
Bone Reports 16 (2022) 101179

Available online 7 March 2022
2352-1872/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Predicting the trabecular bone apparent stiffness tensor with spherical 
convolutional neural networks 

Fabian Sinzinger a,*, Jelle van Kerkvoorde b, Dieter H. Pahr c,d, Rodrigo Moreno a 

a KTH Royal Institute of Technology, Department of Biomedical Engineering and Health Systems, Sweden 
b Eindhoven University of Technology, the Netherlands 
c Technical University of Vienna, Institute for Lightweight Design and Structural Biomechanics, Austria 
d Karl-Landsteiner University, Biomechanics Division, Austria   

A R T I C L E  I N F O   

Keywords: 
Apparent stiffness tensor 
Trabecular bone 
Spherical convolutional neural networks 

A B S T R A C T   

The apparent stiffness tensor is relevant for characterizing trabecular bone quality. Previous studies have used 
morphology-stiffness relationships for estimating the apparent stiffness tensor. In this paper, we propose to train 
spherical convolutional neural networks (SphCNNs) to estimate this tensor. Information of the edges, trabecular 
thickness, and spacing are summarized in functions on the unitary sphere used as inputs for the SphCNNs. The 
concomitant dimensionality reduction makes it possible to train neural networks on relatively small datasets. The 
predicted tensors were compared to the stiffness tensors computed by using the micro-finite element method (μFE), 
which was considered as the gold standard, and models based on fourth-order fabric tensors. Combining edges 
and trabecular thickness yields significant improvements in the accuracy compared to the methods based on 
fourth-order fabric tensors. From the results, SphCNNs are promising for replacing the more expensive μFE 
stiffness estimations.   

1. Introduction 

Osteoporosis is a disorder that negatively affects the composition and 
architecture of bone tissue, which can decrease bone mass and increase 
skeletal fragility (Boutroy et al., 2005). The stage of osteoporosis is 
commonly diagnosed using areal bone mineral density (aBMD) as 
measured by dual-energy x-ray absorptiometry (DXA), but its accuracy is 
limited mainly due to its 2D nature (Miller et al., 2002; Marshall et al., 
1996). Many studies have found that the mechanical properties of 
trabecular bone tissue could be used to distinguish between osteoporotic 
and non-osteoporotic bone. Thus, bone mechanics can be used to 
improve medical diagnosis, surgical planning, intervention, and fracture 
risk assessment (Kim et al., 2014; Tjhia et al., 2011, 2012; Nyman et al., 
2016). One of the mechanical properties that is often used for this 
purpose is bone stiffness (Steiner et al., 2017; Ovesy et al., 2020). 
Stiffness properties are commonly described by the apparent stiffness 
tensor, a mathematical entity that relates stress and strain of the 
microarchitecture of the tissue. 

There are several approaches for estimating the apparent stiffness 
tensor. For example, mechanical tests can be performed on in vitro 

samples. However, the estimation of the apparent stiffness tensor using 
this method can only be partially done as every test can destroy the 
tissue. A better alternative is to use finite element (FE) modeling with 
appropriate boundary conditions (Pahr and Zysset, 2008). Using FE 
modeling is advantageous since it is able to estimate the full apparent 
stiffness tensor without the drawbacks of mechanical testing. However, 
the main drawback of FE modeling is that it is computationally 
expensive. 

An alternative to FE is to approximate the apparent stiffness tensor 
by assuming a close relationship between morphology and stiffness. For 
that, the apparent stiffness tensor is modeled as a function of mechanical 
properties of the matrix, bone density, and fabric tensors (Zysset, 2003; 
Moreno et al., 2016). The main advantage of this approach is that the 
computational cost is negligible, which makes it appealing for clinical 
applications where time might become an issue. On the contrary, this 
approach is less accurate than FE. For example, the model by Moreno 
et al. (2016) is still far from ideal, with 30–40% error in some cases. 

In recent years, machine learning techniques, and in particular deep 
learning (DL), have gained popularity to solve problems in the field of 
biomechanics. For example, Xiao et al. (2020) trained a neural network 
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to predict histomorphometric parameters from simulated DXA images. 
Moreover, Nissinen et al. (2021) used DL to classify DXA images. DL has 
also been used for bone classification (Shen et al., 2021; Tanzi et al., 
2020). Regarding the estimation of biomechanical parameters, different 
groups have used DL for approximating biomechanical properties of 
vessel walls using FE models as gold standard (Liang et al., 2018; Madani 
et al., 2019; Rengarajan et al., 2021). These results make DL appealing to 
be used for predicting the apparent stiffness tensor in trabecular bone, 
which, to our knowledge, has not been tested so far by other research 
groups. 

The main drawback of using DL in any application is that it typically 
requires a lot of training data, which is a big challenge for stiffness 
estimation. Here, the implementation of an end-to-end solution with 
convolutional neural networks (CNNs) with 3D volumes of trabecular bone 
as input and the entries of the apparent stiffness tensor as output might 
require hundreds of thousands of training samples due to the high 
number of parameters to be trained in the neural network. Rather than 
using transfer-learning for the domain adaptation of such a high- 
parametric model, we suggest an alternative strategy to tackle this 
problem. 

Instead of the original image of trabecular bone, we propose using 
the extended Gaussian images (EGI) as the input of the neural network. 
The EGI is a function on the unitary sphere S2 that captures the orien
tation distribution of the gradient of the image. Since the EGI is a 
function on S2, it is suitable to use spherical convolutional neural networks 
(SphCNNs) (Esteves et al., 2020; Cohen et al., 2018) instead of standard 
CNNs since the latter requires data on cartesian grids. The main 
advantage of using SphCNNs here is that it is possible to reduce the 
number of parameters to learn vastly. Concretely, the SphCNN of this 
study has about 0.4 M trainable parameters, whereas the 3D version of 
the famous VGG16 consists of over 170 M parameters as reported in 
(Leong et al., 2020). 

While the EGI conveys the edge information of trabecular bone, it 
completely disregards the distribution of bone material in the volume. 
To some extent, that information is captured by the trabecular thickness 
(Tb.Th) and trabecular spacing (Tb.Sp). Thus, we also propose to combine 
EGI with Tb.Th and Tb.Sp in order to improve the accuracy of the neural 
network for stiffness prediction. 

1.1. Contributions 

The main contributions of this paper are:  

• To the best of our knowledge, this is the first attempt to use DL, 
specifically SphCNNs, to estimate the apparent stiffness tensor. The 
results show that DL is more accurate than fabric tensor-based 
approaches.  

• A novel way of combining edge information encoded in the EGI with 
Tb.Th and Tb.Sp is proposed, that is meaningful for DL models. 

2. Material 

The present study utilized the data from Gross et al. (2013), which 
was also partially used in Moreno et al. (2016). For a more detailed 
description, we refer here to the respective reports. A total of 700 gray- 
level images of trabecular bone cubes were obtained by scanning three 
proximal femora, three distal radii, and six vertebral bodies with μ-CT 
(μ-CT 40, SCANCO Medical AG, Brüttisellen, Switzerland). In total, we 
used 355 cubes from the vertebra, 264 from the femur 81 from the 
radius. All scans were taken at 18 μm isotropic resolution and further 
processed by applying a 3D Gaussian filter (σ = 1.2, support = 2). After 
dividing each specimen into the cubic subregions with a side length of 
5.3 mm, the volumes were segmented via the application of a single- 
level threshold of IPL (SCANCO Medical AG, Brüttisellen, 
Switzerland). Furthermore, for each subsection, structures that were not 
connected to the main region after thresholding were removed from the 

volumes. Subsequently, each subregion was transferred into a piece- 
wise linear domain by considering each voxel as a hexahedral eight- 
node element. The Young modulus and the Poisson's ratio assigned to 
each element were 12 GPa and 0.3, respectively. Finally, FE-simulations 
were executed for six different loading scenarios under kinematic 
boundary conditions as described in Pahr and Zysset (2008) to obtain 
the full apparent stiffness tensor computed through strain and stress 
averages. FE simulations were performed using Abaqus (Dassault 
Systmes, Paris, France), and the apparent stiffness tensor of each bone 
cube was computed from the results of the six load steps by using 
Medtool (http://www.dr-pahr.at). 

3. Methods 

3.1. Apparent stiffness tensor 

In general, the apparent stiffness tensor C of a material describes its 
mechanical properties by relating its strain (ϵ) and stress tensors (σ) 
through the Hooke's law: 

σij = Cijkℓϵkℓ⋅ (1) 

The apparent stiffness tensor is represented as a fourth-order tensor 
with 3 × 3 × 3 × 3 = 81 coefficients. However, symmetry constraints 
reduce the number of independent entries of the apparent stiffness 
tensor to 21 (Moreno et al., 2016). Alternatively, apparent stiffness 
tensors can be represented as symmetric 6 × 6 matrices (Moreno et al., 
2016). In this paper, we modeled the apparent stiffness tensor as a vector 
with 36 entries. 

3.2. Trabecular thickness and spacing 

As mentioned, we wanted to explicitly expose the DL model to in
formation about the local thickness of trabeculae. Furthermore, we hy
pothesized that the spacing between the trabecular structures contains 
valuable information for predicting the mechanical properties. Let p be a 
point in the image. Local thickness (Tb.Th) at that point is derived ac
cording to (Hildebrand and Rüegsegger, 1997): 

Tb.Th(p) = 2max({r|pϵBr(t)∀Br(t) ⊆ T } ), (2)  

with T being the segmented trabecular bone, Br(t) is a ball centered at t 
with radius r, that lies completely inside the trabecular bone. Tb.Th is 
zero for points outside the trabecular bone. Local spacing Tb.Sp is 
defined analogously for points outside the trabecular bone: 

Tb.Sp(p) = 2max
({

r
⃒
⃒
⃒pϵBr(t)∀Br(t) ⊆ T

ˇ })
, (3)  

with T
ˇ

being the complement of T, and Tb. Sp(p) = 0 for pϵT. 
Fig. 1 shows the segmentation, thickness, and spacing maps of one of 

the tested specimens. 
Notice that we use local maps of Tb.Th and Tb.Sp instead of the 

customary use of the mean in the analysis of bone specimens, e.g., Guha 
et al. (2020); Steiner et al. (2020). The thickness and spacing maps used 
in the experiments were computed with BoneJ (Doube et al., 2010). 

3.3. Extended Gaussian images 

Information about the orientation of the surfaces of an object can be 
obtained by mapping the surface normal onto a unit sphere. This way of 
mapping the surface normals is called an extended Gaussian image (EGI). 
The surface normals are mapped onto the sphere by putting their tails at 
the center of the Gaussian sphere and their heads at the appropriate 
place on the surface of the Gaussian sphere (Horn, 1984). 

For a segmented image x, it is possible to estimate the EGI from the 
gradient of the image for a specific direction v as Moreno et al. (2012b): 
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EGI(v) =
∫

s2
δ
(〈

∇x
‖∇x‖ + ϵ

, v〉 − 1
)

‖∇x‖ds, (4)  

with δ(⋅) being the unit impulse function, < ⋅ , ⋅ > the dot product, and ϵ a 
small constant to avoid the division by zero. Thus, the EGI can be seen as 
the orientation distribution function of the gradient of the image. Since 
the gradient of x can only take values of zero or infinity, it is customary 
to perform a Gaussian smoothing with a very small standard deviation 
before the gradients are calculated. 

In this paper, the EGI is parameterized by the spherical coordinates 
(α, β) with αϵ[0,2π] being the azimuth βϵ[0,π] being the elevation. One 
example of a resulting EGI on a sphere and unwrapped on the α-β-plane 
is visualized in Fig. 2 and Fig. 3, respectively. 

Notice that the EGI can be used to compute different fabric tensors, 
including the mean intercept length (MIL) tensor, the generalized MIL 
(GMIL) tensor, and the global structure tensor (GST) (Moreno et al., 
2016). Thus, the computation of the EGI is also necessary for estimating 
stiffness from bone morphology. 

3.4. Combining the gradient with thickness and spacing 

As already mentioned, the EGI contained the edge information of 
trabecular bone. In order to consider the distribution of bone and 
marrow material in the image, Tb.Th and Tb.Sp maps are combined with 
the EGI. 

The first idea is to use the Tb.Th and Tb.Sp maps as weighting 
functions in the estimation of the EGI: 

EGI(g, v) =
∫

s2
gδ
(〈

∇x
‖∇x‖ + ϵ

, v〉 − 1
)

‖∇x‖ds, (5)  

with g being either Tb.Th or Tb.Sp maps. Since the gradient is non-zero 
only in the interface between bone and marrow, the effect of this 
weighting is to create an orientation distribution function of the 
trabecular thickness (or spacing). Thus, the regions with the thickest 

trabeculae (or marrow) will contribute more to the EGI. 
Alternatively, one can create EGIs by using the Tb.Th and Tb.Sp maps 

instead of the segmented image. In this case, the EGI is computed 
directly from the gradient of Tb.Th and Tb.Sp using Eq. (4). The 

Fig. 1. Top row: Graphical representations of the initial μ-CT trabecular segmentation (left), the trabecular thickness (middle), and trabecular spacing (right). Bottom 
row: central slices of the respective three-dimensional pixel arrays (segmentation: left, thickness: middle, spacing: right). 

Fig. 2. Extended Gaussian Image (EGI) displayed on 3D sphere mesh with a 
stick (black) through the poles. Brighter regions of the surface correspond to 
higher values in the EGI. 
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information encoded by these EGIs is related to the local variability of 
the size of the trabeculae (or marrow), which can convey relevant in
formation for stiffness estimations. Fig. 4 shows a scheme of these two 
approaches for the case of Tb.Th. 

3.5. Spherical CNNs 

In our case, the input of our neural network are signals on the 2- 
sphere (S2). Thus instead of traditional CNNs, we opted to use SphCNNs 
(Esteves et al., 2020). 

The main difference between CNNs and SphCNNs is the way the 
convolution filters are structured. While conventional CNN filters 
operate on a gridded data structure, in SphCNNs, the convolution filters 
are zonal kernels on S2. Convolutions on S2 are rendered by a pointwise 
multiplication in the spherical harmonics domain of the spherical input 
and the zonal filters. 

The spherical harmonics transform of a function f on S2, and its in
verse are given by (Arfken et al., 2013; Driscoll and Healy, 1994): 

f̂
l
m =

∫

s2
f (x)Yl

mdx, (6)  

and 

f =
∑

0≤l≤b

∑

|m|≤l

f̂
l
mYl

m, (7)  

respectively, with b being the bandwidth of f and Ym
l are the spherical 

harmonics of degree l and order m. 
The convolution of f with a zonal kernel h can be computed as 

(Esteves et al., 2020): 

ŷl
m = 2π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4π

2l + 1
f̂

l
m ĥ

l
0,

√

(8)  

where ŷl
m is the spherical harmonics transform of f * h. Thus, convolu

tions can be implemented very efficiently in the spherical harmonics 
domain. 

After the last convolution layer, a weighted global average pooling is 
applied in which the difference in the area of the different areas of the 
sampling of the S2 is taken into account. Further details of SphCNN can 
be found in Esteves et al. (2020). 

3.6. SphCNNs for predicting the apparent stiffness tensor 

Fig. 5 shows the proposed pipeline for the estimation of the apparent 
stiffness tensor. SphCNNs are trained using three different configura
tions. In the first one, the SphCNN receives only the EGI as an input, in 
the second one, two extra channels are added with the weighted EGIs 
computed through Eq. (5), and in the third two extra channels with the 
EGI of Tb.Th and Tb.Sp were included. As aforementioned, we expect 
that providing information about the distribution of bone and marrow 
material can lead to improved estimations of the stiffness. 

4. Experimental results 

4.1. Model architecture 

4.1.1. Model input 
The input of the neural network consists of one or multiple EGIs. In 

the first experiments, only the EGI of the segmentation is used. In further 
experiments, we add EGIs that contain thickness and spacing informa
tion as additional channels of the same size. Every EGI is represented as 

Fig. 3. Extended Gaussian Image (EGI) unwrapped on the α-β-plane.  

Fig. 4. Strategies for combining the gradient and trabecular thickness. Left: the gradient of trabecular bone (blue arrows) is used to create the EGI. Then, it is scaled 
with the local thickness information (orange arrows) in order to create an additional EGI. Notice that scaling is only performed on the surface since the gradient is 
zero elsewhere. Right: the gradient of the thickness map (green arrows) is used to create an additional EGI. Isosurfaces of trabecular thickness are shown in red. 
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a 2D pixel array of size 64× 64. 

4.1.2. Spherical convolutional layers 
The activation signals of the SphCNN pass a stack of three spherical 

convolutional layers with 64, 128, and 256 convolutional filters, 
respectively. Each filter is parameterized by 32 coefficients. Weighted 
average pooling layers are added after each spherical convolutional 
layer to reduce the size of the feature maps by a factor of two. Here, the 
implementation of the spherical convolutional layers by Esteves et al. 
(2020)1 was used. 

4.1.3. Dense and output layers 
After the convolutional stack, we average the activations per channel 

resulting in a 1D signal of size 256. This signal is fed to a stack of two 
dense layers that reduce the size first to 64 and then to 36. These 36 
entries represent the components of the 6 × 6 stiffness matrix. The last 
output layer of this model does not use any nonlinearity (i.e., an identity 
mapping is used as activation function). This enables us to output the 
continuous stiffness values. All other layers employ parametric rectified 
linear units (PRELU) (He et al., 2015) as nonlinearities. 

4.1.4. Training routine 
All experiments described in this report share the same training 

configuration (see Table 1). These hyperparameters were determined 
empirically. In addition, experiments were run with 5-fold cross- 
validation. 

The Frobenius error serves as both, the performance metric and the 
loss function. It is defined by: 

EF =

⃦
⃦Co − Cp

⃦
⃦

F

‖Co‖F
, (9)  

where Co and Cp are the observed and predicted apparent stiffness ten
sors and ‖⋅‖F is the Frobenius norm. 

4.2. Comparison of different architectures 

In Table 2, three input-combination candidates described in Section 
3.4 were compared and evaluated on the individual skeletal sites. 
Noticeably, adding thickness and scaling with either method led to a 
significantly lower Frobenius error across all evaluated regions. As 
shown, including the gradients of the thickness and spacing maps 
(‘Channels’ in Table 2) was slightly superior to the scaling option 
(‘Scaling’ in Table 2) with respect to their predictive performance. Thus, 
the errors are reduced between 7 and 11% depending on the skeletal site 
for the ‘Channels’ strategy compared to the use of the EGI alone. Based 

Fig. 5. Overview of the proposed prediction pipeline. Given the segmentation of trabecular bone (1), local maps of Tb.Sp (2), Tb.Th (3) are computed. Using the 
gradient of the (smoothed) segmented image, we compute the EGI. Tb.Th and Tb.Sp are used independently to weight the gradient of the image (4). We also compute 
the gradients of Tb.Th and Tb.Sp for computing their EGI. We trained different SphCNNs with different inputs (5). The first type of input consists of the original EGI 
(top arrow). The second type combines the EGI with the weighted EGIs (middle arrow) as seperate channels. The third type of input includes the EGI together with 
the EGI of Tb.Th and Tb.Sp (bottom arrow). Each SphCNN is composed of spherical convolutional layers and fully connected layers that generate feature maps 
(6–11). Finally, the output of the last layer is reshaped as a 6 × 6 matrix that represents the predicted apparent stiffness tensor (12). 

Table 1 
Configuration of the SphCNN training pipeline used for the experiments.  

Batch-size 16 
Steps per epoch One sweep over the respective training set, reshuffled every 

epoch 
Number of epochs 600 
Learning-rate Epoch 0–199: 0.01, Epoch 200–399: 0.001, Epoch 400–599: 

0.001. 
Optimizer ADAM 
Dropout No 
Batch- 

normalization 
Yes 

Loss Frobenius Error  

1 https://github.com/daniilidis-group/spherical-cnn. 
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on these findings, we speculate that our projection into the spherical 
domain dropped information that can be partially re-introduced with 
the proposed addition of local thickness and spacing. Moreover, the 
accuracy is relatively insensitive to the skeletal site. 

To further support the assumption that the additional feature chan
nels are beneficial, we analyze the correlation of the predicted and 
observed tensors' entries. Fig. 6 shows correlation plots of the entries for 
the respective combination methods. As shown, R2 is lower when using 
only the EGI for prediction than the experiments where additional 
thickness and spacing local maps were incorporated (5–6% improve
ment in R2), with the scaling option being slightly better. 

In Table 3, we also included experiments where Tb.Th or Tb.Sp are 
disregarded from the ‘Channels’ and ‘Spacing’ setups (cf. ‘Scaling (Tb. 
Sp)’, ‘Scaling (Tb.Sp)’, ‘Scaling (Tb.Sp)’, and ‘Scaling (Tb.Sp)’ experi
ments in the table). These experiments aimed to assess which of these 
two features contributed more to the accuracy of the predictions. 
Compared to the use of EGI alone, including Tb.Th leads to a reduction 
of the error between 7 and 13% for the ‘Channels’ strategy, depending 
on the skeletal site. These results outperform the ones from Table 2, 
which means that including Tb.Sp can have a negative impact on the 

predictive power of the SphCNN. In fact, the performance of the 
‘Channels’ strategy with only Tb.Sp is worse than the sole use of the EGI. 
Multiple pairwise tests (cf. Table A.11) showed however that this dif
ference in performance was not significant. Table 2 also shows that Tb. 
Th is more relevant than Tb.Sp for the ‘Scaling’ strategy. However, 
unlike the ‘Channels’ strategy, adding both Tb.Th and Tb.Sp is beneficial 
for reducing the error of the predictions. 

4.3. SphCNN vs. fourth-order tensor models 

We compared the Frobenius Error of the predictions from the three 
SphCNN models with the fourth-order tensor models proposed by 
Moreno et al. (2016). Specifically, we computed the fourth-order fabric 
tensor models that use the mean intercept length (MIL) tensor, the 
generalized mean intercept tensor (GMIL), and the global structure 
tensor (GST). Tables 4 and 5 show the errors from models trained and 
evaluated on samples from the femur and for the whole dataset, 

Table 2 
Mean Frobenius Errors of the models trained with different feature channels and 
evaluated on different bone-regions. ‘EGI’ means that only the Extended 
Gaussian Image from the initial segmentation is used. ‘Channels’ refers to the 
combination method where the gradients and subsequent EGI were computed 
from the Tb.Th and Tb.Sp maps directly. ‘Scaling’ refers to the inclusion of two 
additional channels computed from gradients weighted with Tb.Th and Tb.Sp, 
respectively. The best average performance (i.e., lowest observed errors) is 
highlighted in bold.    

Evaluation region 

Input Fold All Radius Vertebra Femur 

EGI 1  0.35  0.29  0.40  0.30  
2  0.33  0.27  0.38  0.27  
3  0.29  0.27  0.26  0.34  
4  0.28  0.21  0.30  0.28  
5  0.30  0.31  0.30  0.31  
Mean  0.31  0.27  0.33  0.30 

Channels 1  0.24  0.22  0.25  0.23  
2  0.21  0.14  0.23  0.21  
3  0.23  0.18  0.23  0.26  
4  0.22  0.18  0.22  0.24  
5  0.21  0.30  0.19  0.21  
Mean  0.22  0.20  0.22  0.23 

Scaling 1  0.21  0.17  0.21  0.24  
2  0.25  0.26  0.24  0.25  
3  0.20  0.18  0.22  0.18  
4  0.24  0.22  0.23  0.25  
5  0.23  0.24  0.21  0.26  
Mean  0.23  0.22  0.22  0.24  

Fig. 6. Correlation plots of the 36 terms of the observed versus the predicted 6 × 6 stiffness tensors for the three feature combination methods: ‘EGI’, ‘Channels’, 
‘Scaling’ on the complete dataset. 

Table 3 
Mean Frobenius Errors of the Models trained with different feature channels and 
evaluated on different bone-regions. ‘Channels (Tb.Sp)’ and ‘Channels (Tb.Th)’ 
use the same strategy of ‘Channels’ (see Table 2) but disregard Tb.Th and Tb.Sp, 
respectively. ‘Scaling (Tb.Sp)’ and ‘Scaling (Tb.Th)’ use the same strategy of 
‘Scaling’ (see Table 2) but disregard Tb.Th and Tb.Sp, respectively. The best 
average performance (i.e., lowest observed errors) is highlighted in bold.    

Evaluation region 

Input Fold All Radius Vertebra Femur 

Channels 1  0.33  0.25  0.31  0.39 
(Tb.Sp) 2  0.35  0.27  0.39  0.34  

3  0.30  0.23  0.34  0.28  
4  0.32  0.51  0.28  0.32  
5  0.33  0.34  0.30  0.37  
Mean  0.33  0.32  0.33  0.34 

Channels 1  0.21  0.20  0.21  0.22 
(Tb.Th) 2  0.21  0.19  0.22  0.20  

3  0.19  0.19  0.18  0.19  
4  0.21  0.20  0.21  0.22  
5  0.20  0.21  0.19  0.21  
Mean  0.20  0.20  0.20  0.21 

Scaling 1  0.25  0.19  0.25  0.28 
(Tb.Sp) 2  0.27  0.23  0.28  0.28  

3  0.26  0.19  0.31  0.23  
4  0.28  0.32  0.28  0.26  
5  0.33  0.33  0.33  0.35  
Mean  0.28  0.25  0.29  0.28 

Scaling 1  0.24  0.23  0.23  0.26 
(Tb.Th) 2  0.25  0.22  0.25  0.25  

3  0.23  0.21  0.24  0.21  
4  0.26  0.29  0.27  0.26  
5  0.28  0.25  0.28  0.29  
Mean  0.25  0.24  0.25  0.26  
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respectively. Notice that the methods based on fourth-order fabric ten
sors perform much worse on the entire dataset. This might be attributed 
to two factors: first, the methods from Moreno et al. (2016) were tuned 
only with femur data, and second, the samples from other sites might be 
more challenging. Regarding the SphCNN models, while the accuracy of 
the best performing SphCNN is worse than the fourth-order GMIL, GST 
and the MIL tensor models for the femur samples, the error is more than 
30% lower than the fourth-order models when the whole dataset is 
considered. That means that SphCNNs appears to be more robust with 
respect to the skeletal site. 

Notice that the results reported in Moreno et al. (2016) are slightly 
different of the ones reported in Table 4. Unlike in that paper, only 80% 
of the femur samples are used to tune the parameters of the fourth-order 
tensor models in every fold. This is done to keep the consistency with the 
5-fold cross-validation performed in this paper. 

4.4. Skeletal site variability 

In this section, we investigate the effect of samples taken from 
different bone regions on the resulting accuracy of the stiffness pre
dictions. We trained multiple versions of the model that only inputs the 
EGI on different subsets of the training data. Each of those subsets 
contains only samples from a specific region, i.e., from the femur, radius, 
vertebra, or a combination of all of them. As before, we evaluated the 
resulting predictors on a hold-out set from the respective region with 5- 
fold cross-validation. In this experiment, we only used the EGI of the 
segmented image as the input of the SphCNN. 

As shown in Table 6, all models performed far better on regions that 
were used for training compared to other regions. This suggests that the 
dataset seems to be quite heterogeneous with respect to the different 
regions. Therefore, it becomes difficult for the neural networks to 

predict stiffness tensors of trabecular bone of unseen skeletal sites. When 
all sites are used for training, the observed Frobenius error was similar 
for all regions. This indicates that the neural networks can generalize 
well to all data regions but only if they have seen them during training. 

4.5. Rotational equivariance 

The spherical convolutions utilized in the proposed deep learning 
model are equivariant to actions of SO(3) (i.e., 3D rotations). In this 
section, we investigate how this equivariance property translates to the 
complete prediction model. We performed a qualitative evaluation by 
analyzing one good (Table 7), one medium (Table 8), and one poorly 
(Table 9) performing sample from the test set to the SphCNN model that 
only inputs the EGI. In this experiment, we varied the orientation of the 
original volumetric data, and the corresponding observed stiffness 
tensor. We then fed the rotated sample to our prediction model and 
evaluated the resulting Frobenius error. The rotation of the stiffness 
tensors was performed as described in Mehrabadi and Cowin (1990). 

The first observation is that the complete prediction model is not 
equivariant to actions of SO(3) since different sample orientations 
resulted in various errors. Second, rotations around the y-axis seem to 
affect the prediction less than rotations around the other directions. A 
possible explanation for this effect might be related to how we represent 
the spherical EGI on a 2D grid. At some specific rotations, the presented 
method might lead to an oversampling of the data on the sphere's poles 
versus points closer to the equator. Therefore, a rotation aligned with 
the sphere's central axis (pole to pole) only translates the resulting EGI, 
while other rotations might perturb the data. It might be possible to 
tackle this problem by analyzing the poles of the EGI. In case much in
formation of the EGI is concentrated on the poles, the procedure would 
be to estimate the EGI from the rotated image, predict the apparent 
stiffness tensor from the rotated image, and rotate back the prediction. It 
is, however, not obvious after which criteria the poles need to be 

Table 4 
Mean and standard deviation (in parenthesis) of the Frobenius error computed 
on different cross-validation folds on the femur. The best average performance 
(i.e., lowest observed errors) is highlighted in bold.  

Fold GMIL MIL GST SphCNN SphCNN SphCNN     

EGI Channels Scaling  

1 0.17 
(0.07) 

0.15 
(0.07) 

0.21 
(0.09) 

0.32 
(0.24) 

0.21 
(0.13) 

0.19 
(0.10)  

2 0.17 
(0.06) 

0.15 
(0.07) 

0.22 
(0.10) 

0.26 
(0.12) 

0.27 
(0.14) 

0.26 
(0.12)  

3 0.15 
(0.06) 

0.13 
(0.07) 

0.20 
(0.10) 

0.28 
(0.12) 

0.25 
(0.15) 

0.25 
(0.14)  

4 0.16 
(0.07) 

0.14 
(0.07) 

0.21 
(0.09) 

0.27 
(0.11) 

0.29 
(0.14) 

0.28 
(0.14)  

5 0.17 
(0.07) 

0.15 
(0.07) 

0.22 
(0.10) 

0.30 
(0.15) 

0.24 
(0.14) 

0.24 
(0.14)  

Table 5 
Mean and standard deviation (in parenthesis) of the Frobenius error computed 
on different cross-validation folds on the combined dataset (femur, vertebra and 
radius). The best average performance (i.e., lowest observed errors) is high
lighted in bold.  

Fold GMIL MIL GST SphCNN SphCNN SphCNN     

EGI Channels Scaling  

1 0.54 
(0.30) 

0.54 
(0.29) 

0.58 
(0.30) 

0.34 
(0.36) 

0.22 
(0.14) 

0.22 
(0.13)  

2 0.48 
(0.22) 

0.48 
(0.22) 

0.52 
(0.22) 

0.29 
(0.21) 

0.24 
(0.16) 

0.24 
(0.17)  

3 0.46 
(0.20) 

0.46 
(0.20) 

0.50 
(0.20) 

0.32 
(0.26) 

0.20 
(0.14) 

0.19 
(0.15)  

4 0.46 
(0.21) 

0.47 
(0.21) 

0.50 
(0.21) 

0.28 
(0.17) 

0.23 
(0.15) 

0.23 
(0.22)  

5 0.54 
(0.27) 

0.54 
(0.27) 

0.57 
(0.27) 

0.36 
(0.36) 

0.25 
(0.21) 

0.23 
(0.16)  

Table 6 
Mean Frobenius Errors of SphCNN-based predictions trained and evaluated on 
subsets from different bone regions (all, radius, vertebra, femur). For each of the 
regions, we performed 5-fold cross-validation and ensured that samples only 
appeared in training or validation exclusively. Note also that if a sample from a 
specific site (e.g., the radius) was used in the training with ‘all’ samples, this 
sample was excluded from the ‘all’ and the specific (i.e., ‘radius’ in the example) 
evaluation regions. The best average performance (i.e., lowest observed errors) 
is highlighted in bold.    

Evaluation region 

Train region Fold All Radius Vertebra Femur 

All 1  0.32  0.29  0.35  0.30  
2  0.29  0.20  0.28  0.32  
3  0.29  0.33  0.30  0.27  
4  0.28  0.31  0.29  0.28  
5  0.30  0.21  0.34  0.29  
Mean  0.30  0.27  0.31  0.29 

Radius 1  1.17  0.28  1.54  0.74  
2  1.53  0.18  2.08  0.88  
3  1.62  0.20  2.10  1.07  
4  1.66  0.23  2.26  0.94  
5  1.15  0.29  1.44  0.81  
Mean  1.43  0.24  1.88  0.89 

Vertebra 1  0.56  0.65  0.28  0.61  
2  0.56  0.72  0.34  0.58  
3  0.57  0.69  0.27  0.61  
4  0.57  0.69  0.31  0.60  
5  0.57  0.70  0.33  0.59  
Mean  0.57  0.69  0.31  0.60 

Femur 1  1.75  1.40  2.07  0.26  
2  2.23  1.47  2.68  0.30  
3  1.70  1.71  1.91  0.29  
4  1.73  1.24  2.05  0.28  
5  1.98  2.23  2.18  0.28  
Mean  1.88  1.61  2.18  0.28  
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analyzed (one possible criterion could be the occurrence of high- 
frequency signal components). Therefore, we leave this question open 
here for future research. 

4.6. Bone density and Frobenius norm vs. Frobenius error 

Figs. 7 and 8 show the relationship between the Frobenius error of 
the predictions and the bone density and Frobenius norm of the stiffness 
tensor, respectively. As shown, providing trabecular thickness and 
spacing information to the network helps to reduce the Frobenius error, 
especially at low bone densities. The same trend appears for the Fro
benius norm of the stiffness tensor. 

5. Discussion 

In this work, the application of a DL-based pipeline to approximate 
complex volumetric FEM-based apparent stiffness predictions of 
trabecular bone samples was introduced. A significant constraint was 
the absence of a massive dataset, which is a requirement to train a deep 
3D CNN from scratch. Instead, we projected our data into a reduced 
spherical domain and trained specific SphCNNs thereafter. 

The experiments showed that the proposed spherical mapping is a 
reasonable candidate due to its low number of internal parameters. An 
additional advantage of the spherical mapping is that the method is able 
to estimate the apparent stiffness tensor independent of the imaging 
resolution or shape of the trabecular bone sample (e.g., cubes, cylinders, 
or spheres). Moreover, extensions of the method to in vivo acquisitions 
are feasible by using estimations of Tb.Th and Tb.Sp in grayscale 
(Moreno et al., 2012a). However, it is worth mentioning that a possible 
drawback of the spherical mapping and its subsequent dimensionality 
reduction is that it can also oversimplify the complexity of the trabecular 
bone structures. In order to tackle this issue, we proposed combining 
edge with thickness and spacing information and providing those as 

Table 7 
Reynolds-glyph visualizations of the observed (green) and predicted 
(blue) apparent stiffness tensors, superimposed over the respective bone 
segmentation (gray). The segmentation and the corresponding observed 
stiffness of a good-performing test sample (5% Frobenius error) were 
rotated according to the table headers. Then, the prediction was evalu
ated on the rotated variant to test the model's equivariance with respect 
to rotations. The Frobenius error between the observed and predicted 
stiffness is displayed over the visualizations. 

Table 8 
Similar visualizations as in Table 7 for a sample with an initial Frobenius 
error of 24%. 

Table 9 
Similar visualizations as in Table 7 for a sample with an initial Frobenius 
error of 90%. 

Fig. 7. Correlation between the bone density ρ of the samples and the Frobe
nius error between the observed and predicted apparent stiffness tensors. 
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extra channels to the neural network. This approach led to a reduction of 
the overall error by around 11%. Using the EGIs computed from thick
ness and spacing maps was slightly better than using them for scaling the 
EGI computed from the segmented image. Unlike models based on 
fourth-order tensors, the trained neural networks are equally accurate 
for all tested skeletal sites. The best performing neural network reduced 
the Frobenius error of around 30% for the complete dataset compared to 
the fourth-order tensor models. 

Our results also suggest that the trabecular bone at different sites 
might be heterogeneous. Thus, for our neural network to have a good 
performance, it is necessary to use training samples from all skeletal 
sites. The results also suggest that fourth-order tensor models might 
require a specific parameter tuning for every skeletal site and dataset. 
This is also true for other models (Zysset, 2003). In turn, such a tuning 
procedure is not needed with neural networks. 

One specific theoretical aspect of stiffness tensor prediction is that it 
must be equivariant against SO(3) transformations (i.e., rotations in ℝ3). 
The accuracy of the prediction can be affected when the EGI contains 
much information close to the poles of the unitary sphere. The equiv
ariance property can be used for estimating the stiffness tensor from a 
rotated (and more stable) version of the sample. 

Finally, we found out that the prediction error is reduced when 
trabecular thickness and spacing information is added to the network, 
especially for specimens with low bone density. Still, the error is higher 
for specimens with a small Frobenius norm of the apparent stiffness 
tensor. This suggests that it is necessary to enhance the neural network's 
input with additional features that better capture the variability of the 
stiffness tensor in this case. 

The best performing neural network was the one that only included 
the EGIs of the segmented image and the thickness map, with errors of 
around 20% regardless of the skeletal site. One possible reason to 
explain the better performance of this strategy compared to scaling the 
gradients is that, since the gradient of the segmented image is only non- 
zero in the surface of trabecular bone, thickness (or spacing) information 
is disregarded elsewhere in the scaling approach (cf. Fig. 4). 

From the results, including thickness information both from the 
surface and inside the trabecular bone seems relevant for the estimation 
of stiffness. While this is true for thickness, only trabecular spacing in
formation along the trabecular bone surface seems relevant for stiffness 
prediction since including spacing information from inside the marrow 
led to worse performance. 

Unlike previous studies, the EGI was used instead of fabric tensors to 
model bone anisotropy (Zysset, 2003; Gross et al., 2013; Moreno et al., 

2016). Notice that the EGI and fabric tensors are very related concepts. 
Indeed, the MIL, GMIL, and GST can be seen as filtered approximations 
of the EGI (Moreno et al., 2012b). Thus, using the EGI as the input of the 
neural network has the advantage that all available information related 
to the gradient of the image is used for the prediction. 

Previous studies have also shown that bone density is relevant for 
stiffness predictions (Maquer et al., 2015). Our results align with these 
studies since almost all trained neural networks outperformed those that 
only used the EGI as input. It has been customary in previous methods to 
add the bone volume to total volume ratio (BV/TV) in models for pre
dicting stiffness (Zysset, 2003; Gross et al., 2013; Moreno et al., 2016). 
Instead of using BV/TV, which is a global histomorphometric parameter, 
we used Tb.Th and Tb.Sp local maps. These maps can partially be seen as 
surrogates of local bone and local marrow content, respectively. With 
this approach, our goal was to expose the neural network to local bone 
and marrow content measures without the inherent loss of information 
that comes with the use of global parameters such as BV/TV, mean Tb. 
Th or mean Tb.Sp. 

One of the main challenges of using DL in biomechanical applica
tions is that this technology requires plenty of training data, which is 
usually unavailable (Ching et al., 2018). To solve this issue, Holzapfel 
et al. (2021) successfully combined advanced theoretical models with 
DL for characterizing mechanical properties of the arteries. In this paper, 
we dealt with that issue mainly by changing the domain of the data, in 
addition to data augmentation. Thus, these two studies show that it is 
possible to get the benefits of using DL in biomechanics if it is combined 
with additional strategies for dealing with the recurring problem of lack 
of data in biomechanical applications. 

5.1. Future work 

In addition to adding more local features to the neural networks, we 
plan to use other neural network architectures. Instead of SphCNNs, we 
plan to test graph CNNs (Wu et al., 2021), which might be useful for 
stiffness prediction. This may be possible by modeling trabecular bone 
as a graph. Further research avenues also aim to replicate the proposed 
process on larger datasets to verify the claims in terms of robustness and 
scalability. 

6. Conclusion 

In this paper, we propose the use of SphCNNs to approximate the 
apparent stiffness tensor of trabecular bone samples. The neural network 
makes use of local edge, thickness and spacing information to perform 
the prediction, which results in a reduction of more than 30% in the 
Frobenius error compared to state-of-the-art methods. Thus, SphCNNs 
are promising for replacing the more expensive μFE estimations. 
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Appendix A. Statistical comparison of the methods 

The statistical significance of our results is accessed with pairwise Wilcoxon tests on all ten methods for the complete dataset and six methods for 
the femur. Here, we compare the distribution of the observed loss values from all folds. The p-values of the Tables A.10 and A.11 were corrected 
against multiple comparison by using Bonferroni's method.  

Table A.10 
Pairwise p-values with Bonferroni correction. The six methods were trained and evaluated on data from the femur site.   

SphCNN EGI SphCNN GMIL MIL GST 

Channels  Scaling    

SphCNN channels   <0.0001 N.S.  <0.0001  <0.0001  <0.0001 
EGI <0.0001  <0.0001  <0.0001  <0.0001  <0.0001 
SphCNN scaling N.S.  <0.0001   <0.0001  <0.0001  <0.0001 
GMIL <0.0001  <0.0001 <0.0001   <0.0001  <0.0001 
MIL <0.0001  <0.0001 <0.0001  <0.0001   <0.0001 
GST <0.0001  <0.0001 <0.0001  <0.0001  <0.0001    

Table A.11 
Pairwise p-values with Bonferroni correction. The ten methods were trained and evaluated on the complete dataset.   

SphCNN SphCNN SphCNN SphCNN SphCNN SphCNN SphCNN GMIL MIL GST 

Channels Channels Channels EGI Scaling Scaling Scaling    

(Th.Sp)  (Tb.Th)   (Tb.Sp) (Tb.Th)    

SphCNN Channels (Th.Sp)  <0.0001 <0.0001 N.S. <0.0001 <0.0001 <0.0001 <0.0001 <0.0001  <0.0001 
SphCNN Channels <0.0001  N.S. <0.0001 N.S. 0.0001 N.S. <0.0001 <0.0001  <0.0001 
SphCNN Channels (Tb.Th) <0.0001 N.S.  <0.0001 N.S. <0.0001 <0.0001 <0.0001 <0.0001  <0.0001 
SphCNN EGI N.S. <0.0001 <0.0001  <0.0001 N.S. 0.0004 <0.0001 <0.0001  <0.0001 
SphCNN Scaling <0.0001 N.S. N.S. <0.0001  <0.0001 <0.0001 <0.0001 <0.0001  <0.0001 
SphCNN Scaling (Tb.Sp) <0.0001 0.0001 <0.0001 N.S. <0.0001  0.0013 <0.0001 <0.0001  <0.0001 
SphCNN Scaling (Tb.Th) <0.0001 N.S. <0.0001 0.0004 <0.0001 0.0013  <0.0001 <0.0001  <0.0001 
GMIL <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001  N.S.  <0.0001 
MIL <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 N.S.   <0.0001 
GST <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001   
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