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A B S T R A C T   

Objective: Postmenopausal osteoporosis (PMOP) is a common systemic metabolic bone disorder 
that is owing to the reduced estrogen secretion and imbalance of bone absorption and bone 
formation in postmenopausal women. Ferroptosis has been identified as a novel modulatory 
mechanism of osteoporosis. Nevertheless, the particular modulatory mechanism between fer
roptosis and PMOP is still unclear. The objective of the current investigation was to detect po
tential biomarkers connected to ferroptosis in PMOP and discover its probable mechanism 
through bioinformatics. 
Methods: We downloaded PMOP-related microarray datasets from the database of Gene Expres
sion Omnibus (GEO) and obtained the differentially expressed genes (DEGs). Utilizing bioinfor
matics analysis, the DEGs were intersected with the ferroptosis dataset to obtain ferroptosis- 
connected mRNAs. Enrichment analysis employing KOBAS 3.0 was conducted to comprehend 
the biological functions and enrichment pathways of the DEGs. The generation of the protein- 
protein interaction (PPI) network was conducted with the aim of identifying central genes. 
Lastly, the coexpression and competitive endogenous RNA (ceRNA) networks were built using 
Cytoscape. With the help of external datasets GSE56815 to verify the reliability of the hub genes 
by plotting ROC curves. 
Results: We identified 178 DE microRNAs (miRNAs), 138 DE circular RNAs (circRNAs), and 86 
ferroptosis-related mRNAs. Enrichment analysis exhibited that mRNAs were primarily connected 
with the signaling pathways of PI3K/Akt, metabolism, mTOR, FoxO, HIF-1, AMPK, MAPK, fer
roptosis, VEGF, and NOD-like receptors. Generation of the PPI network detected eight hub genes. 
The circRNA/miR-23b-3p/PTEN axis may relieve PMOP by inhibiting ferroptosis through tar
geting the pathway of PI3K/Akt signaling, which is a vital modulatory pathway for PMOP pro
gression. Moreover, the ROC curves ultimately indicates that the four hub genes have greater 
diagnostic importance in PMOP samples in contrast to the normal group samples, which may be 
possible markers for PMOP diagnosis. 
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Conclusions: Bioinformatics analysis identified four hub genes, namely, PTEN, SIRT1, VEGFA, and 
KRAS, as potential biomarkers for PMOP diagnosis and management. Moreover, the circRNA/ 
miR-23b-3p/PTEN axis may relieve PMOP by suppressing ferroptosis through targeting the 
pathway of PI3K/Akt signaling, providing a new avenue to explore the pathogenesis of PMOP.   

1. Introduction 

Postmenopausal osteoporosis (PMOP) is a common systemic chronic metabolic bone disorder in females in the postmenopausal 
period. The occurrence of PMOP is mainly due to ovarian atrophy and functional degeneration as well as insufficient estrogen secretion 
in postmenopausal women, which causes reduced mass of the bone, structural alterations in bone trabeculae, and bone fragility, 
making bones susceptible to fracture [1]. Osteoporosis (OP) often occurs with several metabolic disorders, such as diabetes, nonal
coholic fatty liver disease (NAFLD), obesity, dyslipidemia, and cardiovascular disease (CVD), in postmenopausal women [2]. This 
comorbidity poses significant challenges for the management of PMOP. A prior investigation has informed that the frequency of OP in 
postmenopausal ladies aged above 40 years is 32.5 % in China and gradually increases after the age of 60 years [3]. OP and its 
complications cause medical and economic burdens to society. At present, the standard method for diagnosis of OP mainly relies on 
dual-energy X-ray absorptiometry (DXA), but it only provides observations and does not provide analysis of the pathological process, 
making early diagnosis of OP difficult [4]. More importantly, modern medical treatment for PMOP has many defects, such as diverse 
side effects, poor tolerance, high cost, poor compliance, bone necrosis, and cancer risk [5]. Therefore, the identification of biomarkers 
for PMOP has substantial importance in facilitating early identification and management of this condition. 

Up to now, the exact PMOP pathogenesis is still unclear. Prior investigations have exhibited that many signaling pathways, like 
pathways of Wnt/β-catenin signaling, semaphorin 3A (Sema3A)/neuropilin 1 (NRP1)/plexinA1, osteoprotegerin (OPG)/receptor 
activator of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) ligand (RANKL), oxidative stress, and T cell- 
mediated inflammatory response, as well as immune cells may participate in the modulation of PMOP, therefore establishing a reg
ulatory network inside the body that eventually disrupts the balance of the remodeling process of the bone [6–9]. 

Circular RNA (circRNA) is a recently detected kind of non-coding RNA that forms a continuous covalent closed cycle, and it is 
highly expressed in the eukaryotic transcriptome [10]. Emerging research shows that circRNA can be employed as a treatment target 
and diagnostic marker of diseases. Moreover, circRNA is also a potential regulator of OP [11]. MicroRNA (miRNA) is a small 
non-coding RNA that is evolutionarily conserved. Studies have shown that targeting miRNA is expected to become an attractive new 
method for the management of OP or other orthopedic diseases [12]. The hypothesis of competitive endogenous RNA (ceRNA), as 
exhibited by Salmena et al. [13], suggests that circRNA acts as a ceRNA and plays a regulatory role by competing with mRNA for 
miRNA in many diseases, such as PMOP [14]. Ferroptosis is a kind of regulatory cell death that is based on iron and is related to two 
main biochemical features, namely, lipid peroxidation and iron accumulation [15]. Ferroptosis is connected with the incidence and 
advancement of several diseases, like cancer, necrotizing inflammatory disease, and CVD [16–18]. A rising number of investigations 
have stated the connection between ferroptosis and OP, revealing that ferroptosis may be a new treatment target for OP [19,20]. 
Although there is some evidence that circRNA, miRNA, and ferroptosis have a crucial function in the incidence and OP development, 
the regulatory impact of these three factors in OP remains to be further investigated, especially during PMOP. 

Fig. 1. The detailed workflow of the analysis process.  
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In the current investigation, we obtained microarray datasets related to PMOP from the database of Gene Expression Omnibus 
(GEO) and obtained the differentially expressed genes (DEGs). The biological functions and enriched pathways of the DEGs was 
elucidated utilizing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, and we utilized the 
Search Tool for the Retrieval of Interacting Genes (STRING) database to build a network of protein-protein-interaction (PPI) to detect 
hub genes. Finally, the coexpression network and ceRNA network were constructed using Cytoscape. Furthermore, we used external 
datasets GSE56815 to verify the reliability of the hub genes by plotting ROC curves. Using bioinformatics, the current investigation 
further elucidated the pathogenesis of PMOP, identifying a potential biomarker and modulatory pathway for early PMOP manage
ment. The detailed workflow of this investigation is illustrated in a diagram displayed in Fig. 1. 

2. Materials and methods 

2.1. Microarray data 

The GEO online database [21] was searched using the following key words to obtain appropriate gene expression datasets: 
“postmenopausal osteoporosis” and “Homo sapiens”. The GSE201543 dataset (containing 6 PMOP samples and 4 normal samples) and 
the GSE161361 dataset (containing 3 PMOP and 3 healthy specimens) were selected for later examination. 

2.2. Data processing and analysis of differential expression 

The GPL20712 and GPL28148 platform files were obtained from the GEO database and annotated with probe ID according to the 
annotation data in the file of the platform. GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/), an interactive webtool that permits 
users to compare diverse groups of samples across experimental environments in a GEO series, was utilized to identify DEGs. GEO2R 
online program was used to conduct analysis for the raw submitter-supplied data from the microarrays and to subsequently detect 
differentially expressed (DE) miRNAs and DEcircRNAs in PMOP. Genes with a log fold change (FC) > 1 or <-1 and P < 0.05 were 
reflected as significant DEmiRNAs and DEcircRNAs. It is worth mentioning that logFC >0 represents upregulation, whereas a logFC 
<0 suggests downregulation. In order to enhance the visualization of DEGs, Hiplot (https://hiplot.com.cn/basic) was employed to 
build volcano plots and Bioinformatics (http://www.bioinformatics.com.cn) to create heatmaps. 

2.3. Screening for key circRNAs 

The probable targeting circRNAs of candidate miRNAs was predicted employing the online prediction database, starBase v2.0 
(http://starbase.sysu.edu.cn/) [22]. The candidate circRNAs were obtained by intersecting the predicted target circRNAs with DEc
ircRNAs, which were displayed using a Venn diagram online tool. 

2.4. Screening for key mRNAs 

Five online mRNA prediction databases, namely, Starbase, miRDB, miRcode, miRTarBase, and Targetscan, were utilized to 
anticipate target mRNAs of the key genes and to choose mRNAs that were in all databases as the target mRNAs. In addition, the 
database of FerrDb (http://www.zhounan.org/ferrdb) [23] was utilized to identify genes connected with ferroptosis. The final key 
mRNAs were obtained through the intersection of predicted mRNAs with ferroptosis-related genes, and they were displayed using a 
Venn diagram online tool. 

2.5. Functional enrichment analysis 

A potent online means for functional enrichment analysis KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/genelist/) was employed to 
conduct GO and KEGG enrichment analyses [24] for further analysis of the DEGs at the level of function. An established P value (Q 
value) < 0.05 was employed as a filter to screen out significantly enriched functions and pathways. Bioinformatics (http://www. 
bioinformatics.com.cn) was utilized to visualize the top 10 GO terms, KEGG pathways, and Reactome terms that meet the criterion 
separately. 

2.6. Construction of PPI network 

To interpret the molecular pathways of key activities of the cells, the analysis of functional PPI is necessary. In the present study, the 
STRING database (http://string.embl.de/) [25] and Cytoscape 3.7.2 program [26] were used to build a PPI network featuring the 
determined mRNAs.The score of reliability minimum interaction was established to the default value of 0.400. Cytoscape software was 
used to analyze a range of topological features for the nodes in the PPI network, which allowed hub gene detection. The network 
topology parameters were studied employing the network analyzer plugin in Cytoscape, and significant genes in the network as hub 
genes were screened utilizing the cytoHubba plugin in Cytoscape [27]. The top ten hub genes were detected by the use of three al
gorithms, namely, Degree, Maximum Neighborhood Component (MNC), and Maximal Clique Centrality (MCC) [28], and Venn dia
gram online tool was utilized to display the final hub genes. 
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2.7. circRNA/miRNA/mRNA ceRNA network construction 

The construction of ceRNA network depended on the established interaction connections among circRNAs, miRNAs, and mRNAs. 
Based on the ceRNA hypothesis, ceRNA expression level should be associated negatively with miRNA expression and positively 
connected with mRNA expression. Consequently, we included the anticipated associations and the relevant expression data in order to 
acquire outcomes that are more reliable. In the current investigation, Cytoscape was employed for the creation of circRNA/miRNA and 
miRNA/mRNA coexpression networks. The merging function in Cytoscape was used to combine the circRNA/miRNA and miRNA/ 
mRNA coexpression networks to obtain the final circRNA/miRNA/mRNA interaction ceRNA regulatory network. 

2.8. Hub genes ROC curves 

To validate the hub genes reliability, We searched for the keywords “postmenopausal osteoporosis” and “Homo sapiens” and found 
the GSE56815 (comprising 40 high and 40 low hip BMD subjects) from the GEO online database. GEO2R online program was used to 
analyze the raw submitter-supplied data from the microarrays and to subsequently detect differentially expressed genes in PMOP. The 
screening criteria for differentially expressed genes are also set to genes with a log fold change (FC) > 1 or <-1 and P < 0.05. With the 
help of Hipplot to generate ROC curves, we analyzed the specific hub gene expression and excavated biomarkers for PMOP diagnosis. 
Among them, area under the ROC curve (AUC) is a marker that incorporates specificity and sensitivity, representing the internal 
efficacy of diagnostic tests between 0.5 and 1. A diagnosis is considered to be of higher quality when the AUC value is closer to 1. 

3. Results 

3.1. DEcircRNAs and DEmiRNAs identification in PMOP 

In the current research, the GSE201543 and GSE161361 datasets were normalized to facilitate subsequent data analysis. Depending 
on the following threshold conditions of p value < 0.05 and logFC >1 or ＜-1, 178 DEmiRNAs, comprising 126 highly expressed 
miRNAs and 52 lowly expressed miRNAs, were identified in PMOP samples compared to normal samples. DEGs were visually illus
trated employing Heatmap and volcano plot analyses (Fig. 2a and b). In addition, 15,508 DEcircRNAs were significantly and DE 
between patients with PMOP and controls, including 4643 upregulated and 10,865 downregulated DEcircRNAs. The expression 
profiles of DEcircRNAs were showed utilizing a heatmap and volcano dot plot (Fig. 3a and b). 

3.2. Acquisition of key circRNAs 

In the present study, 1292 predicted target circRNAs were identified through starBase v2.0. The key circRNAs were obtained by 
crossing the predicted target circRNAs with DEcircRNAs obtained in the previous step, and the last key circRNAs were illustrated using 

Fig. 2. The heatmap and volcano plot of miRNAs. a. miRNA heat map, vertical axis represents sample type, horizontal axis represents gene; b. 
miRNA volcano plot. Red dots represent up-regulated genes, while blue dots represent down-regulated genes. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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the Venn diagram online tool (Supplementary Fig. 1). 

3.3. Acquisition of key mRNAs 

To obtain the final key mRNAs, we utilized five online databases to anticipate target mRNAs, and their common intersection is 
shown in Fig. 4a. We next utilized the database of FerrDb to search for ferroptosis-associated genes. The final key mRNAs were ac
quired through the intersection of predicted mRNAs and genes connected with ferroptosis (Fig. 4b). 

3.4. GO and KEGG enrichment analyses of target genes 

We used KOBAS 3.0 to conduct GO, KEGG, and Reactome enrichment analyses of the key mRNAs. The major enrichment of key 
mRNAs was observed in several biological processes, including positive or negative transcription regulation by RNA polymerase II, 

Fig. 3. The heatmap and volcano plot of circRNAs. a. cirRNA heat map, vertical axis represents sample type, horizontal axis represents gene; b. 
cirRNA volcano plot. Red dots represent up-regulated genes, while blue dots represent down-regulated genes. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. Acquisition of Key mRNAs. a. The Fig. 4a represents the mRNAs predicted by five online databases. The middle part represents the 
intersection of the five sets of data. b. The pink part represents the mRNAs predicted by five online databases, the blue part represents the mRNAs 
obtained from the FerrDb database. The middle part represents the intersection of the two sets of data. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 5. Enrichment Analysis. a. The chord diagram shows that the first 10 biological processes of key mRNAs mainly involves in positive or negative 
regulation of transcription by RNA polymerase II, positive regulation of gene expression, negative regulation of apoptotic process, positive regu
lation of cell population proliferation, positive regulation of autophagy, etc. b. The bubble plot showing the most enriched KEGG and Reactome 
terms of key mRNAs. The most significant KEGG pathways involved PI3K-Akt signaling pathway, Metabolic pathways, mTOR signaling pathway, 
etc. The most significant Reactome terms were Gene expression (Transcription), Signal Transduction, immune system. c. The Sankey plot showing 
the relationship between genes enriched on significant KEGG pathways. 
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positive gene expression modulation, negative apoptotic process regulation, positive modulation of cell population growth, and 
positive autophagy regulation. The top ten BPs were selected, and a chord diagram was drawn employing them (Fig. 5a and Table 1). 
The KEGG enrichment data showed that the mRNAs were mainly connected to pathways of phosphoinositide 3-kinase (PI3K)/Akt 
signaling, metabolism, mammalian target of rapamycin (mTOR) signaling, forkhead box O (FoxO) signaling, hypoxia-inducible factor 
1 (HIF-1) signaling, AMP-activated protein kinase (AMPK) signaling, mitogen-activated protein kinase (MAPK) signaling, ferroptosis, 
vascular endothelial growth factor (VEGF) signaling, and nucleotide oligomerization domain (NOD)-like receptor signaling. The 
analysis of Reactome enrichment exhibited that the mRNAs were primarily enriched in gene expression (transcription), signal 
transduction, immune system, inflammation, and signal. A bubble chart was used to present and analyze the top 10 KEGG pathways 
and Reactome terms (Fig. 5b and Table 2). Furthermore, a Sankey plot was employed to visually illustrate the connection between 
enriched genes and significant pathways of KEGG (Fig. 5c). 

3.5. PPI network construction and screening of hub genes 

The PPI network was built employing the STRING web app and Cytoscape program, and it had 74 nodes and 688 edges, with a 9.29 
average degree, as visually represented in Cytoscape (Fig. 6a). The top ten key genes were detected by three procedures, namely, MCC 
(Fig. 6b), Degree (Fig. 6c), and MNC (Fig. 6d), in the cytoHubba plugin in Cytoscape program, and eight hub genes were obtained 
through the Venn online tool (Fig. 6e). Phosphatase and tensin homolog (PTEN), signal transducer and activator of transcription 3 
(STAT3), HIF1A, silent information regulator 1 (SIRT1), VEGFA, Kirsten rat sarcoma virus (KRAS), enhancer of zeste homolog 2 
(EZH2), and SRC were the eight hub genes that identified as the most critical genes within the network of PPI. These genes may have a 
crucial involvement in PMOP pathogenesis. 

3.6. Construction of the circRNA/miRNA/mRNA ceRNA network 

To determine the final ceRNA network, a circRNA/miRNA network was created, which included 175 nodes and 397 edges (Fig. 7a). 
A miRNA/mRNA network was built, which included 213 nodes and 1254 edges (Fig. 7b). The merge function in Cytoscape program 
was employed to combine circRNA/miRNA network and miRNA/mRNA network to obtain the final ceRNA network, which was 
composed of 251 nodes and 1228 edges (Fig. 8a). 

The ceRNA hypothesis [13] describes a complicated posttranscriptional regulatory mechanism in cells, including lncRNAs, 
circRNAs, and other RNAs, which function as sponges to jointly compete for the binding sites of miRNAs to reduce the expression of 
miRNAs, thus interfering with the miRNA-induced inhibition of downstream target genes. Previous studies have shown that functional 
interaction was observed between multiple miRNAs and PTEN, which suppresses its expression, thereby participating in various 
disease pathogenesis, like cancer, cerebral ischemic stroke, OP, acute injury of the kidney, hepatic fibrosis, pulmonary hypertension, 
myocardial infarction, infertility, osteoarthritis, acute pancreatic inflammation, and atherosclerosis [29]. Compared to healthy in
dividuals, patients with OP have lower expression levels of PTEN [30]. miRNA/PTEN axes have a significant function in human disease 
pathogenesis, and treatment targets of these axes will have advantageous impacts on various diseases. Therefore, we selected PTEN to 
establish a miRNA/PTEN network for further analysis (Fig. 8b). Depending on the theory of the ceRNA hypothesis, miR-23b-3p is 
significantly upregulated in individuals with PMOP [31], which was in line with the present outcomes. In addition, a previous 
investigation has reported that miR-23b-3p enhances osteoclasts differentiation via the PTEN cascade, and the direct target of 
miR-23b–3p in osteoclasts is PTEN [32]. Therefore, in accordance with the modulatory connection among circRNAs, miRNAs, and 
mRNAs, a hub ceRNA network was built for further analysis utilizing hsa-miR-23b-3p (Fig. 8c). 

3.7. ROC curve of ferroptosis-connected hub genes in PMOP 

To validate the hub genes’ reliability, increase the local specificity of the hub genes, and identify potential biomarkers throughout 
the entire process of disease occurrence and development in PMOP, the ROC curves of the eight hub genes related to ferroptosis in 
PMOP were validated using the GSE56815 datasets. The results are shown in Fig. 9. The diagnostic importance of these hub genes in 
PMOP samples is as follows: SIRT1(AUC:0.790), VEGFA (AUC: 0.767), KRAS (AUC: 0.762), PTEN (AUC: 0.642). Overall, out of these 

Table 1 
Deatelis of top 10 GO terms.  

Term Description Count P-Value 

GO:0045,944 positive regulation of transcription by RNA polymerase II 19 7.99E-12 
GO:0000122 negative regulation of transcription by RNA polymerase II 18 3.42E-13 
GO:0045,893 positive regulation of transcription, DNA-templated 15 1.89E-12 
GO:0010,628 positive regulation of gene expression 13 5.17E-12 
GO:0007165 signal transduction 13 3.60E-07 
GO:0043,066 negative regulation of apoptotic process 12 9.97E-10 
GO:0008270 zinc ion binding 12 2.71E-07 
GO:0008284 positive regulation of cell population proliferation 9 1.83E-06 
GO:0045,766 positive regulation of angiogenesis 6 5.98E-07 
GO:0010,508 positive regulation of autophagy 5 2.83E-07  
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eight hub genes, four hub genes have good diagnostic performance in PMOP and are expected to become potential biomarkers related 
to ferroptosis in PMOP. 

4. Discussion 

PMOP is categorized by decreased mass of bone and degeneration of bone microstructure as well as by increased susceptibility to 
brittle fracture, resulting in disability and mortality [33]. Due to the rapid aging of the global people, the number of subjects with OP is 
growing, especially among postmenopausal women, resulting in challenges to individual families and health care [34]. Therefore, 
early molecular diagnosis and intervention for postmenopausal OP patients has far-reaching clinical significance. 

In this investigation, KEGG enrichment analysis showed that mRNAs were primarily connected with the pathways of PI3K/Akt 
signaling, metabolism, mTOR signaling, FoxO signaling, HIF-1 signaling, AMPK signaling, MAPK signaling, ferroptosis, VEGF 
signaling, and NOD-like receptor signaling. Eight hub genes, namely, PTEN, HIF1A, SIRT1, STAT3, VEGFA, KRAS, EZH2, and SRC, 
were obtained through the PPI network. In addition, the ROC curve results also show that compared with the normal group samples, 
among these eight hub genes, the four hub genes namely SIRT1, VEGFA, KRAS, and PTEN have higher diagnostic value in PMOP 
samples, and are expected to become potential biomarkers for ferroptosis related diagnosis in PMOP. However, although the other four 
genes did not exhibit good diagnostic value, this may be related to the small sample size. In the future, we will conduct basic ex
periments to further verify our presumption. PTEN is a dual-function phosphatase that exhibits both protein and lipid phosphatase 
activities. It serves as a cancer inhibitor and has a vital role in the regulation of metabolism [35]. Chai et al. reported that the 
modulation of osteoclast differentiation is mediated by miR-23b-3p, which exerts its effects via targeting PTEN through the pathway of 
PI3K/Akt [32], suggesting that PTEN has a vital function in bone homeostasis. PTEN has been recognized as a significant regulatory 
component in the differentiation of osteoblast and apoptosis; mir-708 suppresses MC3T3-E1 osteoblasts against apoptosis induced by 
H2O2 via directly targeting PTEN [36]. Research reports that lncRNA-ORLNC1 inhibits the differentiation of osteogen and enhances 
adipogenic differentiation of BMSCs in vitro; in addition, it efficiently inhibits the accelerating effect of miR-296 on the differentiation 
of osteoblasts by targeting PTEN. The lncRNA-ORLNC1-miR-296-PTEN axis may be a vital regulatory factor for the transition con
nected with osteoporosis between osteogenesis and adipogenesis in BMSC and may be a possible treatment target for improving 
osteoporotic bone loss [37]. SIRT1 is a significant regulator of cell survival and lifespan, and it has great potential in predicting and 
managing diseases connected with bone, such as OP and osteonecrosis, indicating that SIRT1 may be a promising bone homeostasis 
modulator [38]. It has been reported that resveratrol treatment enhances mitochondrial autophagy by the mediation of both pathways 
of SIRT1 and PI3K/Akt/mTOR signaling, thus protecting osteoblasts in OP rats [39]. Moreover, a previous study has demonstrated that 
vitamin K2 ameliorates osteoporosis related to type 2 diabetes through AMPK/SIRT1 signaling pathway activation to suppress fer
roptosis [40]. Vascular endothelial growth factor (VEGF) is a factor of endothelial cell survival and is necessary for the efficient 
connection between angiogenesis and osteogenesis. A previous study has reported that miR-16–5p inhibits osteogenesis by suppressing 
VEGFA expression, which is a PMOP-favorable treatment target [41]. Wang et al. reported that Dexmedetomidine can enhance VEGFA 
by suppressing miR-361–5p, thereby promoting osteogenic angiogenesis and providing potential PMOP curative targets [42]. Studies 
have shown that VEGFA is a miR-10a-3p target gene. The overexpression of lncRNA GAS5 increases angiogenesis by suppressing 
miR-10a-3p and promoting the VEGFA expression, which provides a novel target for medical therapy of OP [43]. KRAS is the most 
common protein of the RAS gene family, and it plays a vital function in cell proliferation and cell division as well as contributes to the 
development of many cancers, like bone [44], pancreatic, lung, and colon cancers [45]. Hu et al. demonstrated that KRAS expression 
level is significantly reduced in OP-bone marrow stromal cells (BMSCs); in addition, they reported that miR-210–3p suppresses the 
osteogenic differentiation process of normal BMSCs by targeting KRAS and inhibiting MAPK signal transduction, but KRAS over
expression reverses the suppression of miR-210–3p overexpression [46]. 

Because ferroptosis plays a key role in PMOP, we identified genes related to PMOP and ferroptosis, which may help to identify 
potential therapeutic targets or offer a theoretical foundation for understanding the molecular pathology of PMOP. We generated a 
ceRNA network using Cytoscape software and further constructed the circRNA/miR-23b-3p/PTEN network depending on the theory of 
ceRNA and numerous previous studies. To date, there are few studies on the expression profile and circRNAs modulatory mechanisms 

Table 2 
Deatelis of top 10 KEGG pathway.  

Pathyway ID Term Count P-Value Genes 

hsa 04151 PI3K-Akt signaling pathway 11 4.97E-10 YWHAE, PRKCA,PRKAA2,PRKAA1,PTEN, MAPK1,VEGFA, CREB1,TLR4,MYB, 
KRAS 

hsa 01100 Metabolic pathways 10 0.001208 AGPS, LPIN1,GPT2,IDH2,ACSL1,ACSL4,PTEN,AR,ACADSB,GCH1 
hsa 04150 mTOR signaling pathway 9 9.56E-11 ULK2,LPIN1,PRKCA, PRKAA2,PRKAA1,PTEN, MAPK1,RICTOR, KRAS 
hsa 04068 FoxO signaling pathway 8 8.84E-10 SIRT1,STAT3,PRKAA2,PRKAA1,PTEN, MAPK1,KRAS, BNIP3 
hsa 04066 HIF-1 signaling pathway 7 7.16E-09 STAT3,TFRC, PRKCA,HIF1A,MAPK1,VEGFA,TLR4 
hsa 04152 AMPK signaling pathway 6 3.66E-07 SIRT1,PRKAA2,CREB1,CAMKK2,SREBF1,PRKAA1 
hsa 04010 MAPK signaling pathway 6 5.38E-05 STMN1,PRKCA,MEF2C,MAPK1,VEGFA, KRAS 
hsa 04216 Ferroptosis 5 5.07E-08 STEAP3,ACSL1,ATG7,ACSL4,TFRC 
hsa 04370 VEGF signaling pathway 5 3.06E-07 PRKCA,SRC,MAPK1,VEGFA, KRAS 
hsa 04621 NOD-like receptor signaling 

pathway 
4 0.000701 ATG16L1,MAPK1,TLR4,TNFAIP3  
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in PMOP. Therefore, it is imperative to study the relationship between circRNA expression and the development of PMOP. KEGG 
enrichment analysis suggested that the pathway of PI3K/Akt signaling had the highest level of enrichment among the mRNAs asso
ciated with ferroptosis. It has been informed that the PTEN/PI3K/Akt signal pathway regulates the signal transduction of various 
biological processes like proliferation, growth, and cell apoptosis [47]. Based on prior studies [48,49], the pathway of PI3K is strictly 
connected with ferroptosis, cell growth, and osteoporosis, and activation of this pathway protects cells from ferroptosis, thus allevi
ating osteoporosis. The circRNA/miR-23b-3p/PTEN axis may relieve PMOP by suppressing ferroptosis by targeting the pathway of 
PI3K/Akt signaling, which may be a vital modulatory pathway for progression of PMOP. 

Fig. 6. PPI network and hub genes identification. a. The PPI network was comprised of 74 nodes and 688 edges. Each node represents a protein, 
while each edge represents one protein–protein association. The larger the degree value, the larger the shape size. b-d. The hub genes were 
identified using three models (MCC, Degree and MNC) with the Cytoscape plug-in cytoHubba. e. The Venn diagram was used to identify the eight 
hub genes in PMOP. 
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5. Conclusion 

In the current investigation, we detected four specifically expressed ferroptosis-related hub genes, namely, PTEN, SIRT1, VEGFA, 
and KRAS, which may be potential markers for PMOP diagnosis and tharapy. The circRNA/miR-23b-3p/PTEN axis may relieve PMOP 
by inhibiting ferroptosis though targeting PI3K/Akt signaling pathway, thus providing a basis for further exploring the potential 
therapeutic targets and regulatory mechanisms of PMOP as well as a new therapeutic strategy. Due to the inherent limitations of 
bioinformatics, including untimely database updates, in addition to the relative small sample size in the present study, further vali
dation using larger sample sizes, basic experiments, and prospective studies is required in the future. 

Fig. 7. The circRNA-miRNA network and miRNA-mRNA network construction. a. The circRNA-miRNA co-expressed network was constructed by 
Cytoscape which including 175 nodes and 397 edges. One node represents a circRNA or miRNA, while one edge represents one interaction of 
circRNA and miRNA. The diamond represents circRNA, while the hexagon represents miRNA (the red figure represents the up-regulated gene, and 
the green figure represents the down-regulated gene). b. The miRNA-mRNA co-expressed network was constructed by Cytoscape which including 
213 nodes and 1254 edges. One node represents a miRNA or mRNA, while one edge represents one interaction of miRNA and mRNA. The hexagon 
represents miRNA, while the inverted triangle represents mRNA (the red figure represents the up-regulated gene, and the green figure represents the 
down-regulated gene). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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