out validation technique (R2 = 0.957 ±
0.019).

Figure 6. Comparison of predicted air−mucus partition coefficients
with the corresponding literature data for 66 odorants used in this
study.
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tance (PFI) algorithm based on Fisher et al.31 has been
frequently used in deep learning study, which measures the
increase in prediction error caused by reordering feature
values, thereby breaking the relationship between the feature
and the outcome. A PFI plot of the current model is shown in
Figure 7. As shown in Figure S1 in the SI, it is clear that

molecular weight has a dominant influence on the predicted
results. We leave out the molecular weight (MW) from Figure
7, since it is due to the fact that the large molecules are less
volatile and more difficult to dissolve into nasal mucus than
small molecules.

Hereafter, we discuss the remaining elements between S1
and S20. The distribution in neutral (S10, ∼0 e/Å2) and
positive screen charge (S17, ∼0.017 e/Å2) areas of odorants
have a relatively larger contribution among air−mucus
partition coefficients. The neutral one (S10) must suggest
that the characteristic strong interaction between odor
molecules and mucus components mainly consists of van der
Waals relative to electrostatic interaction. Then, S17 suggests
that somehow polarization must be included, to be discussed
below.

To further explore the relationship between the molecular
structure and the air−mucus partition coefficients, the surface
charge characteristics of several representative odor molecules
were analyzed in detail. As shown in Figure 8, the σ-profile of
vanillin (black line) has a relatively symmetric distribution in
both hydrophobic and hydrophilic regions due to the
cumulative effect of its functional groups of aldehyde, hydroxyl,
and ether. The vanillin with a moderate polarization degree
thus resulted in the highest solubility in mucus (log PA/M =
−7.191) among the studied compounds. By comparing the
peak position in the σ-profile, although hexanoic acid (blue
line) has a more positive distribution and tert-butanol (red
line) has more negative distribution than that of vanillin, the
air−mucus partition coefficients, log PA/M, were −5.087 for
hexanoic acid and −3.436 for tert-butanol. Both suggest much
smaller solubility than that of vanillin (Table S1 in SI). The
nonpolar molecule n-hexane, having only one distribution peak
(green line) in the hydrophobic region, exhibits poor solubility
in mucus (a higher log PA/M = 0.053). The above-analyzed
results reveal that the odorant with a balanced and moderate

positive/negative polarization tends to make a strong
interaction with mucus components, leading to being more
soluble in the mucus (i.e., a lower air−mucus partition
coefficient) than others.

In order to evaluate the performance of the current DNN
model, the predicted results were compared to the traditional
approach that uses macroscopic property-based descriptors
such as Henry’s law constant and octanol−water partition
coefficient. Because of the missing and limited data, the
predicted values of Henry’s law constants and octanol−water
partition coefficients for these odorants were used in multiple
linear regression analysis. Many studies have demonstrated that
quantum-chemically based COSMO-RS theory can provide
accurate predictions for partition properties.13,32,33 The
correlation of COSMO-RS predicted values of Henry’s law
constants (air−water partition coefficients) and octanol−water
partition coefficients versus available experimental data for the
studied odorants is shown in Figure S2 in SI. The coefficient of
the determination for log KH is R2 = 0.9328 and that for
log PO/W is R2 = 0.9324. The results of the linear regression of
the air−mucus partition coefficients with Henry’s law
constants and octanol−water partition coefficients are shown
in Figure 9. We obtained a linear regression with a correlation
coefficient of R2 = 0.7653.

= +

+ +

P M K

P

log 0.0138 0.1628 log

0.5474 log 0.3239

A/M W H

O/W

As compared to the correlation coefficients by the DNN
model discussed above, it is obvious that the neural network
model based on the σ-profile performed better than the
traditional multiple linear regression equation on the
prediction of the air−mucus partition coefficients of odor
compounds. A comprehensive comparison of the estimated
results using the Scott et al. equation, our DNN model, and the
model based on the COSMO-RS prediction of the macro-
scopic properties for 12 odor molecules with the experimental
values of the air−mucus partition coefficient is shown in Table
S2 in SI.

The high solubility in mucus should be a fundamentally
important and sensitive property for the smell. Notice that the
model presented here evaluates the degree of dissolution of
odorants in mucus but still not the odor intensity itself. When
we use an experimental index (threshold)34 for odor intensity
evaluation as the target variables in the model training, it is

Figure 7. Permutation feature importance analysis for σ-profile
descriptors in the DNN model with leave-one-out cross-validation.

Figure 8. σ-Profiles of four representative odor molecules: vanillin,
hexanoic acid, tert-butanol, and hexane.
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indispensable to consider the solubility before we get into the
correlation between the odor intensity and structural character-
istics of odorants. It is evident that the higher the partition of
an odorant in the mucus layer, the higher the probability of
contact between the odor molecule and the olfactory receptor.

■ CONCLUSIONS
In this article, a DNN model learns to represent the air−mucus
partition behavior based on the surface charge density (σ-
profile) descriptors of the odor molecules. The σ-profiles of
molecules were computed from quantum-chemistry-based
COSMO-RS solvation models. The results showed that the
air−mucus partition coefficients are highly correlated with the
σ-profiles of the odorants studied. Compared with traditional
approaches that use macroscopic property-based descriptors,
there was a significant improvement in the prediction accuracy
of the air−mucus partition coefficients of odor compounds.
The analysis of the influencing factors indicates that molecular
weight is the dominant factor over a set of explanatory
variables. This is natural because it is believed to be linked to
the volatility of odor molecules. On the other hand, the
molecular surface charge distribution is directly related to the
intermolecular interaction between the odorants and the
mucus. An analysis of the odor air−mucus partition behavior
with the corresponding distribution of σ-profile reveals that the
odorants with a balanced and moderate polarization favorably
induce the interaction with mucus components, leading to
being soluble in mucus. The information obtained from the
study provided interpretable results, allowing us to generate
hypotheses about how the molecular features contribute to the
air−mucus partition coefficient of odorants. This can also help
in understanding the chemical properties that govern olfactory
perception, which will aid in the design of molecules with the
desired odor properties. Furthermore, this study demonstrates
the potential to build advanced machine learning applications
for predicting various thermodynamic properties of volatile
organic compounds, such as absorption rates of nasal drug
agents and lethal doses of volatile toxicants, based on the
molecular σ-profile information.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.3c07722.

Permutation feature importance analysis for all descrip-
tors used in the DNN model with the leave-one-out
cross-validation method; the correlation of COSMO-RS
prediction of (a) Henry’s law constants and (b)
octanol−water partition coefficients with the corre-
sponding experimental data; comparison of the calcu-
lated air−mucus partition coefficients with the corre-
sponding literature data for 66 odorants used in this
study; comparison of various calculated air/mucus
partition coefficients with the corresponding experimen-
tal data for 12 odorants (PDF)

■ AUTHOR INFORMATION
Corresponding Authors

Junwei Shen − Laboratory for Data Sciences, Priority
Organization for Innovation and Excellence, Kumamoto
University, Kumamoto 860-8555, Japan; orcid.org/0000-
0003-4223-6735; Email: jwshen@kumamoto-u.ac.jp

Shinichiro Nakamura − Laboratory for Data Sciences,
Priority Organization for Innovation and Excellence,
Kumamoto University, Kumamoto 860-8555, Japan;
Email: shindon@kumamoto-u.ac.jp

Author
Yuki Harada − Laboratory for Data Sciences, Priority
Organization for Innovation and Excellence, Kumamoto
University, Kumamoto 860-8555, Japan; orcid.org/
0009-0000-4254-7803

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.3c07722

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The present work is supported by The Chemo-Sero-
Therapeutic Research Institute (KAKETSUKEN), Japan.
The authors are grateful to professor emeritus Kunio Tanabe
of the Institute of Statistical Mathematics for his valuable
advice and meaningful discussion on deep learning methods.
The authors also gratefully acknowledge Prof. Hirofumi Kai, of
Kumamoto University, for his valuable advice and fruitful
discussions.

■ REFERENCES
(1) The Neurobiology of Olfaction; Menini, A., Ed.; CRC Press/

Taylor & Francis: Boca Raton (FL), 2010.
(2) The Human Sense of Smell; David, G. L.; Richard, L. D.; Winrich,

B., Eds.; Springer-Verlag, 1991.
(3) Shirai, T.; Takase, D.; Yokoyama, J.; Nakanishi, K.; Uehara, C.;

Saito, N.; Kato-Namba, A.; Yoshikawa, K. Functions of human
olfactory mucus and age-dependent changes. Sci. Rep. 2023, 13,
No. 971.
(4) Amoore, J. E. Effects of Chemical Exposure on Olfaction in

Humans. In Toxicology of the Nasal Passages; Barrow, C. S., Ed.;
McGraw-Hill International Book Company: WA, 1984; pp 155−190.
(5) Allen, A.; Flemstrom, G.; Garner, A.; Kivilaakso, E. Gastro-

duodenal mucosal protection. Physiol. Rev. 1993, 73, 823−857.

Figure 9. Accuracy of a multiple linear regression model for
predicting the air−mucus partition coefficients using macroscopic
property-based descriptors.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07722
ACS Omega 2024, 9, 31328−31334

31333

https://pubs.acs.org/doi/10.1021/acsomega.3c07722?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c07722/suppl_file/ao3c07722_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Junwei+Shen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-4223-6735
https://orcid.org/0000-0003-4223-6735
mailto:jwshen@kumamoto-u.ac.jp
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shinichiro+Nakamura"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:shindon@kumamoto-u.ac.jp
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yuki+Harada"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0009-0000-4254-7803
https://orcid.org/0009-0000-4254-7803
https://pubs.acs.org/doi/10.1021/acsomega.3c07722?ref=pdf
https://doi.org/10.1038/s41598-023-27937-1
https://doi.org/10.1038/s41598-023-27937-1
https://doi.org/10.1152/physrev.1993.73.4.823
https://doi.org/10.1152/physrev.1993.73.4.823
https://pubs.acs.org/doi/10.1021/acsomega.3c07722?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07722?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07722?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07722?fig=fig9&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07722?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(6) Bansil, R.; Turner, B. S. Mucin structure, aggregation,
physiological functions and biomedical applications. Curr. Opin.
Colloid Interface Sci. 2006, 11, 164−170.
(7) Button, B.; Okada, S. F.; Frederick, C. B.; Thelin, W. R.;

Boucher, R. C. Mechanosensitive ATP Release Maintains Proper
Mucus Hydration of Airways. Sci. Signaling 2013, 6, No. ra46,
DOI: 10.1126/scisignal.2003755.
(8) Carlstedt, I.; Sheehan, J. K. Structure and macromolecular

properties of cervical mucus glycoproteins. Symp. Soc. Exp. Biol. 1989,
43, 289−316.
(9) Cone, R. A.Mucus, Mucosal Immunology; Lamm, M. E.; McGhee,

J. R.; Bienenstock, J.; Mayer, L.; Strober, W., Eds.; Academic Press:
Burlington, 2005; pp 49−72.
(10) Thornton, D. J.; Sheehan, J. K. From mucins to mucus: toward

a more coherent understanding of this essential barrier. Proc. Am.
Thorac. Soc. 2004, 1, 54−61.
(11) Hornung, D. E.; Youngentob, S. L.; Mozell, M. M. Olfactory

mucosa/air partitioning of odorants. Brain Res. 1987, 413, 147−154.
(12) Kurtz, D. B.; Zhao, K.; Hornung, D. E.; Scherer, P.

Experimental and Numerical Determination of Odorant Solubility
in Nasal and Olfactory Mucosa. Chem. Senses 2004, 29, 763−773,
DOI: 10.1093/chemse/bjh079.
(13) Klamt, A. COSMO-RS From Quantum Chemistry to Fluid Phase
Thermodynamics and Drug Design; Elsevier: Amsterdam, 2005. Klamt,
A. Conductor-like screening model for real solvents: A new approach
to the quantitative calculation of solvation phenomena. J. Phys. Chem.
A 1995, 99, 2224−2235. Klamt, A.; Eckert, F. COSMO-RS: a novel
and efficient method for the a priori prediction of thermophysical data
of liquids. Fluid Phase Equilib. 2000, 172, 43−72.
(14) Abranches, D. O.; Zhang, Y.; Maginn, E. J.; Colón, Y. J. Sigma

profiles in deep learning: towards a universal molecular descriptor.
Chem. Commun. 2022, 58, 5630−5633, DOI: 10.1039/d2cc01549h.
(15) Zhou, T.; McBride, K.; Zhang, X.; Qi, Z.; Sundmacher, K.

Integrated Solvent and Process Design Exemplified for a Diels−Alder
Reaction. AIChE J. 2015, 61, 147−158, DOI: 10.1002/aic.14630.
(16) Abranches, D. O.; Zhang, Y.; Maginn, E. J.; Colón, Y. J. Sigma

profiles in deep learning: towards a universal molecular descriptor.
Chem. Commun. 2022 , 58 , 5630−5633, DOI: 10.1039/
D2CC01549H.
(17) Kang, X.; Zhao, Z.; Qian, J.; Afzal, R. M. Predicting the

Viscosity of Ionic Liquids by the ELM Intelligence Algorithm. Ind.
Eng. Chem. Res. 2017, 56 (39), 11344−11351, DOI: 10.1021/
acs.iecr.7b02722.
(18) Kang, X.; Liu, X.; Li, J.; Zhao, Y.; Zhang, H. Heat capacity

prediction of ionic liquids based on quantum chemistry descriptors.
Ind. Eng. Chem. Res. 2018, 57 (49), 16989−16994, DOI: 10.1021/
acs.iecr.8b03668.
(19) Ching, T.; Himmelstein, D. S.; Beaulieu-Jones, B. K.; Kalinin,

A. A.; Do, B. T.; Way, G. P.; Ferrero, E.; Agapow, P.-M.; Zietz, M.;
Hoffman, M. M.; Xie, W.; Rosen, G. L.; Lengerich, B. J.; Israeli, J.;
Lanchantin, J.; Woloszynek, S.; Carpenter, A. E.; Shrikumar, A.; Xu, J.;
Cofer, E. M.; Lavender, C. A.; Turaga, S. C.; Alexandari, A. M.; Lu, Z.;
Harris, D. J.; DeCaprio, D.; Qi, Y.; Kundaje, A.; Peng, Y.; Wiley, L. K.;
Segler, M. H. S.; Boca, S. M.; Swamidass, S. J.; Huang, A.; Gitter, A.;
Greene, C. S. Opportunities and obstacles for deep learning in biology
and medicine. J. R. Soc. Interface 2018, 15, No. 20170387,
DOI: 10.1098/rsif.2017.0387.
(20) Win, Z.-M.; Cheong, A. M. Y.; Hopkins, W. S. Using machine

learning to predict partition coefficient (Log P) and distribution
coefficient (Log D) with molecular descriptors and liquid
chromatography retention Time. J. Chem. Inf. Model. 2023, 63,
1906−1913, DOI: 10.1021/acs.jcim.2c01373.
(21) Zhu, Q.; Jia, Q.; Liu, Z.; Ge, Y.; Gu, X.; Cui, Z.; Fan, M.; Ma, J.

Molecular partition coefficient from machine learning with polar-
ization and entropy embedded atom-centered symmetry functions.
Phys. Chem. Chem. Phys. 2022, 24, 23082−23088.
(22) Chacko, R.; Jain, D.; Patwardhan, M.; Puri, A.; Karande, S.; Rai,

B. Data based predictive models for odor perception. Sci. Rep. 2020,
10, No. 17136.

(23) Shang, L.; Liu, C.; Tomiura, Y.; Hayashi, K. Machine-Learning-
Based Olfactometer: Prediction of Odor Perception from Phys-
icochemical Features of Odorant Molecules. Anal. Chem. 2017, 89,
11999−12005.
(24) Nozaki, Y.; Nakamoto, T. Predictive modeling for odor

character of a chemical using machine learning combined with natural
language processing. PLoS One 2018, 13, No. e0208962.
(25) Saini, V.; Kumar, R. A machine learning approach for predicting

the empirical polarity of organic solvents. New J. Chem. 2022, 46,
16981−16989, DOI: 10.1039/D2NJ02513B.
(26) Zang, Q.; Mansouri, K.; Williams, A. J.; Judson, R. S.; Allen, D.

G.; Casey, W. M.; Kleinstreuer, N. C. In Silico Prediction of
Physicochemical Properties of Environmental Chemicals Using
Molecular Fingerprints and Machine Learning. Chem. Inf. Model.
2017, 57, 36−49, DOI: 10.1021/acs.jcim.6b00625.
(27) Strieth-Kalthoff, F.; Sandfort, F.; Segler, M. H. S.; Glorius, F.

Machine learning the ropes: principles, applications and directions in
synthetic chemistry. Chem. Soc. Rev. 2020, 49, 6154−6168,
DOI: 10.1039/C9CS00786E.
(28) Scott, J. W.; Sherrill, L.; Jiang, J.; Zhao, K. Tuning to Odor

Solubility and Sorption Pattern in Olfactory Epithelial Responses. J.
Neurosci. 2014, 34, 2025−2036, DOI: 10.1523/JNEUROSCI.3736-
13.2014.
(29) U.S. Environment Protection Agency Database, https://www.epa.

gov/oppt/exposure/pubs/episuite.html. (accessed September 10,
2023).
(30) BIOVIA, COSMObase, TURBOMOLE; Version 2023, Dassault

System̀es: San Diego, 2023.
(31) Fisher, A.; Rudin, C.; Dominici, F. Model Class Reliance:

Variable importance measures for any machine learning model class,
from the ‘Rashomon’ perspective. J. Mach. Learn. Res. 2019, 20 (177),
1−38.
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