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Simple visual features, such as orientation, are thought
to be represented in the spiking of visual neurons using
population codes. I show that optimal decoding of such
activity predicts characteristic deviations from the
normal distribution of errors at low gains. Examining
human perception of orientation stimuli, I show that
these predicted deviations are present at near-threshold
levels of contrast. The findings may provide a neural-
level explanation for the appearance of a threshold in
perceptual awareness whereby stimuli are categorized
as seen or unseen. As well as varying in error magnitude,
perceptual judgments differ in certainty about what was
observed. I demonstrate that variations in the total
spiking activity of a neural population can account for
the empirical relationship between subjective
confidence and precision. These results establish
population coding and decoding as the neural basis of
perception and perceptual confidence.

Introduction

Population coding describes a method by which
information can be encoded in, and recovered from, the
combined activity of a pool of neurons (Georgopoulos
et al., 1982; Pouget, Dayan, & Zemel, 2000; Salinas &
Abbott, 1994; Seung & Sompolinsky, 1993; Vogels,
1990). For example, in area V1, simple cells’ spiking
activity contains information about the orientation of
visual stimuli. Each neuron’s mean firing rate is
described by an approximately bell-shaped tuning
curve with a maximum at the cell’s ‘‘preferred’’
orientation. This orientation varies from neuron to
neuron, and the population as a whole encodes
information about every possible orientation. Simple
neural mechanisms have been proposed that can
decode population spiking activity and recover the
information about the stimulus (Deneve, Latham, &
Pouget, 1999; Jazayeri & Movshon, 2006) although
these theoretical mechanisms have not as yet been
validated by neurophysiology. Irrespective of mecha-
nism, the decoded values are necessarily noisy ap-

proximations to the stimulus due to the stochastic
nature of spiking events.

The principle that internal noise is responsible for
errors in detection or discrimination of visual patterns
has a long history in vision science (e.g., Pelli, 1985),
and many models have been proposed to account for
behavioral performance on such tasks, incorporating
varying degrees of biological detail from simple linear
filters to spiking neurons (e.g., Bradley, Abrams, &
Geisler, 2014; Foley et al., 2007; Goris et al., 2013; Itti,
Koch, & Braun, 2000; Watson & Ahumada, 2005).
The present study diverges from previous work by
examining predictions of a population coding model
for the distribution of errors in an estimation task.
Variability in perception of visual stimuli is typically
assumed to follow a normal distribution (Green &
Swets, 1966; Swets, Tanner, & Birdsall, 1961); the
normal is a central limit distribution, a distribution to
which values converge when many small influences are
summed together, and for this reason, it is ubiquitous
in biology. However, here I show that the mathematics
of population coding puts it in conflict with the
assumption of normality. Specifically, characteristic
deviations from the normal distribution are predicted
at low gains, i.e., when spiking activity is reduced. I
confirm the presence of these deviations in human
estimation of low-contrast stimuli, demonstrating a
causal connection between population coding and
perception.

As well as explaining errors, the neural model
predicts variation in the certainty associated with each
judgment, i.e., some estimates are more reliable than
others. I show that observers have access to reliability
information and use it to assign confidence to their
perceptions. Previous attempts to explain the accuracy
of confidence judgments have proposed a relationship
to response time (Audley, 1960) or to the balance of
accumulated evidence favoring one response over
another (Smith & Vickers, 1988; Vickers & Packer,
1982). Here, I show that the sum of spiking activity in
the population encoding a stimulus could provide a
plausible neural basis for confidence judgments.
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Experimental procedures

Experiment

Eight participants (one male, seven females, aged
22–41 years) participated in the study after giving
informed consent in accordance with the Declaration
of Helsinki. All participants reported normal color
vision and had normal or corrected-to-normal visual
acuity. Stimuli were presented on a 21-in. linearized
CRT monitor with a refresh rate of 130 Hz. The
monitor was fitted with a neutral density filter to
decrease the luminance range to the level of human
detection thresholds. Participants sat with their head
supported by a forehead and chin rest and viewed the
monitor at a distance of 60 cm.

Stimuli consisted of Gabor patches of varying
contrast and orientation (wavelength of sinusoid, 0.758
of visual angle; SD of Gaussian envelope, 0.758)
presented at display center on a gray background.
Stimuli were presented within an annulus (white, radius
48), which was always present on the display.

Detection thresholds were obtained prior to the
main experiment using an adaptive estimation meth-
od. In each trial (160 in total), a Gabor was presented
for 100 ms randomly at one of two time points, 1 s
apart, identified by auditory cues; participants re-
ported at which of the two time points the Gabor was
present. Detection threshold was defined as the Gabor
contrast at which participants performed at 75%
correct, estimated by fitting a sigmoid function to the
contrast–response data. Gabor contrast was selected
in each trial to maximize the information available for
this estimation (Psi method; Kontsevich & Tyler,
1999).

In the main experiment, each trial began with
presentation of a randomly oriented Gabor patch for
100 ms and a simultaneous auditory tone. The
contrast of the Gabor was chosen at random from
50%, 100%, 200%, or 400% of the previously obtained
detection threshold. After 1 s, a randomly oriented bar
stimulus (white, radius 58, width 0.18, central 68
omitted) was overlaid on the annulus; participants
adjusted the bar orientation to match the orientation
of the Gabor patch, using a computer mouse. They
then indicated their confidence in their judgment by
clicking on one of a set of buttons labeled 0%, 25%,
50%, 75%, or 100%. Participants completed between
280 and 480 trials.

Analysis

Orientations were analyzed and are reported with
respect to the circular parameter space of possible

values, i.e., the space of possible orientations (�908,
908) was mapped onto the circular space (�p, p)
radians. Error for each trial was calculated as the
angular deviation between the orientation reported by
the participant and the true orientation. Central
tendency was assessed using the V statistic for
nonuniformity of circular data. Recall precision was
defined as 1/r2 where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2logR
p

is the circular
standard deviation as defined by Fisher (1995), and R is
the resultant length. Hypotheses regarding the effects of
experimental parameters (contrast, subjective confi-
dence rating) were tested with t tests.

Population coding model

I studied encoding and decoding in a population of
M idealized neurons with orientation tuning and
contrast sensitivity. The average response of the ith
neuron to visual input was defined as (Albrecht &
Hamilton, 1982; Carandini & Heeger, 2012; Heeger,
1992)

riðh; cÞ ¼ fiðhÞ
ca

ra þ ca
ð1Þ

where h is the stimulus orientation, c is the stimulus
contrast, and fi(h) is a Von Mises tuning function,
centered on ui, the neuron’s preferred orientation

fiðhÞ ¼
c
M

exp
�
j
�

cosðh� uiÞ � 1
��

ð2Þ

where c is the population gain. Preferred orientations
were evenly distributed throughout the range of
possible orientations. Spiking activity was modeled as a
homogeneous Poisson process such that the probability
of a neuron generating n spikes in time T was

Pr ni½ � ¼

�
riðh; cÞT

�ni
ni!

exp
�
� riðh; cÞT

�
: ð3Þ

Decoding of orientation information from the
population’s spiking activity, n, was based on maxi-
mum a posteriori (MAP) decoding. Assuming a
uniform prior, this is equivalent to maximizing the
likelihood

hMAP ¼ arg max
h 0

Pr njh0½ �: ð4Þ

If two or more orientations tied for the maximum,
the decoded orientation was sampled at random from
the tied values. The output of the model was given by
ĥ¼ hMAP � b, where b is a response bias term, and �
indicates addition on the circle. Decoding time T was
fixed at 100 ms. I considered the limit M � ‘. The
model therefore has five free parameters: r and a,
constants of the contrast response function; c, the
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population gain; j, the tuning curve width; and b, the
response bias.

Fitting the model

Although the equations above provide a complete
description of the model, further analysis is needed to
obtain predictions of the model and fit them to data.
From Equation 4,

hMAP ¼ arg max
h 0

XM
i

nilog
�
riðh0; cÞ

�
�
XM
i

riðh0; cÞT:

ð5Þ
Assuming dense uniform coverage, the second term

is constant, so

hMAP ¼ arg max
h 0

XM
i

nilog
�
fiðh0Þ

�
ð6Þ

¼ arg max
h 0

XM
i

nicosðh0 � uiÞ: ð7Þ

Consider the combined activity of the population in
terms of the preferred stimulus corresponding to each
spike: u(1), u(2), . . . u(m), where the notation u(i)

indicates the preferred orientation of the neuron that
generated the ith of m spikes. The error in the decoded
orientation, DhMAP¼ hMAP � h, can then be written as

DhMAP ¼ arg max
h 0

Xm
i

cosðh0 � eiÞ: ð8Þ

where ei¼u(i) � h. Setting the derivative of the term to
be maximized to zero, we obtain

Xm
i

sinðDhMAP � eiÞ ¼ 0 ð9Þ

�
Xm
i

ðsin ei cos DhMAP � cos ei sin DhMAPÞ ¼ 0 ð10Þ

�DhMAP ¼ arctan

Xm
i

cos ei

Xm
i

sin ei

ð11Þ

Because spikes are generated by independent Poisson
processes, every spike event is conditionally independent
of every other given the true stimulus orientation.
Approximating the uniformly spaced discrete distribution
of preferred orientations of M neurons by a continuous

uniform distribution, this probability is given by

pðeijhÞ ¼
expðj cos eiÞ

2pI0ðjÞ
: ð12Þ

So the error in decoded orientation DhMAP is the
resultant angle (Equation 11) of a Von Mises (circular
normal) random walk (Equation 12) of m steps. It
follows that the error for a given resultant length r is
Von Mises distributed (Mardia & Jupp, 2009):

pðDhMAPjr;jÞ ¼
expðjr cosD hMAPÞ

2pI0ðjrÞ
ð13Þ

where the distribution of r for m steps is given by

pðrjm;jÞ ¼ I0ðjrÞ�
I0ðjÞ

�m rwmðrÞ ð14Þ

where rwm(r) is the probability density function for
resultant length r of a uniform random walk of m steps.
The distribution of m, the total spike count during the
decoding interval T, being a sum of M independent
Poisson distributions, is itself Poisson:

Pr m½ � ¼ nme�n

m!
ð15Þ

where n is the expected total spike count

n ¼ cT
ca

ra þ ca
ð16Þ

Equations 13, 14, and 15 together provide a means of
obtaining the distribution of DhMAP and hence of the
response error Dh¼ ĥ � h¼DhMAP � b, for any values
of the free parameters, r, a, c, j, and b. For m � 100,
the density wm(r) was approximated by Monte Carlo
simulation, discretizing over 103 bins. For larger m, a
Gaussian approximation to Equation 14 was used
(Mardia & Jupp, 2009):

Pr rjm; j½ �’N m
I1ðjÞ
I0ðjÞ

;m
1

2
þ 1

2

I2ðjÞ
I0ðjÞ

� I1ðjÞ2

I0ðjÞ2

 ! !
:

ð17Þ
These equations were fit to empirical response data

using the Nelder-Mead simplex method (fminsearch in
MATLAB). Note that, as a mixture of normal
distributions of different widths, the distribution of
error is, in general, not normally distributed.

Simulations

To examine predictions of the population coding
model in more detail, I performed Monte Carlo
simulations (M ¼ 100 neurons, 105 repetitions per
subject and contrast) using parameters obtained by
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fitting the model to the experimental data. Note that
previous work (Bays, 2014) has shown 100 neurons to
be sufficient to approximate the large population limit
M � ‘; simulating larger numbers of neurons would
not have changed the results. Simulated trials were split
into two equal bins, according to either the precision of
the posterior distribution p(hjn) or the total spike count
RM
i ni, and precision of simulated responses was

estimated separately for each bin.

Modeling detection threshold

I modeled the detection task as follows: In each trial,
there were two decoding intervals of length 100 ms,
corresponding to the two time points at which a
stimulus could be presented. A response was generated
according to which interval contained the most spikes.
There is no baseline activity in the model neurons, so
the no-stimulus epoch always contained zero spikes;
therefore errors occurred only when the stimulus epoch
also had no activity, and then at the guessing rate of
50%. From Equation 15, the probability of generating
zero spikes in interval T in response to a stimulus of
contrast c is

Pr m ¼ 0½ � ¼ exp �cT
ca

ra þ ca

� �
: ð18Þ

So the threshold contrast at which responses are 75%
correct is given by

c75% ¼
r�

logð2Þ=cT� 1
��a : ð19Þ

Threshold model

A threshold model of perceptual judgments would
suggest that the stimulus in each trial is either seen,
with probability p, or not seen, with probability (1� p),
where p depends on stimulus contrast. Seen stimuli are
reported with circular normal (Von Mises) distributed
error with SD rseen and bias b. When the stimulus is not
seen, the response is random (i.e., drawn from a
uniform distribution). The result is a mixture distribu-
tion with density

pðĥÞ ¼ pVMðĥ;b;rseenÞ þ
ð1� pÞ

2p
ð20Þ

where VM(h, l, r) is the Von Mises distribution
evaluated at h with mean l and SD r. This resulted in a
model with six free parameters: rseen, b, p50%, p100%,
p200%, and p400%. Models were compared using the
Akaike information criterion with finite data correction
(AICc) and Bayesian information criterion (BIC).

Two-stage model

I considered a two-stage model in which the stimulus
is first represented with circular normal error before
being encoded in the neural population. This could
correspond to the case in which the non-normality
arises subsequent to initial perceptual representation,
for example, in working memory. The resulting
decoded stimulus estimates are distributed as the
convolution of a circular normal with the population
coding error distribution obtained above (Equations
13–15):

pðĥÞ ¼ VMðĥ; b; rÞ * pDhMAP
ðĥjj; nÞ ð21Þ

The effect of changing contrast was reflected in the
width r of the initial normal representation. This model
therefore had seven free parameters: r50%, r100%, r200%,
r400%, b, j, and n.

Background activity

I considered a variant of the population coding
model in which all neurons have background (baseline)
activity, g. In this case, the response of the ith neuron is
given by

riðh; cÞ ¼ fiðhÞ
ca

ra þ ca
þ g; ð22Þ

and Equations 2–4 hold as before. The model of
detection is the same as above except that the no-
stimulus epoch contained spikes generated at the
baseline rate g, and activity in the stimulus epoch was
given by Equation 22.

Results

I examined a model of population coding based on
responses of visual cortical neurons to simple oriented
stimuli of varying contrast (Figure 1). Mean firing rate
of each neuron was determined by the product of its
contrast response (Figure 1a), described by a sigmoid
relationship between log contrast and firing rate
(Albrecht & Hamilton, 1982; Carandini & Heeger,
2012; Heeger, 1992), and its orientation tuning (Figure
1b), described by a bell-shaped tuning function (Pouget
et al., 2000). Spikes were generated probabilistically
according to a Poisson process (Figure 1c). Estimation
of orientation was modeled as MAP decoding over a
fixed temporal window. Because of the noise in spiking
activity, the decoded orientation was imprecise with
respect to the true stimulus value.

Modeling results showed that the distribution of
errors in the decoded orientation estimate varied with
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gain and hence with input contrast (Figure 1d). For
high-contrast stimuli, the decoded value was distribut-
ed approximately as a circular normal (Von Mises)
centered on the true orientation (e.g., blue curve). As
contrast decreased, the distribution became broader
and also deviated substantially from the circular
normal distribution (long tails, e.g., magenta curve). As
the contrast fell to zero, the distribution of errors
became flatter, approaching the uniform distribution
(red line).

Experimental confirmation

To examine whether non-normality of response
errors is a feature of human perceptual judgments,
observers were presented with randomly oriented
Gabor patches of varying contrast at and around each
observer’s detection threshold (defined as the contrast
at which two-alternative forced choice judgments were
75% correct). They were asked to reproduce the
orientation they had seen by rotating a bar stimulus.
Figure 2a (black symbols) plots the distribution of
response errors for different stimulus contrasts (labeled
as percentage of detection threshold). Response preci-
sion declined with decreasing contrast, but perfor-
mance was significantly above chance at every contrast
level tested, V . 6.9; t(7) . 2.6, p , 0.032. Significant
deviations from circular normality were evident as long
tails in the error distribution at detection threshold
(100%): circular kurtosis of 2.7 greater than circular
normal with matched variance; t(7)¼ 2.8, p ¼ 0.026;
also in eight out of eight subjects considered individ-
ually. Figure 2b plots the discrepancy between the error
distributions generated by observers and a circular
normal distribution with the same variance.

Red curves in Figure 2 show fit of the population
coding model (Maximum Likelihood [ML] parameters:
response bias b¼�0.050 rad 6 0.028 rad, tuning width
j¼ 2.40 6 0.58, population gain c¼ 145 Hz 6 92 Hz,
contrast response parameters a¼ 48.2 6 16.6, r¼ 0.096
6 0.0081; goodness of fit: r2¼ 0.64 6 0.14 SD). The
model reproduced both the changes in distribution
width with contrast and, importantly, the non-nor-
mality of errors around detection threshold. Figure 3
plots response precision as a function of contrast for
experimental data (black symbols) and the fitted model
(black line).

In addition to perceptual error, the population
coding model also makes predictions about stimulus
detection. In a two-alternative forced choice task, as
used here to estimate detection threshold, a simple
observer model selects whichever epoch contained the
most spikes. I estimated the threshold contrast that
would result in 75% correct responses under this model
based on the ML parameters obtained above. The
resulting predictions were statistically indistinguishable
from the empirical threshold values: 97% 6 16% of
empirical threshold contrast, t(7)¼ 0.19, p¼ 0.86.

Other models

I compared the population coding model to a
threshold model of perceptual responses (Luce, 1963;
Sergent & Dehaene, 2004; Supèr, Spekreijse, & Lamme,
2001), which describes trials as falling into one of two
categories: seen and unseen. When the stimulus is seen,
responses are distributed normally; when the stimulus
is unseen, responses are random. This model generated
qualitatively similar predictions to the population
coding model although with a tendency to underesti-
mate non-normality at higher contrasts (Figure 4, blue

Figure 1. The population coding model. (a, b) Stimulus parameters were encoded in the activity of idealized neurons with contrast

sensitivity (a) and bell-shaped orientation tuning functions (b; preferred orientations evenly distributed on the circle). (c) Spikes were

generated according to a Poisson process. Estimation of orientation was modeled as MAP decoding of this spiking activity over a fixed

time window. (d) Simulations revealed that the distribution of error in the estimated orientation depended on stimulus contrast. At

high contrast, errors had an approximately circular normal distribution (e.g., blue curve). As contrast decreased, variability increased,

and error distributions deviated from circular normality (long tails, e.g., magenta curve). At the lowest contrasts, errors approximated

a uniform distribution (e.g., red curve). Error distributions are normalized by peak probability to best illustrate distribution shape.
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curves; ML parameters: response bias b¼�0.044 rad
60.027 rad, variability rseen¼ 0.43 6 0.044, probability
seen p50%¼ 0.048 6 0.016, p100%¼ 0.59 6 0.11, p200%¼
0.89 6 0.08, p400% ¼ 0.98 6 0.013). The threshold
model was a poorer fit to the experimental data
according to model selection criteria (DAICc ¼ 12.6;
DBIC ¼ 43.5).

Although a standard perceptual task, the orientation
reproduction task also has a working memory com-
ponent as the target stimulus must be held in mind as
the participant adjusts the probe bar. One possibility is
that the non-normality arises in working memory
storage, subsequent to the perceptual representation.
To test this, I considered a two-stage model in which
the error arising initially in perception is normally
distributed with a width determined by the stimulus
contrast, and the perceived value is then encoded and
decoded according to the population model, introduc-
ing non-normality. This model failed to reproduce the
non-normality in response distributions, particularly at
contrasts around detection threshold (Figure 4, green
curves; ML parameters: response bias b¼�0.062 rad
60.023, tuning width j ¼ 17.2 6 6.1, population
activity n¼ 13.5 6 9.4, normal SD r50% ¼ 4.0 6 0.94,
r100%¼ 1.7 6 0.74, r200%¼ 0.52 6 0.14, r400%¼ 0.48 6
0.11). The two-stage model was a substantially poorer
fit to the experimental data than the population coding
model (DAICc ¼ 327; DBIC ¼ 390).

A final possibility is that non-normality arises from
anisotropy in orientation perception. It is well estab-
lished that orientation judgments display small biases

away from the cardinal angles (e.g., de Gardelle,
Kouider, & Sackur, 2010), an ‘‘anti-Bayesian’’ effect
possibly due to efficient coding by the underlying
neural populations (Wei & Stocker, 2015). As shown in

Figure 2. Human estimation errors and model fits. (a) Black symbols show mean distribution of experimental estimation errors (error

bars indicate 61 SE). Different panels correspond to different contrasts, 50%–400% of detection threshold. Note presence of long

tails in error distribution at detection threshold (100%). Red curves show mean error distributions for the population coding model

with ML parameters (light red patches indicate 61 SE). (b) Deviation from the circular normal distribution. Black symbols plot mean

discrepancy between experimental error frequencies shown in (a) and circular normal (Von Mises) distributions matched in mean and

variance. Red curves plot equivalent deviations for the population coding model with ML parameters.

Figure 3. Precision and confidence. Black symbols plot mean

precision of experimental responses as a function of contrast

(percentage of detection threshold). Dashed black line indicates

precision corresponding to random responses. Green and red

symbols show mean precision of responses associated with high

and low confidence judgments, respectively (median split).

Lines show mean precision of simulated responses based on ML

parameters. Black line corresponds to all simulated responses;

green and red lines correspond to simulations with high and

low posterior precision (solid lines) or total spike count (dashed

lines), respectively (median split). Note that red and green lines

are not fitted to red and green data points.
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Figure 5a, some evidence for such biases was obtained
in the present study, specifically as response shifts away
from the horizontal. Because error distributions are
calculated by averaging over different stimulus orien-
tations, such biases could potentially result in non-
normal distributions of error overall even if the
distribution of error for any given stimulus orientation
is normal. To test this, I simulated responses by
drawing samples from normal (Von Mises) distribu-
tions with the biases and dispersions observed in the
data at different stimulus values (15 evenly spaced
bins); Figure 5b (blue curve) plots the resulting

deviations from normality in the simulated error
distribution. The deviations from normality are an
order of magnitude smaller than those observed in the
data (black data points), demonstrating that anisotropy
in orientation perception cannot account for the non-
normality of errors that is the focus of this study.

Subjective confidence

As well as varying in the magnitude of error,
responses also varied in the subjective confidence, or

Figure 4. Threshold model. (a) Black symbols show mean distribution of experimental estimation errors (error bars indicate 61 SE).

Different panels correspond to different contrasts, 50%–400% of detection threshold. Blue curves show mean error distributions for

the threshold model with ML parameters; green curves show distributions for the two-stage model. (b) Deviation from the circular

normal distribution. Black symbols plot mean discrepancy between experimental error frequencies shown in (a) and circular normal

(Von Mises) distributions matched in mean and variance. Equivalent deviations are shown for the threshold model (blue) and the

two-stage model (green).

Figure 5. Impact of response biases. (a) Mean estimated orientation at threshold contrast as a function of the true orientation of the

stimulus. Black line indicates equality. (b) Blue curve plots estimated deviations from normality resulting from observed orientation

biases. Black data points show actual deviations from normality replotted from Figure 2.
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reliability, observers assigned to them. Green and red
symbols in Figure 3 indicate the precision of high and
low confidence responses, respectively, based on a
median split. Subjective ratings of confidence were
significantly correlated with error magnitude for all but
the lowest contrast stimuli, indicating that observers
had some awareness of the uncertainty in their
perception: 50% contrast, r2¼ 0.03, t(7)¼ 1.0, p¼ 0.34;
100% contrast, r2 ¼ 0.17, t(7)¼ 4.6, p ¼ 0.003; 200%
contrast, r2¼ 0.07, t(7)¼ 3.0, p¼ 0.020; 400% contrast,
r2 ¼ 0.05, t(7)¼ 3.6, p ¼ 0.009.

In the population coding model, the parameter that
most directly corresponds to response reliability is the
precision of the posterior distribution. To assess
whether knowledge of this feature of neural decoding
could underlie confidence judgments, I performed a
median split on the posterior precision of simulated
data, generated using the ML parameters obtained
above. Green and red solid lines in Figure 3 plot the
precision of high and low posterior precision trials,
respectively. Despite not being fit to the high or low
confidence data, this model closely replicated the
behavioral results (MSE 0.073 6 0.023).

A more directly computable parameter of spiking
activity correlated with reliability is the total spike
count during the decoding window (Bays, 2014; Ma et
al., 2006; Pouget, Dayan, & Zemel, 2003). This
parameter was strongly correlated with posterior
precision (r2 ¼ 0.42). A median split based on total
spike count (dashed lines in Figure 3) produced a
replication of behavioral results that was indistin-
guishable from posterior precision, MSE 0.062 6
0.015, t(7) ¼ 1.3, p¼ 0.23.

Background activity

The model of population coding presented above
assumes that each neuron’s spiking activity falls to
zero at zero contrast. Here, I consider the case in
which all neurons have background (baseline) activ-
ity, g. This model is considerably less analytically
tractable than the no-baseline (g ¼ 0) model, and
numerically fitting it to the experimental data is
impractical. However, the predictions of the model
share all the main characteristics of the no-baseline
case. To illustrate the similarity, I considered the case
g¼ 1 Hz. Taking as a starting point the ML
parameters of the no-baseline model for a represen-
tative observer, I used a grid-search (10 3 10
parameter space, 105 repetitions, M ¼ 100) to seek
new values of j and c for which the baseline model
approximated the predictions of the no-baseline
model. As shown in Figure 6 and consistent with
previous results (Bays, 2014), the baseline model
generated predictions that were almost indistinguish-
able from those of the no-baseline model but at higher
gain (c ¼ 41.7 Hz, compared to 28.8 Hz in the no-
baseline case) and based on broader tuning curves (j
¼ 1.30, compared to 2.12).

A notable feature of the no-baseline case is the
presence of simulated trials in which no spikes occur
during the decoding window, and the decoder must
‘‘guess’’ a random value. In the no-baseline model,
these trials are prevalent at detection threshold and
contribute to the non-normality of the error
distribution. In contrast, at threshold, the occur-
rence of such trials in the baseline case g¼ 1 Hz was

Figure 6. Background (baseline) activity. Black curves show predictions of the population coding model with no baseline activity for a

typical observer. Red curves plot predictions of the model with 1 Hz baseline activity, based on model parameters c and j fit to the

no-baseline distributions. Note that with appropriate parameters, the 1 Hz baseline model closely reproduces predictions of the no-

baseline model. (a) Error distribution. (b) Deviation from circular normal.
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negligible ( p , 0.0001). This demonstrates that
guessing is not critical to generating the non-normal
distributions of error observed here but is rather an
artifact of the simplified neuronal model lacking
baseline activity.

The model of detection is the same as above except
that now the no-stimulus epoch in general contained
spikes, generated at the baseline rate g. I used Monte
Carlo simulation (discretizing contrast into 100 bins;
105 repetitions, M ¼ 100) to estimate the threshold
contrast, which again closely approximated the
empirical threshold (101% of empirical value for the
representative observer). Although in the no-baseline
case all errors were due to guesses when no spikes
occurred during the stimulus epoch, in the baseline
model these trials occurred with negligible frequency
(p , 0.0001), providing further evidence that guessing
is not a critical element of the population coding
model.

Discussion

The present results demonstrate a signature of
population coding in the errors made by human
observers in perception of near-threshold stimuli. The
predictions of the population coding model reproduce
the variability and shape of error distributions in the
perceived orientation of a stimulus as well as capturing
the relationship between subjective confidence and
perceptual precision. The model also accurately pre-
dicted detection threshold based on responses in the
reproduction task.

In a recent study (Bays, 2014), I demonstrated
deviations from normality, similar to those observed
here, in recall errors on a working memory task when
memory load was manipulated. The effect of memory
set size on precision was explained by a normalization
model, in which total population gain was held
constant across changes in the number of items
represented. Although, as is typical for perceptual
tasks, there was a working memory component to the
present study, memory limits do not provide an
explanation for the present results as memory load was
constant (at one item) across changes in stimulus
contrast. Nonetheless, an important alternative hy-
pothesis is that the non-normality observed here arose
subsequent to the initial perceptual representation,
which itself had normally distributed error (generated
by some unknown mechanism). To test this hypothesis,
I examined a two-stage model, in which an initial
stimulus estimate with normal error was subsequently
represented in a population code with attendant non-
normal error. This model failed to reproduce the non-
normality in the data, presumably because changes in

contrast necessarily had their effect at the initial
perceptual stage when they could not influence the
strength of non-normality. This result strongly sup-
ports the view that non-normality is present in the
initial perceptual representation and maintained in
working memory.

Although the population coding model used in the
present study incorporates a number of simplifications
of the behavior of real neural populations (homoge-
neity of tuning curves, no baseline activity, no
interneuronal correlations), modeling in the working
memory study showed that the signature deviations
from normality arise independently of these factors. In
particular, the model’s behavior was qualitatively
unaffected by introducing across-neuron variation in
the sharpness of orientation tuning or changing the
shape of the tuning function from Von Mises to cosine.
These analyses also identified two factors that serve to
increase the population gain corresponding to a given
level of variability: the presence of spontaneous
(baseline) activity and short-range noise correlations.
These factors would prove critical to attaining realistic
levels of activity in neural populations on the scale of
primary visual cortex. However, analysis of this
scenario is hampered by the computational impracti-
cality of simulating activity of hundreds of thousands
of correlated neurons.

There is the possibility, in the simplified model of
population activity presented here, that no spikes are
generated during the decoding interval, resulting in a
random response; however, real neurons typically have
baseline levels of activity that make this situation
unlikely even at very low contrasts. Additional analysis
(Figure 6) confirmed previous modeling work (Bays,
2014) in showing that identical deviations from
normality are observed for populations with baseline
activity even though the chance of observing zero
spikes is negligible.

The population coding model provided a more
parsimonious description of empirical data than a
threshold model in which stimuli are categorically
either perceived or not perceived (Luce, 1963; Sergent
& Dehaene, 2004; Supèr et al., 2001). However, error
distributions predicted by the two models were notable
mostly for their similarity. Rather than being mutually
exclusive models, I suggest that population coding
provides a neural-level explanation for the appearance
of a threshold in human perception because the long-
tailed error distribution observed at low contrasts
resembles a mixture of guessing and accurate judg-
ments.

An interesting outcome of the mathematical analysis
presented in the Experimental procedures is that the
error distributions predicted by the population coding
model can be precisely described by an infinite mixture
of circular normal distributions. This may provide an
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explanation for the success of ‘‘variable precision’’
models of working memory (Fougnie, Suchow, &
Alvarez, 2012; van den Berg et al., 2012), which attempt
to capture recall errors in just such a way although the
proposed distributions over precision in these models
do not exactly match that predicted by population
coding.

It has long been recognized that our observations
are associated with different degrees of certainty, even
when the external stimulation that gives rise to the
perception is fixed, and further that this certainty is
correlated with the magnitude of error in the
observation. Clearly, we do not have access to the
actual error in our observations, or we could correct
for it, but exactly what aspect of the perceptual
process our sense of confidence is based on is debated
(Insabato et al., 2010; Kepecs et al., 2008; Kiani &
Shadlen, 2009; Smith & Vickers, 1988). For a
population code, an ideal observer of the neural data
would base his or her confidence judgment on the
width of the posterior distribution, that is, the
probability distribution of the stimulus value condi-
tional on the observed spiking activity. I found that
this parameter provided an excellent fit to the
empirical relationship between subjective confidence
and precision of a judgment.

Although the posterior width is the best theoretical
basis for judging certainty, it is not obvious how it
could be computed neurally. The sum of all spiking
activity during the decoding window (Bays, 2014; Ma et
al., 2006; Pouget et al., 2003) was found to be strongly
related both to the width of the posterior and to the
precision of the judgment: The more spikes available
for decoding, the more precise the estimate. The fit to
empirical data was indistinguishable from that using
posterior precision, indicating that total spiking activity
is a viable and more readily computable proxy for the
true uncertainty in the judgment.

An important limitation of the present study is
that both the modeling and experimental work
presented here pertain to perception of simple
oriented stimuli on a uniform background. Situations
in which stimulus energy is present in more than a
single orientation, for example, encoding an orien-
tation embedded in noise, are not currently repre-
sented by the model. Such situations would likely
alter the relationship between population activity and
precision, potentially making total spike count a less
viable basis for subjective confidence. In order to
address these issues, future work could expand the
encoding model to take arbitrary images as input,
perhaps by modeling neural responses as a linear
image filtering process followed by a nonlinear
response transformation (e.g., Goris, Simoncelli, &
Movshon, 2015).

Conclusions

In summary, these results provide behavioral evi-
dence that perception of elementary visual stimuli is an
outcome of population coding and decoding at the
neural level. Most theoretical work on population
codes focuses on the limit of large numbers of spikes, in
particular making use of the asymptotic approach to
the optimal Cramér-Rao bound (Seung & Sompolin-
sky, 1993). Although some previous studies have
analyzed low-spiking regimens (Berens et al., 2011;
Brunel & Nadal, 1998; Xie, 2002), they have typically
not sought to generate behaviorally testable predic-
tions. The present results open up the possibility of
using analysis of human perceptual reports of near-
threshold stimuli to probe the finer details of neural
coding that are typically accessible only to nonhuman
electrophysiology. They also have profound implica-
tions for signal-detection theory and Bayesian models
of perception, which almost universally assume a
normal distribution of internal errors.

Keywords: population coding, visual perception, per-
ceptual confidence, Poisson noise, neural gain
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