organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dimethylammonium perchlorate 18-crown-6 monohydrate clathrate

Jia-Zhen Ge,* Min-Min Zhao and Ping-Ping Shi

Ordered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: gjz@seu.edu.cn

Received 29 May 2010; accepted 17 June 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; disorder in solvent or counterion; R factor = 0.058; wR factor = 0.171; data-toparameter ratio = 17.6.

The reaction of dimethylamine, 18-crown-6, and perchloric acid in methanol yields the title compound, C₂H₈N⁺·ClO₄⁻·- $C_{12}H_{24}O_6 \cdot H_2O$. The dimethylammonium cation and the water molecule interact with the 18-crown-6 unit: N-H···O hydrogen bonds are formed between the ammonium NH₂⁺ group and four O atoms of the crown ether, while the water molecule on the other side of 18-crown-6 ring forms O- $H \cdots O$ hydrogen bonds with two other O atoms of the crown ether. All conventional donors and acceptors in the cations are thus engaged in hydrogen bonding. The ClO_4^- anion is disordered over two sites, and occupancies for the disordered O atoms were fixed at 0.5. In the crystal, the cations and anions are arranged in alternating layers.

Related literature

For the similar structure, 18-crown-6 clathrate, see: Pedersen (1967). For the ferroelectric properties of related materials, see: Fu et al. (2007); Ye et al. (2009); Zhang et al. (2009).

Experimental

Crystal data $C_2H_8N^+ \cdot ClO_4^- \cdot C_{12}H_{24}O_6 \cdot H_2O_6$ $M_r = 427.87$ Orthorhombic, $P2_12_12_1$ a = 10.684 (2) Å b = 13.954 (3) Å c = 14.583 (3) Å V = 2174.1 (8) Å³

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan CrystalClear (Rigaku, 2005) $T_{\min} = 0.955, T_{\max} = 0.955$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained
$wR(F^2) = 0.171$	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.00	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
4973 reflections	Absolute structure: Flack (1983),
283 parameters	2164 Friedel pairs
51 restraints	Flack parameter: 0.02 (10)

Z = 4

Mo $K\alpha$ radiation

 $0.4 \times 0.3 \times 0.2 \text{ mm}$

22574 measured reflections

4973 independent reflections

2814 reflections with $I > 2\sigma(I)$

 $\mu = 0.23 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int}=0.070$

Table 1 Hydrogen-bond geometry (Å, °).

$D = H \dots A$	D-H	$H \cdots A$	$D \cdots A$	$D = H \cdots A$
	DII	11 71	DI	
$N1 - H1AA \cdots O6$	1.05	2.00	2.979 (4)	154
$N1 - H1BB \cdots O3$	0.86	2.14	2.979 (4)	164
$O20 - H20B \cdot \cdot \cdot O4^{i}$	0.90	2.12	3.013 (4)	171
$O20-H20A\cdotsO1^{i}$	0.76	2.21	2.927 (3)	158

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

The authors thank the start-up projects for the Postdoctoral Research Funds of Southeast University (grant No. 1112000047) and the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2290).

References

Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347

Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017-7036.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42-43.
- Zhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544-12545.

Acta Cryst. (2010). E66, 01740 [doi:10.1107/S1600536810023421]

Dimethylammonium perchlorate 18-crown-6 monohydrate clathrate

J.-Z. Ge, M.-M. Zhao and P.-P. Shi

Comment

The crown ethers are of a great interest since their discovery by Pedersen (1967). The ability of these macrocycles to form non-covalent, H-bonding complexes with ammonium cations has been actively investigated. Both the size of the crown ether and the nature of the ammonium cation (NH_4^+, RNH_3^+, etc) can influence on the stoichiometry and stability of these host-guest complexes. The host molecules combine with the guest species by intermolecular interactions, and if the host molecule has some specific sites, it is easy to realize high selectivity in ion or molecular recognition. 18-crown-6 has the highest affinity for ammonium cations RNH_3^+ , and most studies of 18-crown-6 and its derivatives invariably showed the 1:1 stoichiometry with RNH_3^+ cations.

The title compound dielectric permittivity was tested to systematically investigate the ferroelectric phase transitions of these materials (Fu *et al.*, 2007; Ye *et al.*, 2009; Zhang *et al.*, 2009). The title compound has no dielectric anomalies, with the relative permittivity at 1 MHz being in the range 4–5 between 80 and 330 K (m.p. is 353 K), suggesting that no phase transition occurred within the measured temperature range.

The title compound is composed of cation $[(CH_3)_2NH_2(18-Crown-6)]^+$, one isolated anion $(ClO_4)^-$, and one lattice water molecule (Fig 1). The protonated dimethylamine $[(CH_3)_2NH_2]^+$ and 18-crown-6 form a supramolecular structure through N—H…O hydrogen bonds between the ammonium NH₂⁺ group and four O atoms of the crown ether. The water molecule on the other side of the 18-crown-6 ring forms O—H…O hydrogen bonds between the O—H groups of water and two other O atoms of the crown ether. The intramolecular N—H…O hydrogen bond lengths are within the usual range: 2.979 (4)–3.285 (4) Å, and the intramolecular O—H…O hydrogen bond lengths are from 2.927 (3) to 3.013 (4) Å. The crown ring shows severe distortions. The six O atoms of the crown ether take the approximate "boat-shape" conformation. The four O atoms bonding to the NH₂⁺ cation lie on the bottom of the boat, while the other two O atoms bonded to the water molecule lie on the head and tail of the boat.

The $(ClO_4)^-$ anion is disordered, as detectable from the large displacement parameters for O atoms and short Cl—O bond lengths. The disorder was modelled with two sites with equal occupancies for O atoms, and the geometry of the anion was regularized through soft restraints.

Fig. 2 shows a view of the crystal structure down the *b* axis. The cations $[(CH_3)_2NH_2(18-Crown-6)]^+$ are arranged into layers almost parallel to (101). The anions $(ClO_4)^-$ are placed in the voids formed by the cations. The title compound is stabilized by intramolecular N—H···O and O—H···O hydrogen bonds, as above described, but no intermolecular hydrogen bonds are observed.

Experimental

Dimethylamine (2 mmol, 0.09 g) and an excess of perchloric acid (3 mmol, 0.302 g) were dissolved in methanol. Then, 18-crown-6 (2 mmol, 0.528 g) was added to the mixture. The precipitate was filtered and washed with a small amount of methanol. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution at room temperature over two days.

Refinement

All C-bonded H atoms were placed geometrically, with the C—H distances ranging from 0.96 to 0.97 Å. Isotropic displacement parameters were calculated as $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene groups and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl groups. H atoms bonded to N and O atoms were found in a difference map and refined as riding atoms and with $U_{iso}(H) = 1.5U_{eq}(carrier atom)$. O atoms for the perchlorate ion were splited over two sites, with equal occupancies fixed to 0.5. Cl—O bond lengths were restrained, as well as displacement parameters for disordered O atoms (51 restraints).

Figures

Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and a single orientation for the disordered perchlorate anion is shown.

Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.

Dimethylammonium perchlorate 18-crown-6 monohydrate clathrate

Crystal data

$C_2H_8N^+ \cdot ClO_4^- \cdot C_{12}H_{24}O_6 \cdot H_2O$	$D_{\rm x} = 1.307 {\rm ~Mg~m^{-3}}$
$M_r = 427.87$	Melting point: 353 K
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 2814 reflections
a = 10.684 (2) Å	$\theta = 3.2 - 27.5^{\circ}$
b = 13.954 (3) Å	$\mu = 0.23 \text{ mm}^{-1}$
c = 14.583 (3) Å	T = 293 K
V = 2174.1 (8) Å ³	Block, white
Z = 4	$0.4 \times 0.3 \times 0.2 \text{ mm}$

F(000) = 920

Data collection

Rigaku SCXmini diffractometer	4973 independent reflections
Radiation source: fine-focus sealed tube	2814 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.070$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
ω scans	$h = -13 \rightarrow 13$
Absorption correction: multi-scan CrystalClear (Rigaku, 2005)	$k = -18 \rightarrow 18$
$T_{\min} = 0.955, T_{\max} = 0.955$	$l = -18 \rightarrow 18$
22574 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained
$wR(F^2) = 0.171$	$w = 1/[\sigma^2(F_o^2) + (0.0794P)^2 + 0.2447P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\text{max}} = 0.007$
4973 reflections	$\Delta \rho_{max} = 0.29 \text{ e} \text{ Å}^{-3}$
283 parameters	$\Delta \rho_{min} = -0.15 \text{ e } \text{\AA}^{-3}$
51 restraints	Absolute structure: Flack (1983), 2168 Friedel pairs
0 constraints	Flack parameter: 0.02 (10)
Primary atom site location: structure-invariant direct	

methods

Exactional atomic coordinates and isotropic or equivalent isotropic displacement parameters	. 7
Γ racional alomic coorainales and isofrobic or equivalent isofrobic displacement barameters	(A^2)

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cl1	0.98649 (9)	0.31614 (6)	0.61639 (6)	0.0683 (3)	
01	0.26118 (19)	0.62910 (16)	0.62120 (17)	0.0615 (6)	
O4	0.72647 (19)	0.61810 (16)	0.58783 (16)	0.0580 (6)	
O5	0.6370 (2)	0.58013 (18)	0.76505 (16)	0.0661 (7)	
O2	0.3466 (2)	0.56628 (17)	0.44918 (16)	0.0631 (6)	
O3	0.6070 (2)	0.51865 (17)	0.43975 (16)	0.0659 (7)	
O6	0.3742 (2)	0.54342 (19)	0.77918 (17)	0.0686 (7)	
C6	0.1812 (3)	0.6189 (3)	0.5450 (3)	0.0666 (10)	
H6A	0.1124	0.6640	0.5498	0.080*	
H6B	0.1466	0.5547	0.5439	0.080*	
C12	0.8060 (3)	0.6151 (3)	0.6658 (3)	0.0690 (10)	
H12A	0.8769	0.6575	0.6567	0.083*	
H12B	0.8375	0.5506	0.6745	0.083*	
C5	0.2518 (3)	0.6370 (3)	0.4595 (3)	0.0655 (9)	

H5A	0.1954	0.6348	0.4074	0.079*	
H5B	0.2895	0.7001	0.4618	0.079*	
C7	0.1976 (3)	0.6136 (3)	0.7052 (3)	0.0729 (11)	
H7A	0.1592	0.5507	0.7050	0.088*	
H7B	0.1320	0.6611	0.7126	0.088*	
C11	0.7341 (4)	0.6456 (3)	0.7479 (3)	0.0683 (10)	
H11A	0.7893	0.6487	0.8006	0.082*	
H11B	0.6993	0.7090	0.7378	0.082*	
C3	0.5202 (4)	0.5127 (3)	0.3647 (2)	0.0742 (11)	
H3A	0.4825	0.4494	0.3642	0.089*	
H3B	0.5655	0.5207	0.3075	0.089*	
C2	0.7006 (4)	0.5896 (3)	0.4281 (3)	0.0743 (11)	
H2A	0.6621	0.6525	0.4247	0.089*	
H2B	0.7456	0.5784	0.3714	0.089*	
C4	0.4200 (4)	0.5857 (3)	0.3699 (2)	0.0745 (10)	
H4A	0.4563	0.6493	0.3741	0.089*	
H4B	0.3681	0.5830	0.3154	0.089*	
C10	0.5660 (4)	0.6078 (3)	0.8436 (3)	0.0758 (11)	
H10A	0.5341	0.6724	0.8357	0.091*	
H10B	0.6185	0.6066	0.8979	0.091*	
C9	0.4614 (4)	0.5398 (3)	0.8540 (3)	0.0822 (12)	
H9A	0.4948	0.4754	0.8587	0.099*	
H9B	0.4174	0.5539	0.9106	0.099*	
C1	0.7897 (3)	0.5862 (3)	0.5074 (3)	0.0697 (10)	
H1A	0.8195	0.5211	0.5161	0.084*	
H1B	0.8612	0.6270	0.4952	0.084*	
C8	0.2889 (4)	0.6209 (3)	0.7833 (3)	0.0818 (12)	
H8A	0.3340	0.6810	0.7795	0.098*	
H8B	0.2441	0.6194	0.8412	0.098*	
07	1.0420 (16)	0.4009 (9)	0.6144 (13)	0.197 (9)	0.50
08	1.0022 (13)	0.2735 (7)	0.6991 (6)	0.140 (5)	0.50
09	0.8759 (8)	0.3033 (10)	0.5711 (8)	0.152 (4)	0.50
010	1.0765 (12)	0.2850 (9)	0.5452 (6)	0.172 (4)	0.50
07'	0.9855 (17)	0.4068 (8)	0.6012 (13)	0.186 (8)	0.50
08'	0.960 (2)	0.2425 (11)	0.5730 (13)	0.276 (10)	0.50
09'	1 072 (2)	0 2849 (18)	0.6660 (13)	0.313 (13)	0.50
010'	0.8799(10)	0 3385 (8)	0.6824 (10)	0.184 (5)	0.50
N1	0.4833 (3)	0.45369 (18)	0.61194 (19)	0.0711 (9)	
HIAA	0.4615	0.5025	0.6643	0.107*	
H1BB	0.5139	0.4836	0.5651	0.107*	
020	0 9938 (2)	0 7613 (2)	0 3947 (2)	0 0993 (10)	
H20A	0.9312	0 7809	0.3782	0 149*	
H20B	1.0611	0.8000	0 3942	0.149*	
C98	0 5941 (4)	0 3948 (3)	0.6317 (4)	0.0945 (14)	
H98A	0.6657	0.4356	0.6395	0.142*	
H98B	0.6087	0 3515	0 5817	0 142*	
H98C	0.5803	0.3589	0.6870	0.142*	
C99	0.3696 (4)	0.3968 (3)	0.6010 (3)	0.0905 (13)	
H99A	0 3009	0.4383	0 5861	0 136*	
11/7/1	0.0007	0.1505	0.0001	0.100	

H99B	0.3519	0.3636	0.6572	0.136*
H99C	0.3813	0.3511	0.5526	0.136*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0842 (6)	0.0557 (5)	0.0649 (5)	-0.0032 (5)	-0.0152 (5)	0.0061 (5)
01	0.0462 (11)	0.0691 (15)	0.0693 (14)	-0.0068 (10)	0.0032 (12)	-0.0023 (13)
O4	0.0470 (12)	0.0637 (14)	0.0632 (14)	0.0053 (11)	-0.0018 (11)	0.0033 (11)
05	0.0686 (15)	0.0762 (17)	0.0535 (14)	-0.0004 (14)	-0.0026 (13)	-0.0064 (12)
02	0.0706 (15)	0.0653 (14)	0.0533 (13)	0.0008 (12)	0.0002 (12)	0.0075 (12)
03	0.0718 (15)	0.0691 (15)	0.0569 (15)	0.0070 (13)	0.0017 (13)	0.0003 (13)
O6	0.0656 (15)	0.0867 (19)	0.0535 (14)	-0.0118 (14)	0.0089 (13)	-0.0105 (13)
C6	0.0490 (19)	0.068 (2)	0.083 (3)	0.0046 (17)	-0.005 (2)	0.007 (2)
C12	0.0472 (18)	0.073 (2)	0.087 (3)	-0.0077 (17)	-0.015 (2)	0.000 (2)
C5	0.059 (2)	0.061 (2)	0.076 (2)	0.0041 (18)	-0.011 (2)	0.0118 (19)
C7	0.0488 (19)	0.089 (3)	0.081 (3)	-0.0001 (19)	0.019 (2)	-0.014 (2)
C11	0.061 (2)	0.072 (2)	0.071 (2)	-0.0045 (19)	-0.013 (2)	-0.0100 (19)
C3	0.092 (3)	0.087 (3)	0.0432 (19)	0.016 (2)	-0.003 (2)	-0.0128 (18)
C2	0.089 (3)	0.079 (3)	0.054 (2)	0.012 (2)	0.018 (2)	0.008 (2)
C4	0.087 (2)	0.090 (3)	0.046 (2)	-0.002 (2)	-0.005 (2)	0.001 (2)
C10	0.083 (2)	0.095 (3)	0.049 (2)	-0.008 (2)	-0.008 (2)	-0.008 (2)
C9	0.105 (3)	0.095 (3)	0.047 (2)	-0.015 (3)	0.004 (2)	0.0011 (19)
C1	0.058 (2)	0.073 (3)	0.078 (3)	0.0017 (19)	0.017 (2)	0.006 (2)
C8	0.081 (3)	0.093 (3)	0.071 (3)	-0.011 (3)	0.016 (2)	-0.026 (2)
07	0.232 (15)	0.149 (12)	0.209 (14)	-0.154 (12)	0.056 (12)	-0.047 (10)
08	0.219 (14)	0.133 (7)	0.067 (4)	-0.045 (10)	-0.007 (6)	0.056 (4)
09	0.089 (5)	0.204 (11)	0.161 (9)	-0.010 (6)	-0.055 (6)	-0.045 (9)
O10	0.192 (9)	0.221 (12)	0.103 (6)	0.045 (9)	0.057 (6)	-0.033 (7)
07'	0.269 (19)	0.070 (7)	0.220 (14)	0.042 (9)	0.012 (14)	0.085 (8)
O8'	0.36 (2)	0.156 (11)	0.31 (2)	-0.123 (13)	0.08 (2)	-0.159 (14)
O9'	0.295 (19)	0.40 (3)	0.248 (19)	0.26 (2)	-0.030 (16)	0.118 (17)
O10'	0.127 (7)	0.174 (9)	0.251 (13)	0.008 (7)	0.059 (8)	-0.045 (9)
N1	0.121 (3)	0.0387 (14)	0.0533 (16)	0.0026 (17)	0.009 (2)	0.0043 (12)
O20	0.0592 (15)	0.0859 (19)	0.153 (3)	0.0080 (15)	0.0083 (19)	0.0404 (18)
C98	0.103 (3)	0.065 (2)	0.115 (4)	-0.013 (2)	-0.009 (3)	-0.008 (3)
C99	0.092 (3)	0.070 (2)	0.110 (4)	0.007 (2)	0.002 (3)	0.013 (3)

Geometric parameters (Å, °)

1.239 (9)	C11—H11A	0.9700
1.246 (13)	C11—H11B	0.9700
1.285 (9)	C3—C4	1.481 (5)
1.324 (9)	С3—НЗА	0.9700
1.356 (8)	С3—Н3В	0.9700
1.365 (7)	C2—C1	1.498 (5)
1.480 (8)	C2—H2A	0.9700
1.523 (10)	C2—H2B	0.9700
1.409 (4)	C4—H4A	0.9700
	1.239 (9) 1.246 (13) 1.285 (9) 1.324 (9) 1.356 (8) 1.365 (7) 1.480 (8) 1.523 (10) 1.409 (4)	1.239 (9) C11—H11A 1.246 (13) C11—H11B 1.285 (9) C3—C4 1.324 (9) C3—H3A 1.356 (8) C3—H3B 1.365 (7) C2—C1 1.480 (8) C2—H2A 1.523 (10) C2—H2B 1.409 (4) C4—H4A

O1—C7	1.418 (4)	C4—H4B	0.9700
O4—C12	1.420 (4)	С10—С9	1.474 (6)
O4—C1	1.425 (4)	C10—H10A	0.9700
O5—C11	1.405 (4)	C10—H10B	0.9700
O5—C10	1.427 (4)	С9—Н9А	0.9700
O2—C5	1.422 (4)	С9—Н9В	0.9700
O2—C4	1.422 (4)	C1—H1A	0.9700
O3—C2	1.418 (5)	C1—H1B	0.9700
O3—C3	1.437 (4)	C8—H8A	0.9700
O6—C8	1.415 (5)	C8—H8B	0.9700
O6—C9	1.435 (4)	N1—C99	1.460 (5)
C6—C5	1.479 (5)	N1—C98	1.469 (5)
С6—Н6А	0.9700	N1—H1AA	1.0493
С6—Н6В	0.9700	N1—H1BB	0.8642
C12—C11	1.485 (5)	O20—H20A	0.7616
C12—H12A	0.9700	O20—H20B	0.9001
C12—H12B	0.9700	С98—Н98А	0.9600
C5—H5A	0.9700	С98—Н98В	0.9600
С5—Н5В	0.9700	С98—Н98С	0.9600
С7—С8	1.502 (5)	С99—Н99А	0.9600
С7—Н7А	0.9700	С99—Н99В	0.9600
С7—Н7В	0.9700	С99—Н99С	0.9600
O7—Cl1—O8	110.8 (9)	O3—C2—H2A	109.8
07—Cl1—O9	119.6 (10)	C1—C2—H2A	109.8
O8—C11—O9	118.7 (8)	O3—C2—H2B	109.8
07—Cl1—O10	87.5 (10)	C1—C2—H2B	109.8
O8—Cl1—O10	114.5 (8)	H2A—C2—H2B	108.2
O9—Cl1—O10	100.7 (7)	O2—C4—C3	108.0 (3)
O8'—Cl1—O9'	99.9 (16)	O2—C4—H4A	110.1
08'—Cl1—O7'	136.6 (14)	С3—С4—Н4А	110.1
09'—Cl1—O7'	116.8 (15)	02—C4—H4B	110.1
08'-Cl1-O10'	109.0 (10)	C3—C4—H4B	110.1
O9'—C11—O10'	104.7 (9)	H4A—C4—H4B	108.4
07'-Cl1-O10'	84 3 (10)	05-010-09	108.2 (3)
$C_{6} - C_{1} - C_{7}$	112.1.(2)	05-C10-H10A	110.1
$C_{12} = 04 = C_{1}$	111.5 (2)	C9—C10—H10A	110.1
$C_{11} = 05 = C_{10}$	111.0 (3)	05-C10-H10B	110.1
C5	110 3 (3)	C9—C10—H10B	110.1
$C^2 = O^3 = C^3$	113.9 (3)	H10A—C10—H10B	108.4
$C_{8}^{}C_{9}^{}C_{9}^{}$	114 4 (3)	06-09-010	113.1 (3)
01 - 6 - 5	109.8 (3)	06—C9—H9A	109.0
01—C6—H6A	109.7	C10-C9-H9A	109.0
C5—C6—H6A	109.7	06-C9-H9B	109.0
01—C6—H6B	109.7	C10—C9—H9B	109.0
C5-C6-H6B	109.7	H9A_C9_H9B	107.8
Н6А—С6—Н6В	108.2	04-C1-C2	108.9 (3)
04-C12-C11	109.1 (3)	04—C1—H1A	109.9
04-C12-H12A	109.9	C^2 — C^1 — H^1A	109.9
C11—C12—H12A	109.9	O4-C1-H1B	109.9
011 012 1112/1	107.7		107.7

O4—C12—H12B	109.9	C2—C1—H1B	109.9
C11—C12—H12B	109.9	H1A—C1—H1B	108.3
H12A—C12—H12B	108.3	O6—C8—C7	109.5 (3)
O2—C5—C6	109.6 (3)	O6—C8—H8A	109.8
O2—C5—H5A	109.8	С7—С8—Н8А	109.8
С6—С5—Н5А	109.8	O6—C8—H8B	109.8
O2—C5—H5B	109.8	С7—С8—Н8В	109.8
С6—С5—Н5В	109.8	H8A—C8—H8B	108.2
H5A—C5—H5B	108.2	C99—N1—C98	112.8 (3)
O1—C7—C8	109.5 (3)	C99—N1—H1AA	104.3
O1—C7—H7A	109.8	C98—N1—H1AA	113.5
С8—С7—Н7А	109.8	C99—N1—H1BB	119.3
O1—C7—H7B	109.8	C98—N1—H1BB	97.0
С8—С7—Н7В	109.8	H1AA—N1—H1BB	110.2
H7A—C7—H7B	108.2	H20A—O20—H20B	118.8
O5-C11-C12	109.8 (3)	N1—C98—H98A	109.5
O5-C11-H11A	109.7	N1—C98—H98B	109.5
C12—C11—H11A	109.7	H98A—C98—H98B	109.5
O5-C11-H11B	109.7	N1—C98—H98C	109.5
C12—C11—H11B	109.7	H98A—C98—H98C	109.5
H11A—C11—H11B	108.2	H98B—C98—H98C	109.5
O3—C3—C4	112.8 (3)	N1—C99—H99A	109.5
O3—C3—H3A	109.0	N1—C99—H99B	109.5
С4—С3—НЗА	109.0	Н99А—С99—Н99В	109.5
O3—C3—H3B	109.0	N1—C99—H99C	109.5
C4—C3—H3B	109.0	Н99А—С99—Н99С	109.5
НЗА—СЗ—НЗВ	107.8	Н99В—С99—Н99С	109.5
O3—C2—C1	109.5 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
N1—H1AA···O6	1.05	2.00	2.979 (4)	154
N1—H1AA···O5	1.05	2.62	3.285 (4)	121
N1—H1BB····O3	0.86	2.14	2.979 (4)	164
O20—H20B…O4 ⁱ	0.90	2.12	3.013 (4)	171
O20—H20A…O1 ⁱ	0.76	2.21	2.927 (3)	158
Symmetry codes: (i) $x+1/2, -y+3/2, -z+1$.				

Fig. 2