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Abstract

Objective

Candida kefyr causes invasive candidiasis in immunocompromised patients, particularly

among those with oncohematological diseases. This study determined the prevalence of C.

kefyr among yeast isolates collected during 2011–2018 in Kuwait. Antifungal susceptibility

testing (AST) and genotypic heterogeneity among C. kefyr was also studied.

Methods

Clinical C. kefyr isolates recovered from bloodstream and other specimens during 2011 to

2018 were retrospectively analyzed. All C. kefyr isolates were identified by CHROMagar

Candida, Vitek2 and PCR amplification of rDNA. AST was performed by Etest. Molecular

basis of resistance to fluconazole and echinocandins was studied by PCR-sequencing of

ERG11 and FKS1, respectively. Genotypic heterogeneity was determined with microsatel-

lite-/minisatellite-based primers and for 27 selected isolates by PCR-sequencing of IGS1

region of rDNA.

Results

Among 8257 yeast strains, 69 C. kefyr (including four bloodstream) isolates were detected

by phenotypic and molecular methods. Isolation from urine and respiratory samples from

female and male patients was significantly different (P = 0.001). Four isolates showed

reduced susceptibility to amphotericin B and one isolate to all (amphotericin B, fluconazole,

voriconazole and caspofungin/micafungin) antifungals tested. Fluconazole-resistant isolate

contained only synonymous mutations in ERG11. Echinocandin-resistant isolate contained

wild-type hotspot-1 and hotspot-2 of FKS1. Fingerprinting with microsatellite-/minisatellite-

based primers identified only three types. IGS1 sequencing identified seven haplotypes

among 27 selected isolates.
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Conclusions

The overall prevalence of C. kefyr among clinical yeast isolates and among candidemia

cases was recorded as 0.83% and 0.32%, respectively. The frequency of isolation of C.

kefyr from bloodstream and other invasive samples was stable during the study period. The

C. kefyr isolates grown from invasive (bloodstream, bronchoalveolar lavage, abdominal

drain fluid, peritonial fluid and gastric fluid) samples and amphotericin B-resistant isolates

were genotypically heterogeneous strains.

Introduction

Candida and some other yeast species colonize humans during or soon after birth and form

part of normal microbial flora of mucosal surfaces of the gastrointestinal/genitourinary tracts

and skin [1–3]. The isolation of Candida and other yeast species is usually higher from individ-

uals receiving broad-spectrum antibiotics or corticosteroid treatment or from individuals with

other debilitating underlying conditions that compromise/reduce host immunity such as dia-

betes, cancer, extremes of age (neonates and elderly), pregnancy and human immunodefi-

ciency virus infection [3–5]. Typically, these conditions also predispose the colonized

individuals to invasive or mucocutaneous infections by Candida or other yeast species [3–6].

Although Candida albicans is the most common cause of candidemia/invasive candidiasis,

>50% of all Candida infections are now caused by other non-albicans species of Candida and

are usually associated with high mortality rates [7–10]. In recent years, increasing number of

reports have described invasive infections by drug-resistant/multidrug-resistant Candida spp.

in medical centers worldwide [11–14]. The emerging multidrug-resistant Candida spp. include

Candida auris, Candida haemulonii complex members, Candida glabrata, Candida guilliier-
mondii complex members, Candida krusei, Candida lusitaniae, Candida lipolytica, Candida
rugosa and Candida kefyr [11–15].

Candida kefyr (Kluyveromyces marxianus), an ascomycetous yeast occasionally isolated

from dairy products [16, 17], has also been isolated from a variety of clinical specimens includ-

ing invasive samples and from the hands of health care workers [14, 18–21]. Recent reports

suggest that C. kefyr is an emerging pathogen in immunocompromised patients, particularly

those with oncohematological diseases [14, 22–25]. C. kefyr has attracted attention due to its

reduced susceptibility to amphotericin B [24, 26–29] and its ability to acquire resistance to

echinocandins rapidly [30, 31]. The epidemiology of C. kefyr as a human pathogen is poorly

understood due to lack of well-defined studies, particularly from the Middle Eastern countries.

Here, we describe molecular characterization, susceptibility to antifungal agents and genotypic

heterogeneity among a large collection of C. kefyr isolates collected from various clinical speci-

mens over an 8-year period in Kuwait.

Materials and methods

Reference strains and clinical yeast isolates

Reference strains or well characterized clinical isolates of C. kefyr (ATCC28838, ATCC26548

and CBS4857), C. albicans (ATCC90028), Candida parapsilosis (ATCC22019), C. glabrata
sensu stricto (CBS138), Candida nivariensis (CBS9983), Candida bracarensis (CBS10154),

Candida tropicalis (ATCC750), Candida dubliniensis (CBS7987), C. lusitaniae (CBS4413), C.

guilliermondii (CBS6021) and Candida famata (CBS796) were used as reference Candida
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species. The clinical specimens for this retrospective study were collected from adult patients

after obtaining informed verbal consent only at nine major public sector hospitals spread out

across Kuwait for identification and antifungal susceptibility testing (AST) of fungi as part of

routine patient care and diagnostic work-up and the data are reported on deidentified samples

from each patient. The study and the consent procedure were approved by the Ethical Com-

mittee of Health Sciences Center, Kuwait University (Approval no. VDR/EC/2477). All clinical

yeast isolates were streaked on Sabouraud dextrose agar (SDA) (Difco) supplemented with

chloramphenicol (50 mg/L) plates for checking purity before phenotypic and molecular identi-

fication studies.

Phenotypic and molecular identification

All yeast isolates were processed for identification by colony characteristics on CHROMagar

Candida and by Vitek2 yeast identification system (bioMérieux, Marcy-L´Etoile, France) as

described previously [32]. Bloodstream isolates were also tested by matrix-assisted laser

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS; bioMérieux,

Marcy l’Etoile, France). Briefly, a single colony from a fresh culture of the isolate on SDA was

suspended in 1 ml of 70% ethanol, vortexed briefly, and centrifuged at 13,000xg for 2 minutes

in a microfuge. The pellet was re-suspended in 50 μl of 70% formic acid (Fluka, USA) and

50 μl of acetonitrile (Fluka, USA), vortexed briefly and centrifuged for 2 minutes at 13,000xg.

One μl of the extracted supernatant was transferred to an individual spot on the 48 well

VITEK MS disposable target slide, covered with 1 μl ready to use VITEK MS HCCH matrix

(bioMerieux) and air dried. The slides were processed by VITEK MS machine and the data

were interpreted according to manufacturer’s instructions and as described in detail previously

[33].

Molecular identity of each C. kefyr isolate was established by developing a simple species-

specific PCR assay targeting the internal transcribed spacer (ITS) region of rDNA. DNA from

reference strains and clinical yeast isolates was extracted by the rapid boiling method using

Chelex-100 as described previously [34] or by using Gentra Puregene Yeast DNA extraction

kit (Qiagen, Hilden, Germany) used according to kit instructions. The ITS region was ampli-

fied by using C. kefyr-specific forward (CKEF, 5’-GCTCGTCTCTCCAGTGGACATA-3’) and

reverse (CKER, 5’-ACTCACTACCAAACCCAAAGGT-3’) primers by using the reaction and

cycling conditions and amplicons were detected by agarose gel electrophoresis, as described

previously [34]. The species specificity of the combination of CKEF and CKER primers for C.

kefyr was indicated by BLAST searches (http://blast.ncbi.nlm.nih.gov/Blast.cgi?). The PCR

assay should yield an amplicon of 268 bp from C. kefyr while no amplicon is expected from

other Candida or other yeast species. The identification of 27 selected isolates was also con-

firmed by PCR-sequencing of the ITS region of rDNA by using panfungal primers, as

described previously [35]. BLAST searches (http://blast.ncbi.nlm.nih.gov/Blast.cgi?) were per-

formed and>99% sequence identity was used for species identification [36].

Antifungal susceptibility testing

The AST was performed by Etest (bioMérieux SA, Marcy-l’-Etoile, France) according to man-

ufacturer’s instructions and as described previously [37]. Reference strains of C. parapsilosis
(ATCC22019) and C. albicans (ATCC90028) were used for quality control. Since there are no

susceptibility breakpoints available for C. kefyr, the isolates were described as susceptible,

intermediate/susceptible dose-dependent and resistant using Clinical and Laboratory Stan-

dards Institute (CLSI) breakpoints used for C. albicans as follows: <2, 4 and >8 μg/ml for flu-

conazole, <0.12, 0.25–0.5, and>1 μg/ml for voriconazole and<0.25, 0.5 and>1 μg/ml for
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caspofungin, respectively [38]. Although there is no accepted clinical breakpoint, the isolates

with minimum inhibitory concentrations (MICs) of>1 μg/ml for amphotericin B were con-

sidered as non-wild-type (resistant) [24].

PCR-sequencing of ERG11 gene for fluconazole resistance

The ERG11 gene was amplified as two overlapping fragments by using C. kefyr-specific ampli-

fication primers by using the ERG11 sequence from C. kefyr ATCC26548 (GenBank accession

no. KF964546) and CBS4857 (GenBank accession no. CP015055) as reference. C. kefyr
ATCC26548 (= CBS6556) is susceptible to triazoles (fluconazole, voriconazole and itracona-

zole), echinocandins (caspofungin and micafungin) and amphotericin B [39]. The N-terminal

fragment was amplified by using CkefERG11F1 (5’-GAGAATTGGCGATACAGACTAA-3’)

and CkefERG11R1 (5’-TTATCRGTCATCTTAGTACCATC-3’) primers and C-terminal frag-

ment was amplified by using CkefERG11F2 (5’-GGTTTCACTCCATTGAACTTCGT-3’) and

CkefERG11R2 (5’-GTAAAACTTGTCGGAGGGAAGAA-3’) primers. Other reaction condi-

tions and cycling parameters were same as described previously for PCR amplification of

ERG11 gene from C. parapsilosis [40]. The amplicons were sequenced in both directions by

using the DNA sequencing protocol for C. parapsilosis ERG11 gene as described previously

[40] except that C. kefyr-specific primers listed below were used. N-terminal amplicons were

sequenced with CkefERG11FS1 (5’-ATTGGCGATACAGACTAAGAATA-3’), CkefERG11FS2

(5’-GTACTTGGGGCCAAAGGGTCACGA-3’) or CkefERG11RS1 (5’-AACGAACTTCT
TTTGGTCCATTAG-3’) or CkefERG11RS2 (5’-GTCATCTTAGTACCATCYTTGTA-3’)

primer. C-terminal amplicons were sequenced with CkefERG11FS3 (5’-CTATCGTAAGAG
AGACCATGCCCA-3’) or CkefERG11FS4 (5’-TTGCACTCTTTGTTCCGTAAAGT-3’) or

CkefERG11RS3 (5’-TCTTGCAAATGACAGTAACCTGG-3’) or CkefERG11RS4 (5’-AAAC
TTGTCGGAGGGAAGAAAATA-3’) primer. The complete ERG11 sequences of 1752 bp were

assembled and were compared with the corresponding sequences from reference C. kefyr
strains ATCC26548 and CBS4857 by using Clustal omega (https://www.ebi.ac.uk/Tools/msa/

clustalo/).

PCR-sequencing of hotspot-1 and hotspot-2 of FKS1 gene for echinocandin

resistance

The mutations conferring resistance to echinocandins typically are located in hotspot-1 or hot-

spot-2 region of FKS1 gene [14, 31, 41]. The hotspot-1 region of FKS1 gene was amplified by

using C. kefyr-specific CkefFKS1F1 (5’-GGTCTTGATATGTGGATGTCCTA-3’) and

CkefFKS1R1 (5’-AAATGTTTCTCCATGGAGTCAAA-3’) primers while hotspot-2 region was

amplified by using C. kefyr-specific CkefFKS1F2 (5’-TGGGTACACAATTGCCACTTGA-3’)

and CkefFKS1R2 (5’-AATATAACGAGCACCACCGATA-3’) primers. Other reaction and

cycling conditions were same as described previously for the amplification of FKS1 gene from

C. tropicalis [42]. Both strands of purified amplicons were sequenced with internal C. kefyr-spe-

cific sequencing primers for hotspot-1 (CkefFKS1F1S, 5’-CTTGATATGTGGATGTCCTA
CTT-3’ or CkefFKS1R1S, 5’-TGTTTCTCCATGGAGTCAAAATG-3’) and for hotspot-2

(CkefFKS1F2S, 5’-TACACAATTGCCACTTGACCGT-3’ or CkefFKS1R2S, 5’-TAACGAGC
ACCACCGATAGTTA-3’) by following the DNA sequencing protocol as described previously

[42].

Molecular fingerprinting studies

The genotypic heterogeneity among C. kefyr isolates was investigated by using minisatellite-

based (M13-MIN, 5’-GAGGGTGGCGGTTCT-3’) and microsatellite-based (GACA4, 5’-GAC
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AGACAGACAGACA-3’) primers, as described previously [43]. Additional fingerprinting for

27 selected C. kefyr isolates was performed by PCR-sequencing of the non-transcribed inter-

genic spacer (IGS)-1 region located between 28S rRNA and 5S rRNA genes in rDNA. The

IGS-1 was amplified by using panfungal NTS1F (5’-GGGATAAATCATTTGTATACGAC-3’)

and NTS1R (5’-TTGCGGCCATATCCACAAGAAA-3’) primers and the PCR amplification

reaction and cycling conditions as described previously [44]. The amplicons were purified and

both strands were sequenced as described previously [44] except that NTS1FS (5’-CGGAGT
ATTGTAAGCAGTAGA-3’), CkefNTS1FS2 (5’-GCCATGTAAATACGTCTTCGA-3’),

CkefNTS1RS1 (5’-TGCTATAGGATAGTACTGCAGC-3’) or CkefNTS1RS2 (5’-GCATG
CACATAAGTAATGTGA-3’) was used as sequencing primer. The IGS-1 sequences for each

isolate were assembled. The phylogenetic tree was constructed by using BioNumerics v7.5 soft-

ware (Applied Maths, Sint-Martens-Latem, Belgium) and standard unweighted pair group

method with arithmetic mean (UPGMA) settings. The robustness of tree branches was

assessed by bootstrap analysis with 1,000 replicates.

Statistical analysis

Statistical analysis was performed by using Fisher’s exact test or chi-square test as appropriate

and probability levels <0.05 by the two-tailed test were considered as significant. Statistical

analyses were performed by using WinPepi software ver. 11.65 (PEPI for Windows, Microsoft

Inc., Redmond, WA, USA).

Results

Prevalence of C. kefyr among yeast isolates and phenotypic and molecular

identification

Of 8257 yeast isolates from same number of patients tested during the 8-year study period

(2011 to 2018), 69 isolates from 69 patients (only one isolate from each patient was considered)

were identified as C. kefyr with an overall prevalence of 0.83% among total yeast species isolates

(Table 1). Repeat isolates were also obtained from 11 patients. Four bloodstream and seven iso-

lates from other invasive (such as bronchoalveolar lavage, abdominal drain fluid, peritonial

fluid and gastric fluid) samples were included among 69 C. kefyr (Table 1). The remaining 58

isolates were obtained from non-invasive (such as urine, sputum, tracheal aspirate, vaginal

Table 1. Distribution of total, invasive and amphotericin B (AMB)-resistant C. kefyr strains detected among clinical yeast isolates collected during 2011–2018 in

Kuwait.

Year of No. of yeast No. of C. kefyr No. of C. kefyr from No. of AMB-resistant

isolation isolates tested isolates detected invasive samples C. kefyr isolates

2011 926 11 2 1

2012 924 5 0 0

2013 1052 9 1 0

2014 869 8 2 0

2015 1068 10 0 1

2016 1196 10 1 0

2017 1033 7 1 1

2018 1189 9 4 2�

Total 8257 69 11 5

�One isolate (Kw2153/18) was resistant to amphotericin B, fluconazole, voriconazole, caspofungin and micafungin.

https://doi.org/10.1371/journal.pone.0240426.t001
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swab, throat swab, upper palate swab and ear swab) were considered as non-invasive samples.

One bloodstream isolate came from a patient with acute lymphocytic leukemia. The occur-

rence of total C. kefyr isolates and isolates from bloodstream and other invasive samples during

the two 4-year-periods (2011 to 2014 and 2015–2018) was nearly same (Table 1). A total of

1238 bloodstream isolates were recovered from 1238 candidemia patients during the same

study period. Thus, the prevalence of C. kefyr among bloodstream Candida spp. isolates was

low (4 of 1238, 0.3%). The clinical details, history of treatment with antifungal drugs and out-

come were available for 2 of 4 patients with candidemia. Although both isolates (Kw1609/11

and Kw3267/11) were susceptible to all four antifungal drugs, Patient 1 treated with flucona-

zole for 21 days and Patient 2 treated with caspofungin for 1 month died.

The distribution of C. kefyr in different clinical specimens is presented in Table 2. Fifty of

69 (72%) patients were hospitalized in two tertiary care hospitals that exclusively cater to

immunocompromised/cancer patients. Forty-two patients were females. The largest number

of C. kefyr isolates were obtained from urine samples (n = 31) followed by 24 respiratory sam-

ples (sputum, n = 18; tracheal aspirate, n = 4; bronchoalveolar lavage, n = 2). Interestingly,

only 5 of 26 (19%) urine isolates but 17 of 24 (71%) respiratory isolates were obtained from

male patients (P = 0.001) (Table 2). All isolates were negative by germ tube test, formed light

purple to lavender-colored colonies on CHROMagar Candida and were identified as C. kefyr
by Vitek2 yeast identification system.

The molecular identity of all C. kefyr isolates was confirmed by a simple PCR assay devel-

oped in this study. PCR amplification performed with CKEF and CKER primers yielded an

amplicon of 268 bp with genomic DNA from C. kefyr ATCC28838 (S1 Fig, lane 11). No ampli-

con was obtained from C. albicans ATCC56881, C. dubliniensis CBS7987, C. glabrata
ATCC90030, C. parapsilosis ATCC22019, C. tropicalis ATCC34139, C. krusei ATCC6258, C.

orthopsilosis ATCC96139, C. metapsilosis ATCC96143, C. guilliermondii CBS6021 and C.

famata CBS796 (S1 Fig, lanes 1–10, respectively) as expected. No amplification was also

obtained in PCR assay with DNA from C. lusitaniae CBS4413, C. nivariensis CBS9983, C. bra-
carensis CBS10154, or from human cells, as expected. The same PCR assay performed with

DNA prepared from all 69 clinical C. kefyr isolates described in this study also yielded an

Table 2. Distribution of C. kefyr in different clinical specimens obtained from male and female patients in

Kuwait.

Specimen No. (%) of Patient characteristics

type C. kefyr isolates Male Female

Urine 31 (44.9) 5 26

Sputum 18 (26.1) 15 3

Blood 4b (5.8) 2 2

Fluidsa 5 (7.2) 2 3

Bronchoalveolar lavage 2 (2.9) 1 1

Tracheal aspirate 4 (5.8) 1 3

Vaginal swab 2 (2.9) 0 2

Throat swab 1 (1.5) 0 1

Upper palate swab 1 (1.5) 0 1

Ear swab 1 (1.5) 1 0

Total 69 27 42

aFluids included abdominal drain fluid, n = 2; peritoneal fluid, n = 2 and gastric fluid, n = 1.
bC. kefyr isolates from invasive samples are highlighted in bold.

https://doi.org/10.1371/journal.pone.0240426.t002
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amplicon of 268 bp which confirmed their identification as C. kefyr. The identification of all

four bloodstream isolates was also confirmed by MALDI-TOF MS.

PCR-sequencing of ITS region of rDNA from 27 selected (including all bloodstream and

drug-resistant) isolates also identified all isolates as C. kefyr as they exhibited >99% sequence

identity (0, 1 or 2 nucleotide differences) with corresponding sequence from reference C. kefyr
strains CBS4857, CBS5670, CBS1555 and CBS5669 with GenBank accession nos. CP105058,

KY103814, KY103791 and KY103739, respectively. The ITS sequence data also identified only

two haplotypes among 27 C. kefyr isolates. Two bloodstream isolates belonged to haplotype 1

while the remaining 25 isolates (including the remaining two bloodstream isolates) belonged

to haplotype 2.

Antifungal susceptibility and molecular basis of resistance to fluconazole

and caspofungin

The data on antifungal susceptibility (MIC distribution, MIC range, MIC50, MIC90, and No. of

resistant isolates) for 63 available C. kefyr isolates (6 isolates were lost during storage) against

four (amphotericin B, fluconazole, voriconazole and caspofungin) antifungal drugs are pre-

sented in Table 3. Susceptibility testing for micafungin was only performed for C. kefyr isolate

showing reduced susceptibility to caspofungin to confirm resistance to echinocandins. The

bloodstream isolates and 6 of 7 other isolates obtained from invasive samples were susceptible

to all antifungal agents tested. Five isolates showed reduced susceptibility to amphotericin B

(MIC >1 μg/ml) including one isolate from bronchoalveolar lavage and four of these five iso-

lates were obtained during 2015–2018 (Table 1). One isolate (Kw2153/18) was multidrug-

resistant as it also exhibited reduced susceptibility to fluconazole (MIC>256 μg/ml), voricona-

zole (MIC = 32 μg/ml) and caspofungin (MIC = 0.5 μg/ml). This isolate (Kw2153/18) was also

tested against micafungin by Etest and was scored as resistant (MIC = 1 μg/ml). PCR-sequenc-

ing of ERG11 from fluconazole-resistant (Kw2153/18) and one fluconazole-susceptible

(Kw3415/15) isolate showed that both isolates contained wild-type sequence of Erg11 protein

even though three synonymous mutations were identified in both sequences compared to the

reference sequence from C. kefyr ATCC26548 (GenBank accession no. KF964546). Similarly,

few synonymous mutations were also identified, however, amino acid sequences of hotspot-1

and hotspot-2 regions of FKS1 were same in echinocandin-resistant (Kw2153/18) and eight

echinocandin-susceptible isolates. Repeat isolates yielded the same susceptibility pattern as the

first isolate from all 11 patients.

Genotypic heterogeneity among C. kefyr isolates

Fingerprinting studies with minisatellite-based (M13-MIN) and microsatellite-based

(GACA4) primers identified only 3 genotypes among all C. kefyr isolates (data from 7 selected

isolates are shown in S2 Fig). PCR-sequencing of IGS1 region from 27 selected isolates identi-

fied 7 haplotypes with Haplotype D shared among 18 isolates (Fig 1). However, all Haplotype

D isolates were not identical as comparison of sequence data for hotspot-1 and hotspot-2

regions of FKS1 that was available for nine isolates showed five different patterns.

The DNA sequence data reported in this study have been submitted to EMBL/GenBank

database under accession no. LR738859 to LR738911, LR761624 to LR761633 and LR877022

to LR877031.

Discussion

C. kefyr is considered as a potential multidrug-resistant yeast species since many isolates

exhibit reduced susceptibility to amphotericin B and it also readily develops resistance as a
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result of short exposure to echinocandins [13, 24, 26–31]. During screening of 8257 yeast iso-

lates collected during an eight-year-period (2011–2018), 69 individual (including 4 candide-

mia) patient isolates were identified as C. kefyr with an overall prevalence of 0.83%. During the

same period, 1238 culture-confirmed candidemia cases were recorded in Kuwait resulting in a

prevalence rate of 0.32% for C. kefyr fungemia. C. kefyr is a well-recognized pathogen causing

invasive candidiasis among cancer patients and transplant recipients [19, 22–25, 45]. In one

study involving patients with hematological malignancies, C. kefyr was responsible for causing

candidemia in nearly 10% patients [24].

Only few studies have specifically investigated the epidemiology of C. kefyr and its role in

invasive disease in hospitalized patients. In a comprehensive recent study based on 20 years

(1997–2016) of SENTRY Antifungal Surveillance Program, C. kefyr was recorded as the 7th most

common cause of invasive candidiasis and its prevalence was nearly two times higher (94 of

15308, 0.61%) than in our study [14]. However, this study included patients with candidemia

and other invasive Candida infections. Interestingly, seven C. kefyr isolates were also obtained

from other invasive samples in Kuwait including two isolates from bronchoalveolar lavage from

two patients with pneumonia, two isolates from peritoneal fluid obtained from two patients with

peritonitis, two isolates from abdominal fluid from two patients with intra-abdominal infection

and one isolate from a gastric aspirate. Although clinical details of patients yielding these isolates

were not available, it is pertinent to mention here that 50 of 69 (72%) patients (including 23 can-

cer patients) yielding C. kefyr in our study were hospitalized in two tertiary care hospitals where

immunocompromised/immunosuppressed patients are treated and isolation of yeast from an

invasive sample may be the only sign of a deep-seated fungal infection [6, 46]. Furthermore, C.

kefyr has previously been shown to cause pneumonia, peritonitis, intra-abdominal candidiasis

and gastroenteritis in immunocompromised patients [19, 45, 47]. Thus isolation of C. kefyr from

invasive samples from seven patients appears to be clinically significant.

The largest number (31 of 69, 45%) of C. kefyr isolates were obtained from urine samples

mostly (26 of 31, 84%) from female patients and respiratory samples (24 of 69, 34.8%) mostly

(17 of 24, 70.8%) obtained from male patients. Candiduria in female patients either results

from contamination or reflects a deep-seated infection, particularly in immunocompromised

subjects in the intensive care units, which may require invasive procedures for management

[48, 49]. Interestingly, repeat urinary isolates were obtained from seven (including six female)

patients with one patient yielding five and another patient yielding 10 isolates during several

weeks of hospitalization. C. kefyr was responsible for 2 of 17 (11.8%) cases of urinary tract can-

didiasis in a recent study from Iran [19] and is also known to cause bladder fungus ball [24].

Table 3. In vitro susceptibilities of C. kefyr isolates to four antifungal agents as determined by Etest.

Antifungal

drug

No. of

isolates

No. of isolates with minimum inhibitory concentration

(MICa) (μg/ml) of

MIC range MIC50 MIC90 Tentative

breakpointsb
No. (%) of resistant

isolates

<0.125 0.19 0.25 0.38 0.5 0.75 1 3 4 32 >64

Amphotericin

B

63 11 7 6 18 8 6 2 0 1 4 0 0.002–32 0.38 1 >1 5 (7.8)

Fluconazole 63 8 17 8 6 14 4 4 1 0 0 1 0.003–256 0.25 0.75 >8 1 (1.6)

Voriconazole 63 62 0 0 0 0 0 0 0 0 1 0 0.002–32 0.012 0.032 >1 1 (1.6)

Caspofungin 63 45 17 0 0 1c 0 0 0 0 0 0 0.008–0.38 0.094 0.19 >0.5 1c (1.6)

aMIC, minimum inhibitory concentration.
bMIC values defining resistance to antifungal drug.
cOne isolate was categorized as intermediate for caspofungin, however, it was resistant to micafungin (MIC = 1 μg/ml).

https://doi.org/10.1371/journal.pone.0240426.t003
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Similarly, isolation of Candida from respiratory samples, particularly sputum or tracheal aspi-

rate may indicate a mere colonization or an invasive infection. C. kefyr was also recently

reported as a cause of nosocomial pneumonia in 5 of 17 (29.4%) hematological patients [45]. It

has been postulated that reduced susceptibility of C. kefyr to antifungal agents that results in its

selection during therapeutic and prophylactic use of antifungal drugs (mainly echinocandins)

and mucositis caused by anticancer therapy could possibly contribute to increased gastrointes-

tinal colonization and invasion [24, 50–53].

Although the occurrence of C. kefyr from bloodstream and other invasive samples was nearly

same during the two 4-year-periods, four of five isolates with reduced susceptibility to amphoter-

icin B were obtained during last four years. Our data are in agreement with few other studies

showing reduced susceptibility of C. kefyr to amphotericin B [24, 26–29, 54] but contrary to the

Fig 1. Dendrogram based on unweighted pair group method with arithmetic mean (UPGMA) and derived from intergenic spacer (IGS)-1 sequence

data for 27 C. kefyr isolates. The source of isolation and susceptibility to amphotericin B (AMB) are also shown for each isolate.

https://doi.org/10.1371/journal.pone.0240426.g001
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data reported from Spain [55]. Interestingly, one amphotericin B-resistant isolate was potentially

a multidrug-resistant C. kefyr as it also exhibited reduced susceptibility to both triazoles (flucona-

zole and voriconazole) and the two echinocandins (caspofungin and micafungin) tested. Four of

five bloodstream C. kefyr isolates in one study involving leukemia patients were resistant to both

amphotericin B and caspofungin and two isolates were additionally resistant to fluconazole [29].

Another multidrug-resistant C. kefyr isolate from a patient with hematologic malignancy has also

been described that was not only resistant to fluconazole, amphotericin B and micafungin but

was also resistant to flucytosine [24]. Furthermore, five episodes of breakthrough infection

occurred; three among patients receiving micafungin and two among patients receiving ampho-

tericin B [24]. Thus C. kefyr is another emerging potentially multidrug-resistant yeast pathogen

in Kuwait, in addition to C. auris, in recent years [32]. This is a matter of concern since mortality

rates for C. kefyr invasive infections caused by even drug-susceptible strains are higher than

those for C. albicans [50, 52, 53]. This is also evident from the fact that both patients with C. kefyr
candidemia in Kuwait for whom clinical details and outcome were available (clinical details and

outcome were not available for the other two candidemia patients) died.

PCR sequencing of ERG11 revealed wild-type sequence for Erg11 protein in our triazole-

resistant C. kefyr isolate (Kw2153/18). On the contrary, Couzigou et al. [39], reported two

non-synonymous mutations (E123Q and K151E) conferring resistance to both fluconazole

and voriconazole in a triazole-resistant C. kefyr isolate in France. Thus the molecular basis of

resistance to triazoles in our isolate could either involve upregulation of ERG11 or overexpres-

sion of ABC efflux transporters [12, 41]. PCR-sequencing also did not identify any non-synon-

ymous mutation in hotspot-1 or hotspot-2 region of FKS1 gene in echinocandin-resistant

isolate (Kw2153/18). Again our results are contrary to other studies which have reported muta-

tions in hotspot-1 [31] or hotspot-2 [14] of FKS1 in echinocandin-resistant C. kefyr isolates.

Taken together, our findings suggest that the multidrug-resistant isolate (Kw2153/18) likely

resulted from mechanisms that confer resistance to multiple drugs [12, 41, 56].

Fingerprinting of C. kefyr isolates was performed to determine clonality. Studies with min-

isatellite-based and microsatellite-based primers identified only 3 genotypes. PCR sequencing

of ITS region of rDNA also identified only two haplotypes among 27 selected isolates. This is

similar to highly clonal Candida species such as Candida auris, C. haemulonii, C. parapsilosis
and C. orthopsilosis [15, 32, 34] but contrary to many ITS haplotypes that were identified

among isolates of C. dubliniensis, C. lusitaniae or C. glabrata in previous studies [57–59]. Since

no multilocus sequence typing scheme is currently available for C. kefyr, further fingerprinting

was performed by PCR-sequencing of IGS1 region of rDNA and identified 7 haplotypes

among 27 selected isolates. However, all isolates (n = 18) in the largest cluster (IGS Haplotype

D) were also not genotypically identical as further analysis of nine isolates using ITS region of

rDNA and hotspot-1 and hotspot-2 regions of FKS1 gene showed five distinct genotypes.

Taken together, our data show that invasive and amphotericin B-resistant C. kefyr isolates in

Kuwait were genetically different strains.

Our study has few limitations. i) The antifungal susceptibility data is based on Etest instead

of the reference broth microdilution method and susceptibility testing for micafungin was

only performed for C. kefyr isolate showing reduced susceptibility to caspofungin. ii) Molecu-

lar fingerprinting of C. kefyr isolates by PCR-sequencing of IGS1 region of rDNA was per-

formed for only 27 selected isolates.

Conclusions

Molecular characterization, antifungal susceptibility profile and genotypic heterogeneity was

determined among a large collection of C. kefyr strains isolated from clinical specimens
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including four bloodstream and seven other invasive samples collected during 2011–2018 in

Kuwait. Four isolates showed reduced susceptibility to amphotericin B and one isolate to all

(amphotericin B, fluconazole, voriconazole and caspofungin/micafungin) antifungals tested.

Four of five isolates with reduced susceptibility to amphotericin B (including multidrug-resis-

tant isolate) were obtained during last four years suggesting that drug resistance to common

antifungals in C. kefyr is increasing. Furthermore, the invasive and amphotericin B-resistant

isolates were genotypically heterogeneous ruling out the possibility of spreading of a dominant

and invasive C. kefyr strain in Kuwait.
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