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a b s t r a c t 

The angiotensin-converting enzyme 2 (ACE2) and main protease (MPro), are the putative drug candi- 

dates for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we performed 

3D-QSAR pharmacophore modeling and screened 1,264,479 ligands gathered from Pubchem and Zinc 

databases. Following the calculation of the ADMET properties, molecular docking was carried out. More- 

over, the de novo ligand design was performed. MD simulation was then applied to survey the behavior 

of the ligand-protein complexes. Furthermore, MMPBSA has utilized to re-estimate the binding affinities. 

Then, a free energy landscape was used to find the most stable conformation of the complexes. Finally, 

the hybrid QM-MM method was carried out for the precise calculation of the energies. 

The Hypo1 pharmacophore model was selected as the best model. Our docking results indicate that the 

compounds ZINC12562757 and 112,260,215 were the best potential inhibitors of the ACE2 and MPro, re- 

spectively. Furthermore, the Evo_1 compound enjoys the highest docking energy among the designed de 

novo ligands. Results of RMSD, RMSF, H-bond, and DSSP analyses have demonstrated that the lead com- 

pounds preserve the stability of the complexes’ conformation during the MD simulation. MMPBSA data 

confirmed the molecular docking results. The results of QM-MM showed that Evo_1 has a stronger po- 

tential for specific inhibition of MPro, as compared to the 112,260,215 compound. 

© 2021 Elsevier B.V. All rights reserved. 
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In conclusion, our results showed that the de novo designed 

vo_1 compound has the potential to be used as a drug for the 

reatment of COVID-19; however, further in vitro and in vivo vali- 

ations are required. 

. Introduction 

In late December 2019, a new coronavirus (CoV) called coro- 

avirus 2019 (2019-nCoV) or severe acute respiratory syndrome 

oronavirus 2 (SARS-CoV-2), began to spread pneumonia from 

uhan to all over China, and then formed a large global pandemic, 
∗ Corresponding authors at: Deputy of Education and Research, Behbahan Faculty 
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eaching almost worldwide by July 7, 2020. According to global 

tatistics, which are being updated instantly, the virus death rate 

s 3.4% [1] . Early symptoms of coronavirus disease 2019 (COVID- 

9) include pneumonia, fever, muscle aches, and fatigue, and no 

pecific or effective drug has been introduced to date. However, 

any researchers around the world are in the process of designing 

 vaccine or drug for this devastating disease [2] . 

The 2019-nCoV is a non-segmented, enveloped virus with a 

ositive-sense single-stranded RNA of animal origin, belonging to 

he family of Coronaviridae , and the order of Nidovirales . Its ge- 

omic size is 26 −36 kbps and it is one of the largest RNA viruses.

he 2019-nCoV is a beta-CoV, similar to the virus causing severe 

cute respiratory syndrome (SARS) and the Middle East respiratory 

yndrome (MERS) [3] . 

https://doi.org/10.1016/j.molstruc.2021.130409
http://www.ScienceDirect.com
http://www.elsevier.com/locate/molstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molstruc.2021.130409&domain=pdf
mailto:v.zarezade@behums.ac.ir
https://doi.org/10.1016/j.molstruc.2021.130409
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The angiotensin-converting enzyme 2 (ACE2) is a carboxypepti- 

ase and a type I integral membrane protein of 805 amino acids, 

hich converts angiotensin 1 to angiotensin 1 − 9 or angiotensin 2 

o angiotensin 1–7 [4] . ACE2 functions as a counter-regulator of the 

enin-angiotensin system, which is a key regulator of cardiovascu- 

ar homeostasis [5] . Moreover, it has been reported that it plays 

he role of a receptor for the 2019-nCoV, just like its function as 

he SARS-CoV receptor, except that it has approximately 20 times 

tronger binding affinity than that of the SARS [ 6 , 7 ]. 

Spike glycoprotein responsible for CoV crown-like presentation, 

y creating spikes on its surface, supports the passage of 2019- 

CoV into the host cells. The 2019-nCoV binds to the ACE2 catalytic 

omain through the SARS-CoV Spike Protein 1, which is accompa- 

ied by conformational changes in this protein, increasing its sen- 

itivity to proteolytic digestion at the boundary between S1 and 

2 subunits of spike glycoprotein [8] . This proteolysis is believed 

o be achieved in two ways, one through acid-dependent proteol- 

sis, by cathepsin L, and the other through transmembrane pro- 

ease serine 2 (TMPRSS2), and human airway trypsin-like protease 

HAT) [9] . Two mechanisms for virus entry into the cell have been 

uggested as follows: In the first mechanism, the cleavage of ACE2 

y disintegrin and metallopeptidase domain 17 (ADAM17)/tumor 

ecrosis factor α-converting enzyme (TACE), increases the release 

f ACE2 into the extracellular space, enhances and facilitates the 

irus entry into the cell [10] . The second proposed mechanism is 

MPRSS2/HAT [11] , which is mainly involved in virus entry into 

he cell rather than in the activation of spike protein 1 [10] . ACE2

hooses whether an animal or a cell can be infected and it can be

sed for beneficial treatment to administer complications caused 

y coronaviruses [ 7 , 12 ]. 

Besides the ACE2, spike protein S1, and TMPRSS2 proteins, 

hich are all known as viral treatment targets, the main protease 

MPro) is also one of the most important drug targets for CoVs. 

on-structural polyproteins catalyzed by MPro and some papain- 

ike proteases, ultimately produce RNA-dependent RNA polymerase 

RdRp) and virus-encoded RNA helicase and increase viral replica- 

ion [13] . MPro is an attractive goal that can be used as antivi-

al drugs due to the practical significance of MPro in the viral 

ife cycle, and because it does not have similar homologs in hu- 

ans [ 14 , 15 ]. SARS-CoV-2 MPro has a Cys-His catalytic dyad, and

 substrate-binding site, which is situated in a cleft between do- 

ain I and domain II [14] . Thus far, various inhibitors have been 

ntroduced to control SARS, MERS, and other viruses, but they have 

ot been effective or sufficiently specific for COVID-19. 

Since the process of designing new drugs is very time- 

onsuming, especially in the case of pandemic conditions of a rela- 

ively unknown disease, possible treatment options are particularly 

mportant. Therefore, In the event of an emergency, the first line of 

he fight against COVID-19 is the screening of existing drugs and 

xamining their impact on the treatment process of the disease 

2] . Recent drug screenings, which focus on the MPro as the tar- 

et, have shown that nelfinavir, pitavastatin, perampanel, and praz- 

quantel had relative antiviral activity against the 2019-nCoV [16] . 

ther antivirals, especially those approved by the FDA, including 

enciclovir, nitrazine, nalfamusta, and chloroquine, are also other 

reatment options for COVID-19 [ 17 , 18 ]. 

Overall, the treatment of patients with COVID-19 infection is 

enerally mostly symptomatic and supportive therapy and based 

n the previous experience of SARS and MERS. There have been 

imited studies in the field of potential drug design for COVID-19, 

n which various aspects of this subject have not been considered 

19–21] . 

Since in these pandemic circumstances, designing potential 

rugs with high specificity and high potency is extremely vital and 

esired by the international community, and considering the im- 

ortance of ACE2 for the virus entry and emphasizing on the cru- 
2 
ial role of MPro in virus activity, therefore in this study, we aimed 

o screen a vast database and recruit the powerful drug design 

echniques in order to find a medication that is effective for in- 

ibiting human ACE2 and MPro, using computer-aided drug design 

echniques. 

. Materials and methods 

.1. Selection of the compounds 

The first step in developing a robust pharmacophore model is to 

elect known, biologically active inhibitors that give the model the 

creening power of numerous compounds from different databases. 

n this study, a dataset was created, including a training set and 

est set, composing 31 compounds found in the literature [22–24] . 

o arrange a training set, certain guidelines must be followed, as it 

s recruited to develop the pharmacophore model. The most active 

ompounds should be included in the training package, as it is uti- 

ized to offer the inhibitory features. In addition, a potent training 

et should include at least 16 structurally distinct compounds [25] , 

emonstrating a spectrum of 4 − 5 orders, and conveying struc- 

ural and functional characterization of the small compounds. In 

his study, the training set is composed of 18 compounds ( Fig. 1 ),

hich are precisely arranged and categorized into groups, showing 

istinct structures and activities, ranging from 0.013 to 920 nmol/L. 

ompounds with an activity range of less than 1 nmol/L, between 

 and 300 nmol/L, and greater than 300 nmol/L are considered as 

ighly active, moderately active, and inactive compounds, respec- 

ively. Accordingly, the bindingdb database [26] was used to re- 

rieve the 3D structures, which was prepared, using Discovery Stu- 

io (DS) 2016. 

.2. 3D QSAR pharmacophore model generation 

The DS Feature Mapping protocol was started to critically ex- 

mine the main chemical features of the training set compounds 

or producing the most potent pharmacophore models. The above- 

entioned information was used for the generation of the phar- 

acophore. Using the Catalyst HypoGen algorithm, the 3D QSAR 

harmacophore Generation module implemented in the DS was re- 

ruited to generate the pharmacophore. In addition, in order to 

reate the conformations with the best coverage of conformational 

pace at an uncertainty value of 3, with an inter-feature distance 

f 2.97 at 95% confidence level, the Best algorithm under the Con- 

ormation Generation section was appointed. Moreover, Hydrogen 

ond Acceptor (HBA), Hydrogen Bond Donor (HBD), Hydrophobic 

HYA), Negative Ionizable (NGI), and Ring Aromatic (RAR) features 

ere checked with a minimum of 0 and maximum of 5 features, 

nd remaining parameters were set as default. According to Deb- 

ath’s analysis, an ideal pharmacophore should essentially show 

 high correlation coefficient, the least cost value, and the low- 

st Root Mean Square Deviation (RMSD). Accordingly, based on the 

ebnath analysis [27] , the best pharmacophore from the produced 

harmacophores was selected. 

.3. Validation of the pharmacophore 

A valid 3D QSAR pharmacophore hypothesis must be able to 

redict the bioactivity of the training set inhibitors, in the same 

attern as the actual experimental values. In addition, it is ex- 

ected to behave in the same way for test set inhibitors, so it 

rojects a similar biological effect as the training set. Moreover, 

he chance factor should not play a part in creating the hypothesis 

28] . Cost analysis, Fischer’s randomization, and test set prediction 

valuation methods were therefore used to assess and validate the 

op ten hypotheses. 
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Fig. 1. The 2D structures of ACE2 inhibitors in the training set together with their biological activity data (Ki value, nM). 
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As a determining rule, the choice of the best model in cost anal- 

sis is based on the difference between null cost and total cost. The 

xed cost implies that the best model makes a perfect representa- 

ion of all data, whilst the null cost indicates that the worst model 

uits no feature. If the distance is more than 60 bits, the model is 

xcellent in fitting all the data. A 40–60 bits’ distance that infers 

he model 75–90%, is likely to demonstrate a real correlation in 

he data. If the distance is less than 40, then the model does not 

atch all the data [29] . 

From the chosen hypothesis, the statistical significance was de- 

ermined at a 95% confidence level, using Fischer’s randomization 

ethod. This technique was employed to further assure that the 

harmacophore is not randomly generated [30] . In order to assess 

he aptitude of the pharmacophore model, the test set was used 

o determine the compounds, with the same extent of experimen- 

al function, other than the training set. The test set validation was 

arried out, using the Ligand Pharmacophore Mapping protocol. In 

ddition, based on the cost analysis, the optimal pharmacophore 

odel should harbor the highest cost difference ( �cost = null 

ost −total cost), and a high correlation coefficient for test and 

raining sets, matching crucial pharmacophore features. 

.4. Virtual screening and drug-likeness evaluation 

Among the most refined methods configured in contempo- 

ary drug discovery, the virtual small molecule database screen- 

ng is used to choose the possible drug leads for the related dis- 

ases. In this study, pharmacophore-based virtual screening was 

arried out, given that the verified model Hypo1 possesses the 

D features. About 1264,479 compounds, collected from Pubchem 

31] and ZINC [32] databases, were used for screening, and further 
3 
etrieval of the candidate molecules. After the preparation of the 

igands, the Ligand Pharmacophore Mapping package in the DS was 

sed, selecting the rigid fitting method, and using the other options 

s default. Each compound that successfully matched the chosen 

harmacophore model was considered as a potential drug, and the 

ther compounds were excluded. In order to meet the drug-like 

riteria, the filtered ligands were submitted to ADMET and Lip- 

nski’s rule of five (RO5) [33] characteristics. The FAF-Drugs4 web 

erver [34] was used to calculate the ADMET properties. Based on 

O5, a well-absorbed compound possesses less than 5 hydrogen 

onds and logP values of fewer than 5. The potential drug can- 

idate must have a molecular weight of below 500 Da, and hold 

ower than 10 rotatable bonds and hydrogen bond acceptors. Fur- 

hermore, the ligands with a fit value of less than 13 were ex- 

luded. Compounds, meeting the criteria were then subjected to 

olecular docking calculations. 

.5. Molecular docking studies 

For effective assessment and identification of the lead candi- 

ates as potential drugs, molecular docking has been applied. Fur- 

hermore, this technique may be used to derive a detailed set of in- 

ormation on intramolecular events, such as interacting residues of 

he target active site, interaction types, the molecular pose of the 

its at the active site, the energy level of interaction, etc. In this 

tudy, the CDOCKER protocol accessible in the DS was used and 

mplemented concurrently, along with the CHARMm force field. 

he binding between the target and ligand is more favorable when 

DOCKER energies are higher [ 28 , 35 ]. In this study, the inhibitor-

ound human ACE2 (PDB ID: 1R4L) is the first target with a reso- 

ution of 3 Å. A region of 20 Å, covering the crystalized inhibitor 
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Fig. 1. Continued 
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as identified as the active site. To prepare the targets, the Prepare 

rotein module implemented in DS was recruited; except that the 

tructural Zn 

2 + located at the target active site, all water molecules 

nd unnecessary hetero atoms were discarded. The lead candidates 

n conjunction with the reference compound (the compound with 

he lowest Ki from the training set) were submitted to the docking 

rotocol. Subsequently, the compounds obtained from the former 

tep, together with the MPro reference inhibitors (Cinanserin and 

bselen) [14] were docked into the active site of the crystal struc- 

ure of MPro from COVID-19 virus, in complex with an inhibitor 

3 (PDB ID: 6LU7), as the second target. In addition, according to 

he interactions between the key residues and the ligand, and the 

ighest dock score, the best-docked poses were assessed. To fig- 

re out the stability of the docking output complexes and to de- 

ermine the reliability of the acquired data, the selected complexes 

ere subjected to molecular dynamic simulations, using GROMACS 

2018.4 [36] . 

.6. De novo evolution protocol 

One of the most effective approaches in developing higher ef- 

cacy drugs for the treatment of diseases is to strengthen the 

nhibitory activity of ligands, using the fragment-based design 

ethod. The basis of this method is to examine a library of frag- 

ents that can complement the active site of the target, and then 

anipulate the backbone of the selected inhibitors to create an 

mproved structure with new substituents. The Ludi algorithm im- 

lemented in the DS De Novo Evolution module is recruited for 

his purpose [35] . In this protocol, the full evolution selecting frag- 

ents classified by the Ludi energy estimate score was used, and 
4 
he maximum RMSD for fitting was 0.3. Based on the highest Ludi 

cores from the de novo evolution, the new compounds were fur- 

her docked back to the MPro active site for assessing the binding 

oses and interaction energies. Moreover, the pharmacokinetic and 

harmacodynamics properties of the compounds were assessed, 

sing the FAF-Drugs4 web server [34] . 

.7. Molecular dynamics (MD) simulation studies 

In order to assess the conformational alterations and the stabil- 

ty of the complexes and to verify the accuracy of the docking, the 

olecular dynamics (MD) simulation was carried out, concerning 

he top docking poses as initial inputs. GROMACS v2018.4 [36] was 

sed for MD simulation, adapting the AMBER03 force field. The lig- 

nds were parametrized, using an antechamber package [37] of the 

mber program, utilizing the GAFF force field [38] . The AM1-BCC 

harge model was applied to assign the partial charges of the lig- 

nds [39] . A cubic box was created and solvated with the TIP3P 

ater molecules. Then, the opposite ions were included to counter- 

alance the system. Periodic boundary conditions (PBC) were ap- 

lied in all three coordinate axes. Energy minimization of the sys- 

em was conducted by recruiting the steepest descent algorithm 

nd further equilibrated, using NVT and NPT, respectively. By ap- 

lying a coupling constant of 0.1 for 100 ps, at a constant tem- 

erature of 300 K, the initial equilibration was carried out at con- 

tant steady volume (NVT), using the Berendsen thermostat algo- 

ithm. Afterward, the secondary equilibration was conducted with 

 coupling constant of 5.0 ps for 1 ns at constant pressure (NPT) 

f 1 bar, retained by Parrinello-Rahman barostat [40] . The hydro- 

en bonds involving atoms and the molecular geometry of water 
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Table 1 

Ten pharmacophore models generated by the HypoGen for ACE2 inhibitors. 

Hypothesis Total Cost Cost difference a RMSD b Correlation(R2) Features c Maximum Fit 

1 85.2263 320.4527 1.16399 0.9839 HBA ,HBD,HYA ,HYA 13.9322 

2 121.457 284.222 2.18194 0.9409 HBD,HBD,HYA 11.3805 

3 145.216 260.463 2.91149 0.8894 HBA ,HBD,HYA ,HYA 12.8171 

4 146.651 259.028 3.03014 0.879 HBA ,HBD,HYA ,HYA ,NGI 13.7241 

5 162.823 242.856 3.29537 0.8551 HBA,HBD,HBD,HYA 11.4649 

6 163.411 242.268 3.23884 0.8609 HBA,HBA,HYA,RAR 12.8398 

7 165.087 240.592 3.33661 0.8511 HBA,HBD,HBD,HYA 11.3807 

8 170.229 235.45 3.40528 0.8445 HBA ,HBD,HYA ,HYA 11.778 

9 174.893 230.786 3.51799 0.8327 HBA,HBA,HBD,HYA 10.7187 

10 177.423 228.256 3.43974 0.8417 HBA,HBD,HBD,HYA 13.3921 

a Cost difference between the null and the total cost. The null cost, the fixed cost, and the configuration cost are 405.679, 

60.9745, and 16.2464, respectively. All costs are in units of bits. 
b RMSD: The deviation of the log (estimated activities) from the log (measured activities) normalized by the log (uncer- 

tainties). 
c Abbreviation used for features: HBA, hydrogen bond acceptor; HBD, hydrogen bond donor; HYA, hydrophobic; NGI, Neg- 

ative Ionizable; RAR, Ring Aromatic. 

Fig. 2. (A) Best HypoGen pharmacophore model Hypo1 chemical features (B) Hypo1 mapping with the most active ACE2 inhibitor (Ki = 0.13 nM) (C) Hypo1 mapping with 

the most inactive ACE2 inhibitor (Ki = 920 nM). 

5 
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Fig. 3. The difference in correlation values of hypotheses between a Hypo1 spreadsheet and 19 random spreadsheets on the 95% confidence level. 
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ere restrained, using SETTLE [41] and LINCS [42] . Particle Mesh 

wald (PME) [43] was used to estimate the electrostatic interac- 

ions in the long term with a cut-off of 1.2 nm. The short-ranged, 

on-bonded interactions were assessed within a cut-off of 1.2 nm. 

urthermore, a cut-off distance of 12 Å was assigned to van der 

aals and Coulombic interactions. By saving the coordinates for 

very 2 fs, each system was run for 50 ns. Accordingly, the result- 

ng frames were assessed and visualized, using xmgrace, DS, and 

isual Molecular Dynamics (VMD). 

.8. Free energy calculations 

Calculating the binding free energy in a manner computed, us- 

ng the widely applicable Poisson-Boltzmann Surface Area Mechan- 

cs (MMPBSA) method, is a key step in assessing the structure 

nd function of complexes, following MD simulation [44] . In the 

resent study, the binding free energy of the complexes obtained 

rom MD outputs was evaluated, utilizing the GROMACS’ g_mmpbsa 

odule [ 45 , 46 ]. Using this method, assessing the binding free 

nergy, includes three steps. First, the potential energy in a vac- 

um is computed. Further, polar and non-polar solvation energies 

ere measured, respectively. Moreover, the solvent-accessible sur- 

ace area (SASA) model was employed to calculate the non-polar 

olvation energy. The last 500 frames of each complex were chosen 

or all computations in order to estimate the binding free energy. 
6 
.9. Free energy landscape (FEL) 

Since in MD calculations, the selection of the conformation en- 

oying the lowest free energy can provide a more accurate basis 

or subsequent calculations, therefore in this study, FEL analysis 

as carried out, in order to determine the required input struc- 

ure for Quantum mechanics-molecular mechanics (QM-MM) cal- 

ulations [47] . Mathematica 11.3 has constructed two-dimensional 

nd three-dimensional maps of FEL, using RMSF, the radius of gy- 

ation, and Gibbs free energy extracted from MD trajectories. To 

xtract the representative structure, the FEL calculation was ren- 

ered, using GROMACS utility gmx sham, and then gmx trjconv. 

.10. Quantum mechanics-molecular mechanics (QM-MM) 

alculations 

In comparison with the molecular mechanics (MM) method, 

uantum Mechanics (QM) more accurately assesses the interac- 

ions between the ligands and receptors. However, due to the high 

omputational cost, the QM method is normally restricted to the 

tudy of small molecules rather than biomacromolecular systems 

48] . Nevertheless, for large system simulations, the hybrid QM- 

M technique is more adaptable. In this study, the atoms of lig- 

nds and residues located at binding sites were selected to be 

n the QM site, while other atoms were arranged in the MM re- 

ion. In addition, a zero charge was appointed to all QM regions. 

he full optimization of the compounds has been performed, using 

he OPLS_2005 force field and DFT method, with M06/B3LYP for 
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Table 2 

Experimental and estimate activity of the training set compounds based on pharmacophore model Hypo1. 

Compound No. Fit value a Experimental Ki nM Estimate Ki nM Error b Experimental scale c Estimated scale 

ZINC14976187 13.28 0.13 0.36 + 2.8 +++ +++ 

ZINC14976260 12.87 0.7 0.93 + 1.3 +++ +++ 

ZINC14976297 12.51 1.25 2.1 + 1.7 ++ ++ 

ZINC29128447 12.83 1.4 1 −1.3 ++ +++ 

ZINC29038457 12.56 1.5 1.9 + 1.3 ++ ++ 

ZINC29128445 12.50 1.8 2.2 + 1.2 ++ ++ 

ZINC29128362 12.65 2.4 1.6 −1.5 ++ ++ 

ZINC14976224 12.24 5.2 4 −1.3 ++ ++ 

ZINC14976200 11.89 6.5 8.9 + 1.4 ++ ++ 

ZINC29128449 12.20 6.9 4.4 −1.6 ++ ++ 

ZINC29052073 12.22 7 4.1 −1.7 ++ ++ 

ZINC14976175 12.02 7.5 6.6 −1.1 ++ ++ 

ZINC29129065 10.90 84 88 + 1 ++ ++ 

ZINC14976323 10.13 220 510 + 2.3 ++ ++ 

ZINC14976066 10.30 300 350 + 1.2 ++ ++ 

ZINC29129064 10.38 420 290 −1.5 + ++ 

ZINC29129030 10.31 550 340 −1.6 + ++ 

ZINC14976273 10.16 920 480 −1.9 + ++ 

a Fit value indicates how well the features in Hypo1 overlap the chemical features in the training set compounds. 
b Positive value indicates that the estimated Ki is higher than the experimental Ki; a negative value indicates that the estimated 

Ki is lower than the experimental Ki, in nM. 
c Activity scale: Ki < 1 nM = +++ (highly active); 1 nM ≤ Ki < 300 nM = ++ (moderately active); Ki ≥ 300 nM = + (low 

active or inactive). 
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M and QM regions, respectively, by employing Schr ӧdinger Qsite. 

ther parameters remained as default. 

. Results and discussion 

.1. 3D-QSAR pharmacophore models for ACE2 and hypotheses 

alidation 

Table 1 provides detailed results of the top 10 hypotheses of all 

he models made by the Catalyst HypoGen algorithm. As noted in 

able 1 , the HYA feature is common to all ten created hypotheses, 

ndicating the significance of this feature. Hypo1 enjoys the top 

orrelation coefficient (0.983), the lowest RMSD (1.16), the min- 

mum total cost (85.22) and is therefore considered as the best 

harmacophore model for further evaluations. As shown in Table 1 , 

he Hypo1 scaffold consists of HBA, HBD, and two HYA features. 

ince these pharmacophore models were constructed based on 

he structure-activity relationship, therefore, in the comparison be- 

ween the most active (Ki = 0.13 nM) and the inactive (Ki = 920 nM)

raining set ligands, which are shown in their alignment with 

ypo1 ( Fig. 2 ), it can be seen that the former covers all the fea-

ures of the model, while the latter is not fully capable of doing 

o. Therefore, it can be concluded that Hypo1 could successfully 

istinguish between active and inactive compounds [35] . Further- 

ore, the Ligand Pharmacophore Mapping module was used to es- 

imate the power of the Hypo1 in predicting the activity of the 

raining set ligands. The results demonstrated the predictive po- 

ential of Hypo1, as indicated in Table 2 . 

In the present study, the validity of the Hypo1 was evaluated, 

sing cost analyses, Fischer’s randomization, and test set prediction 

ethods. As presented in Table 1 , the total cost and the null cost 

or Hypo1 are 85.22 and 405.679, respectively. The biggest differ- 

nce between null cost and total cost (320.45) is in Hypo1, which 

s more than 60 bits and implies that Hypo1 is capable of repre- 

enting a correct correlation to the data [49] . A configuration cost 

alue, indicating the complexity of the pharmacophore model be- 

ow 17, is considered acceptable for an authenticated hypothesis. 

he mentioned value for Hypo1 is 16.24, which is less than 17. 

As a crucial issue in the validation of the pharmacophore hy- 

otheses, the possibility of the construction of a hypothesis by 

hance has to be ruled out. Fischer’s randomization test was re- 
7 
ruited for this aim to randomly create 19 models at a significance 

evel of 95%, using the Cat-Scramble method. As shown in Fig. 3 , 

he correlation coefficient value of all 10 pharmacophore models is 

igher than that of all 19 randomly produced models. This means 

hat none of the top ten hypotheses were created by chance [30] . 

A test set consisting of 13 ACE2 inhibitors (Figure S1) was as- 

essed by Hypo1 to examine whether the selected pharmacophore 

odel enjoys the ability to predict the activity values of distinct 

CE2 inhibitors from the training set, which is appropriate to their 

xperimental activity. The test set ligands were categorized as fol- 

ows in three separate scales, according to their activity: highly ac- 

ive, Ki < 1.7 nM; moderately active, 1.7 nM ≤ Ki < 900 nM; in- 

ctive, Ki ≥ 900 nM. As enumerated in Table S1, the results indi- 

ate that Hypo1, as for the training set ligands, enjoys an accept- 

ble ability to predict the activity of the test set compounds within 

heir experimental range, except for 4 cases. Two of the most ac- 

ive compounds were deemed moderately active and two moder- 

tely active compounds were detected as inactive. As demonstrated 

n Fig. 4 , the correlation coefficient of experimental activity and 

he estimated activity for the training set and the test set com- 

ounds is 0.98 and 0.83, respectively. It can be seen that Hypo1 

as not only been able to predict the activity of the training set 

ompounds in a very desirable manner but has also been so effec- 

ive in estimating the activity of the test set ligands [29] . 

Overall, based on these findings, it can be concluded that Hypo1 

as the necessary competence to properly predict the bioactivity 

f the study compounds, and was therefore chosen as the best hy- 

othesis for the screening of a large database of possible inhibitors. 

n reviewing the literature, it was found that several studies were 

onducted to find effective drugs against COVID-19, and almost 

one of them were performed based on 3D-QSAR pharmacophore 

odeling [50–52] . From this point of view, our study of screened 

otential drugs based on pharmacophoric principles has strength, 

ompared to other investigations. 

.2. Virtual screening and drug-likeness evaluation 

In this study, in order to increase the possibility of the dis- 

overy of effective medicines, numerous ligands were collected 

rom Pubchem [31] and Zinc [32] databases. The ligands were pre- 

ared by the Prepare Ligands module implemented in DS, and then 
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Fig. 4. Correlation graph between experimental and estimated activities in logarithmic scale for training and test set compounds based on Hypo1. 
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,264,479 ligands were selected for screening. During ligand prepa- 

ation, the ionization and 3D ligand coordination states were ana- 

yzed and the inappropriate ligands were removed. Hypo1 was re- 

ruited for ligand screening. Given that Hypo1 is a reliable model 

nd has been recognized as the best pharmacophore model by 

he extensive evaluations mentioned in the previous section, any 

ompound that can be passed through the Hypo1-based screen- 

ng is expected to be capable of acting as a potential inhibitor 

f ACE2, due to the commonalities associated with the chemi- 

al features of Hypo1. Thus, in this step, 492,697 ligands passed 

he selected pharmacophore successfully and candidates for the 

ext screening step. Subsequently, the filtered ligands were sub- 

ected to Lipinski and Veber Rules filter in DS, and 414,631 lig- 

nds passed the criteria. To determine efficiently the bioavailable 

rugs, Lipinski’s rule of 5 can be used with specific cut-off values 

esignated to physicochemical specifications (number of H-bond 

onors or acceptors, lipophilicity, and molecular weight). In sil- 

co models can evaluate the drug bioavailability as a major aspect 

30] . Compounds with a fit value greater than 13 were selected 

nd implemented for ADMET analysis, using the FAF-Drugs4 web 

erver [34] . A group of descriptors, such as drug-like properties of 

ompounds and ADMET with potential therapeutic characteristics 

an be predicted by this server (http://fafdrugs3.mti.univ-paris- 

iderot.fr/descriptors.html). Moreover, the server applies some lim- 

ted filters, describing the descriptors’ reference scope, for taking 

nto account the potency of the drug [46] . The reference range and 

escriptors supplied in this experiment are defined in this link: 

ttp://fafdrugs3.mti.univ-paris-diderot.fr/filters.html. Of the 245 in- 

ut structures, 81 ligands successfully met the criteria and were 

herefore subjected to the molecular docking process (Table S2). 
d

c

a  

8 
.3. Molecular docking analysis 

The docking protocol was validated, using the pose selection 

ethod [53] . The co-crystal ligand of the ACE2 with PDB ID of 

R4L was extracted and re-docked into the ACE2 active site, by im- 

lementing the parameters described in the method section. Pro- 

ocols are considered to have successful performance if they can 

eturn an RMSD value below 1.5 or 2 Å, based on the ligand size

53] . The acceptable RMSD value of 0.95 Å between the co-crystal 

igand and its docked pose was obtained, indicating that the dock- 

ng protocol is reliable (Figure S2). 

In this study, two targets, ACE2 and MPro, were selected due 

o the particular importance of successfully restraining the SARS- 

oV-2. The enzymes ACE2 and MPro act for the virus entry, and as 

he key operator of the virus, respectively, in which MPro requires 

ore focus due to the need to inhibit the virus as specifically as 

ossible. Based on this strategy, the filtered ligands from the pre- 

ious steps were first docked into the ACE2 active site and, after 

electing the best-docked ligands, they were docked with the MPro 

o obtain common inhibitors of both ACE2 and MPro enzymes. 

The 81 output ligands from the virtual screening stage have 

een docked into the active site of ACE2. At the same time, 

he training set’s most active ligand (ZINC14976187) as the ref- 

rence drug was also docked into the ACE2 active site. The re- 

ults were ranked according to CDOCKER_ENERGY. According to the 

esults, seventy-three compounds have more inhibitory strength 

han ZINC14976187. The top 10 results are outlined in Table 3 . In 

he next step, seventy-three potential ACE2 inhibitors, along with 

inanserin and Ebselen compounds, identified in the Zhenming 

t al. [14] study as strong MPro inhibitors (as standard drugs), were 

ocked to the active site of the enzyme MPro. It was found that 29 

ompounds could be stronger for inhibiting MPro than Cinanserin 

nd Ebselen, the top 10 of which were listed in Table 4 . As a result,
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Table 3 

Molecular docking results of ACE2 inhibitors (top 10). 

Compound CDOCKER_ENERGY CDOCKER_INTERACTION_ENERGY Estimated Ki (nM) Interacting Residues 

1 ZINC12562757 

(112,249,612) 

63.6671 67.6092 0.452847 Asn149, Arg273, Cys344, His345, Pro346, Thr347, Cys361, 

Lys363, Asp368, His374, Glu375, His378, His505, Tyr515 

2 1,520,626 62.8862 79.2558 0.377976 Glu145, Asn149, Arg273, Phe274, Cys344, Pro346, Lys363, 

Glu375, Glu402, Tyr510 

3 1,804,858 62.4542 66.8731 0.508249 Arg273, Phe274, His345, Pro346, Thr371, Glu375, His505, 

Tyr510, Tyr515, Arg518 

4 112,252,955 61.2618 72.098 0.619392 Asn149, Asp269, Trp271, Arg273, Phe274, His345, Pro346, 

Ala348, His374, His378, Glu402, His505, Tyr510 

5 112,339,522 61.0032 63.6881 0.444996 Arg273, Phe274, His345, Pro346, Thr347, His374, Glu402, 

Phe504, His505, Tyr510, Arg518 

6 2,303,440 60.5106 60.756 0.653971 Arg273, His345, Pro346, His374, Glu406, Arg518 

7 112,054,543 60.0011 70.0661 0.399127 Asn149, Trp271, Arg273, Phe274, His345, Pro346, Glu402, 

Tyr510, Tyr515 

8 112,260,215 59.837 62.8354 0.639773 Arg273, Phe274, His345, Pro346, Leu370, Glu375, His378, 

Phe504, His505, Tyr510, Tyr515, Arg518 

9 112,139,218 59.1964 76.4905 0.495676 Ala153, Arg273, Phe274, His345, Pro346, Lys363, Asp367, 

Thr371, His374, Glu402, Phe504, His505, Tyr510 

10 1,811,184 59.1121 63.816 0.657419 His345, Pro346, Thr347, Asp367, Thr371, His374, Glu375, 

His378, Phe504, His505, Tyr510, Tyr515, Arg518 

11 ZINC14976187 

(Training Set 

Lowest Ki) a 

16.0648 88.4878 Arg273, Phe274, His345, Pro346, Leu370, Thr371, His374, 

Glu402, His505, Arg518 

a Represents the control compound. 

Table 4 

Molecular docking results of MPro inhibitors (top 10). 

Compound CDOCKER_ENERGY CDOCKER_INTERACTION_ENERGY Estimated Ki (nM) Interacting Residues 

1 112,260,215 46.7127 45.9017 0.639773 Leu27, His41, Cys145, His164, Met165, Glu166, Pro168, Gln189 

2 112,339,522 46.3533 47.0252 0.444996 Leu27, His41, Met49, Cys145, His164, Met165, Glu166, Leu167, Gln189 

3 2,085,094 46.2895 53.9721 0.589431 His41, Ser144, Cys145, His164, Met165, Glu166, Arg188 

4 2,087,017 43.7821 42.1409 0.689245 His41, Met49, Phe140, Met165, Glu166, Gln189 

5 2,119,581 42.6101 58.1075 0.272343 Asn142, Cys145, His163, Met165, Glu166, Gln189, Thr190 

6 2,117,728 42.1512 50.8951 0.614062 His41, Met49, Phe140, Leu141, Asn142, Cys145, Met165, Glu166 

7 112,126,248 41.3936 41.5074 0.597168 His41, Met49, Leu141, Cys145, Met165, Glu166 

8 112,212,289 41.0756 40.8123 0.593469 Gly143, Ser144, Cys145, Arg188 

9 112,249,612 40.1564 45.1435 0.452847 Thr26, Met49, Asn142, Gly143, Cys145, Met165, Glu166 

10 112,252,955 38.9913 50.5727 0.619392 Leu27, His41, Met165, Glu166, Gln189, Thr190 

11 Cinanserin a 31.5818 41.3993 Cys145, Met165, Asp187, Gln189 

12 Ebselen a 3.03982 25.1226 Met49, Met165, Glu166 

a Represents the control compound. 
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hese 29 compounds have been identified as common and poten- 

ial inhibitors of dual-power inhibition of ACE2 and MPro. 

ZINC12562757 was identified as the strongest potential ACE2 

nhibitor with CDOCKER_ENERGY of 63.66. In comparison to other 

nhibitors, as shown in Table 3 , ZINC12562757 has formed the 

ighest number of bonds with the key amino acid residues of 

he ACE2 active site and interacted with the greatest number 

f key amino acid residues. Fig. 5 A illustrates the two- and 

hree-dimensional docked poses and the interactions’ distances 

f this compound. As shown in this figure, ZINC12562757 was 

ble to establish two pi-pi interactions with His374 and His378 

ith distances of 5.09 Å and 4.47 Å, one pi-anion with Glu375 

4.62 Å), one pi-cation with Zn 

2 + (3.47 Å), three pi-sulfurs with 

is345, His505 and Tyr515 with distances of 5.45 Å, 5.56 Å and 

.84 Å, seven carbon-hydrogen bonds with Cys344, Pro346, Thr347, 

ys361, Asp368 and His505 with distances of 2.91 Å, 2.69 Å, 

.58 Å, 2.92 Å, 2.85 Å 2.91 Å and 2.43 Å, one metal acceptor

ond with Zn 

2 + (2.21 Å) and five conventional hydrogen bonds 

ith Asn149, Pro346, Lys363, and Glu375 with distances of 2.82 Å, 

 Å, 2.33 Å, 2.01 Å and 2.62 Å, respectively. On the other hand,

INC14976187 with docking energy of 16.06 was able to create 

ne pi-anion bond with Glu402 (4.43 Å), one pi-cation bond with 

n 

2 + (4.12 Å), one pi-donor hydrogen bond with Phe274 (2.56 Å), 

wo carbon-hydrogen bonds with Thr371 and His505 (2.46 Å and 

.27 Å), three conventional hydrogen bonds with Arg273 and 

is345 with distances of 1.94 Å, 1.95 Å and 2.15 Å, two alkyl 
9 
onds with Pro346 and Leu370 (4.58 Å and 4.73 Å), and one pi- 

lkyl bond with His374 (4.72 Å), respectively ( Fig. 5 B). All hydrogen 

ond geometries that fall within the 90 ° to 180 ° cut-off were ac- 

epted. Hydrogen bonds with donor-acceptor distances of 2.2 − 2.5 

re classified as "strong, mostly covalent," 2.5 − 3.2 as "moderate, 

ostly electrostatic," and 3.2 − 4.0 as "weak, electrostatic," accord- 

ng to Jeffrey [54] . As per this classification, all hydrogen bonds 

ormed between ZINC12562757 and ACE2 ′ s binding site residues 

re strong to moderate. Thus, establishing more potent hydrogen 

onds could be one of the probable reasons for ZINC12562757 ′ s 
ighest docking energy. Moreover, Towler et al. crystallized the 

tructure of ACE 2 and studied the structure carefully, in partic- 

lar the enzyme active site [55] . Based on their report, the side 

hains of Arg273, His505, and His345 are involved in hydrogen 

onding with the MLN-4760, the ACE2’s co-crystallized potent in- 

ibitor. Moreover, Pro346, Thr371, Glu375, and Tyr515 are form- 

ng H-bonds or being within H-bonding distance of the functional 

roups of MLN-4760. Thus, interaction with these residues plays a 

ital role in the potential inhibition of ACE2. As shown in Fig. 5 ,

INC12562757 interacted with all of the key ACE2 residues men- 

ioned above, except for Thr371. On the other hand, ZINC14976187 

ould not establish any interactions with Glu375 and Tyr515. In 

tabilizing certain specific transitional states in the ACE2 reaction 

echanism, Tyr515 enjoys a specific function, so that interaction 

ith that probably plays an important role in inhibiting the en- 

yme [55] . As illustrated in Fig. 5 , ZINC12562757 has formed a pi-
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Fig. 5. The schematic representations (2D and 3D) of the binding interactions, between the ACE2 active site and (A) ZINC12562757, (B) ZINC14976187 (Training Set Lowest 

Ki). 
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ulfur interaction with Tyr515 and this could be other likely causes 

f ZINC12562757 ′ s stronger docking energy. 

The compound 112,260,215, with 46.71 docking energy as the 

trongest inhibitor of MPro, was able to establish four carbon- 

ydrogen bonds with His164, Met165, and Glu166 amino acids 

ith distances of 2.56 Å, 2.41 Å, 2.49 Å, and 3.07 Å, two con-

entional hydrogen bonds with Cys145 and Gln189 (2.94 Å and 

.49 Å), five alkyl bonds with Leu27, Cys145, Met165, and Pro168 

ith distances of 4.76 Å, 3.37 Å, 4.19 Å, 4.24 Å and 4.22 Å, and

wo pi-alkyl bonds with His41 (3.61 Å and 5.43 Å), respectively 

 Fig. 6 A). While Cinanserin established, one amide-pi stacked with 

ln189 (4.55 Å), one pi-sulfur extension with Met165 (5.74 Å), 

ne pi-alkyl bond with Cys145 (4.50 Å), and one van der Waals 

ond and carbon-hydrogen bond with Asp187 (2.51 Å and 3.05 Å), 

espectively ( Fig. 6 B). The 90 ° to 180 ° cut-off was used to ac- 

ept all hydrogen bond geometries. It can be seen that compound 

12,260,215, in comparison to Cinanserin, created many more in- 

eractions especially potent hydrogen bonds with MPro active site 

esidues. Zhenming Jin et al. reported in a detailed study that the 

esidues of His41, Met49, Tyr54, Phe140, Asn142, Cys145, His163, 

et165, Glu166, Leu167, His172, Phe185, Asp187, and Gln192 are 

ighly conserved across 12 different species of MPro enzymes and 

erve as the ligand-binding pocket [14] . Of the 8 amino acids 

hat interacted with 112,260,215 compounds, four of them, His41, 

ys145, Met165, and Glu166, are the key residues of the MPro ac- 

ive site; however, Cinanserin interacted with 4 amino acids in to- 

al, including Cys145, Met165, Asp187, and Gln189. Figure S3 shows 

he two-dimensional (2D) structure of the best inhibitors of ACE2 

nd MPro, along with the standard drugs. 
10 
A survey of ligand interactions with active site residues of the 

CE2 reveals that residues Arg273, Phe274, His345, Pro346, His505, 

nd Tyr510 play a role in almost all interactions, helping to bind 

otential inhibitors to the active site of the ACE2, which may in- 

icate the pivotal importance of these residues in the catalytic 

unction of the ACE2. The study of interactions of inhibitory com- 

ounds with MPro also indicates the key role of Cys145, Met165, 

nd Glu166 residues in the enzyme inhibition by docked ligands. 

ur docking results are consistent with those of previous studies 

 50 , 52 , 56 , 57 ]. 

In total, the compounds ZINC12562757 and 112,260,215 were 

elected as the strongest ACE2 and MPro inhibitors based on the 

DOCKER_ENERGY, binding mode, interacted residues, and potency 

f hydrogen bond based on distances and geometries according to 

effrey’s category [54] . However, finding a potentially specific drug 

or direct inhibition of SARS-CoV-2 is a vital requirement; there- 

ore, due to the direct role of MPro and the indirect role of ACE2 

n virus activity, the compound 112,260,215 was selected, as the 

est potential inhibitor of MPro, as the backbone for the design of 

ew, stronger ligands that inhibit MPro, using the de novo evolu- 

ion method. 

.4. De novo evolution analysis 

Recruiting the backbone of the most powerful MPro inhibitor 

112,260,215), using the Ludi algorithm, ten de novo compounds 

ave been developed and classified according to the Ludi energy. 

he 2D structure of these compounds is shown in Fig. 7 . These 

ompounds have been docked back with MPro, the results of 
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Fig. 6. The schematic representations (2D and 3D) of the binding interactions, between the MPro active site and (A) 112,260,215, (B) Cinanserin (MPro standard inhibitor). 

Table 5 

LUDI energy and molecular docking results of de novo Evolution designed ligands with MPro. 

Rank Name 

CDOCKER_ 

ENERGY 

CDOCKER_INTERACTION_ 

ENERGY 

Estimated Ki 

(nM) Fit Value LUDI 3 Fragments Interacting Residues 

1 Evo_1 50.2016 60.9334 17.811 11.5904 621 S12 SM6 Met49, Tyr54, Asn142, His163, Met165, 

Glu166, Leu167, Arg188, Thr190 

2 Evo_4 46.7459 62.1499 2020.67 9.5356 608 S12 M68 His41, Gly143, Cys145, His163, His164, 

Met165, Glu166, Pro168, Gln189, Ala191 

3 Evo_10 45.5299 59.8881 1141.27 9.78371 598 S12 SN9 His41, Met49, Leu141, Asn142, Gly143, 

Cys145, Met165, Glu166, Leu167, Pro168, 

Gln189, Thr190 

4 Evo_2 44.7561 59.0297 1944.75 9.55224 610 S12 MJ5 His41, Met49, Asn142, Cys145, His164, 

Met165, Glu166, Gln189, Thr190 

5 Evo_7 43.6307 58.8671 2146.59 9.50935 605 S12 SJ4 Leu27, His41, Met49, Gly143, Cys145, His164, 

Glu166, Leu167, Pro168, Arg188, Gln189 

6 Evo_5 40.5554 61.8641 6094.69 9.05615 607 S12 SU3 Thr26, His41, Met49, Asn142, Gly143, Cys145, 

His163, His164, Met165, Glu166, Pro168, 

Asp187, Arg188 

7 Evo_9 34.8059 59.5539 341.732 10.3074 598 S12 SC8 His41, Met49, Cys145, His163, Met165, 

Glu166, Pro168, Gln189, Thr190, Ala191 

8 Evo_8 34.6544 56.3502 89.9031 10.8873 599 S12 D41 His41, Asn142, Met165, Glu166, Leu167, 

Pro168, Thr190 

9 Evo_6 33.8748 51.6242 6169.65 9.05084 607 S12 C34 Met49, Phe140, Cys145, Met165, Glu166, 

Leu167, Pro168, Gln189, Thr190 

10 Evo_3 17.8873 58.7464 594.035 10.0673 608 S12 D07 His41, Phe140, Cys145, His163, Met165, 

Glu166, Pro168, Gln189 
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hich are shown in Table 5 . The compounds Evo_1 and Evo_4 had 

udi energy of 621 and 608, respectively, and CDOCKER_ENERGY of 

0.20 and 46.74, indicating their higher binding power, compared 

o all inhibitory MPro compounds listed in Table 4 . The results of 

he ADMET analysis demonstrated the success of the Evo_1, Evo_6, 

nd Evo_7 compounds in meeting the criteria, while the rest of the 
11 
ompounds were rejected (Table S3). The Evo_1 had not only the 

ighest docking and Ludi energy, but also the lowest estimated Ki 

nd the highest fit value as a result of the pharmacophore map- 

ing of de novo compounds with Hypo1, and indicating that Evo_1 

apped all Hypo1 features. Additionally, Evo_1 passed the ADMET 

riteria successfully, while Evo_4 did not. Evo_1 was therefore cho- 
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Fig. 7. The structures of the derivatives selected after de novo Evolution. The functional groups added in de novo Evolution are circled in black. 
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en as the strongest inhibitor of the MPro among the de novo com- 

ounds based on CDOCKER_ENERGY, ADMET properties, estimated 

i, fit value, and Ludi energy scales. 

As shown in Fig. 8 , 2 D and 3 D docking pose of Evo_1 to

Pro active site reveal that Evo_1 was able to interact with 

ctive site residues through two alkyl bonds with Met165 and 

eu167 with distances of 5.46 Å and 5.41 Å, three pi-alkyl bonds 

ith Met49, His163, and Met165 with distances of 4.80 Å, 4.11 Å 

nd 4.12 Å, four carbon-hydrogen bond with Glu166, Arg188 and 

hr190 (2.48 Å, 2.49 Å, 2.71 Å and 3.01 Å) and two conventional 

ydrogen bonds with Tyr54 and Asn142 (3.07 and 2.45 Å), re- 

pectively. All hydrogen bond geometries falling between 90 ° and 

80 ° have been accepted. Examining the interactions of Evo_1 and 

12,260,215 with MPro active site residues, it can be seen that al- 

hough the 112,260,215 compound was able to interact with 4 key 

mino acids of the active site, Evo_1 was able to establish 7 inter- 

ctions with conserved key residues of the active site of the MPro 

nd that is why it seems to have higher CDOCKER_ENERGY, inhibit- 

ng MPro more effective than the 112,260,215 compound. The com- 

ound 112,260,215 formed two pi-alkyl bonds with His41, while 

vo_1 did not interact with His41. One pi-alkyl bond was estab- 

ished between Evo_1 and Met49, while 112,260,215 was not able 

o establish any interaction with. Evo_1 formed a conventional hy- 

rogen bond with tyr54, but compound 112,260,215 was not able 

o do so. Asn142 is another key residue that unlike 112,260,215, 

vo_1 forms a conventional hydrogen bond with. Although in the 
12 
ase of Cys145, the 112,260,215 compound showed no common 

round with Evo_1 by establishing 1 conventional hydrogen bond 

nd 2 alkyl bonds with Cys145. On the other hand, only Evo_1 

as able to form 1 pi-alkyl bond with His163 and 1 alkyl bond 

ith Leu167. Both could have interacted with Met165 and Glu166. 

 comparison between Evo_1 and potential MPro inhibitors’ in- 

eractions with the MPro active site residues shows that residues 

et165 and Glu166 play a significant role in the binding of com- 

ounds with the MPro, which could be of particular importance in 

he synthesis of new strong MPro inhibitors. 

An examination of the functional groups added to the back- 

one of the 112,260,215 compound in the de novo evolution 

ethod, as demonstrated in Fig. 7 , shows that two aza-phenol 

nd aza-benzene substitutions were added to the backbone in 

vo_1. Aza-benzene substitution has been added in all other de 

ovo compounds, so it indicates that addition of these two func- 

ional groups, particularly aza-benzene, to the backbone has been 

ble to increase the compound’s binding inhibitory power. Over- 

ll, an effective strategy that considers the two key amino acids, 

et165 and Glu166, and the recruitment of the aza-benzene func- 

ional group and its derivatives, could be critical in the synthe- 

is of robust MPro inhibitors and subsequent successful inhibi- 

ion of SARS-CoV-2. To the best of our knowledge, this is the 

rst study designing new potential drugs based on the de novo 

volution method [ 58 , 59 ]. In order to check the stability and

ehavior of the enzyme-inhibitor complex, the best inhibitors of 
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Fig. 7. Continued 

Fig. 8. The schematic representations (2D and 3D) of the binding interactions, between the MPro active site and Evo_1 de novo compound. 
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CE2 and MPro with their standard inhibitors, which include 

CE2-ZINC12562757, ACE2-ZINC14976187, MPro-112,260,215, MPro- 

inanserin, and MPro-Evo_1 complexes (Figure S3), along with free 

CE2 and free MPro, are implemented in the process of molecular 

ynamics simulation. 
a

13 
.5. Molecular dynamics simulation analysis 

Molecular dynamics simulation is one of the most power- 

ul in silico tools, which enables researchers to study behav- 

or and characteristics, resulting from the influence of internal 

nd external forces on the protein structure. In this study, the 
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Fig. 9. The root mean square deviation (RMSD) values of (A) free ACE2 (green), ACE2- ZINC14976187 (Training Set Lowest Ki) (black) and ACE2-ZINC12562757 (red), (B) free 

MPro (blue), MPro-112,260,215 (black), MPro-Cinanserin (red) and MPro-Evo_1 (green) complexes. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 10. RMSD values of 112,260,215 (black), Cinanserin (red) and Evo_1 (green) lig- 

ands. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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CE2-ZINC12562757, ACE2-ZINC14976187, MPro-112,260,215, MPro- 

inanserin, and MPro-Evo_1 complexes along with the free-form of 

he enzymes were simulated for 50 nanoseconds to investigate the 

acroscopic properties of the system, including RMSD, RMSF, H- 

ond, and DSSP. 

RMSD is an examination that explores the deviations of the 

toms and residues of the system from their initial position in 

he coordinate space during the simulation process, the results 

f which represent the stability or instability of the system, the 

onformational changes of the protein domains, and other system 

omponents. By calculating the RMSD analysis, as shown in Fig. 9 A, 

ree ACE2 is affected by forces from the beginning of the simula- 

ion time and the RMSD level begins to rise, gaining relative stabil- 

ty in 15 to 20 nanoseconds and again, by the end of the simulation

ime, the RMSD has increased again, which could indicate a lack of 

roper stability in the free ACE2 structure throughout the simula- 

ion. On the other hand, the ACE2-ZINC14976187 complex had ac- 

eptable stability over the simulation period, except for a range of 

0 to 25 nanoseconds, in which an increase in its RMSD was ob- 

erved. Moreover, the ACE2-ZINC12562757 complex, which is the 

est potential ACE2 inhibitor, has had good stability throughout 

he simulation. From this analysis, it can be concluded that ligand 

inding to the active site of the ACE2 plays a role in the structural 

tability of the enzyme and ZINC12562757 has been more effec- 

ive than the standard inhibitor in this field. Furthermore, Fig. 9 B 

hows that free MPro enjoys notable stability during the simulation 

eriod, with a slight fluctuation range in RMSD. In the presence of 

inanserin as a standard inhibitor, MPro did not have good stabil- 

ty. At the beginning of the simulation time, the RMSD level in the 

Pro-112,260,215 complex increased significantly, but the enzyme 

reserves its stability during the simulation period. Additionally, 

ver the period, the Evo_1 compound has been able to inhibit and 

tabilize the MPro conformational stability in a more specific way 

han other compounds. Moreover, Kumar et al. [60] reported that 

he MPro structure preserves its stability during MD simulation, 

hich agrees with our findings. In order to take a closer look at the 

ffect of ligands on MPro, the RMSD of ligands was also examined. 

s it is shown in Fig. 10 , in the range of about 1 Å, the 112,260,215

ompound had a slight increase in RMSD over the simulation time 

nd was reasonably stable. Cinanserin’s deviation from its initial 

osition is gradually increasing from the beginning to the time of 

5 ns, and then maintaining its stability with deviation in a range 

f 3 Å by the end of the simulation time. Evo_1 had an RMSD in-

rease for up to 15 ns and was quite stable until the simulation 

eriod ended. These results could indicate the stability of the lig- 
14 
nd and their interactions with key residues of the MPro enzyme 

ctive site and further confirmed the docking findings of MPro in- 

ibitors, especially Evo_1. Moreover, the distance between Evo_1 

nd interacting residues in docking was analyzed during simula- 

ion time and depicted in Fig. 11 . As illustrated in Fig. 11 A, the dis-

ance between Evo_1 and Met49 increased to about 10 ns, while 

emained quite stable until the end of the simulation period. In 

he case of Tyr54, although the distance from Evo_1 in 5 to 10 ns 

f the simulation time was violated from the defined cut-off dis- 

ance of 12 Å, its stability was preserved within a range of about 

 Å till the end of the simulation time. The distance between Evo_1 

nd Asn142, His163, and Met165 was observed fairly constant and 

table during MD simulation. Moreover, as shown in Fig. 11 B, the 

istance between Evo_1 and Glu166 remained constant during the 

imulation time. In the case of Leu167 and Arg188, the distance 

reserved in a range of about 5 Å, but the distance between Evo_1 

nd Thr190 increased to about 15 ns, while remaining quite sta- 

le until the end of the simulation period. These results strongly 

upport the findings of Evo_1 RMSD and docking analysis. 

RMSF analysis examines residual fluctuations and flexibility 

uring the simulation. The higher the fluctuations the lower the 

tability will be. Fig. 12 A shows that most residues have an RMSF 

alue of less than 0.3 nm, and ZINC12562757 has the greatest 

mpact on the stability of the ACE2 structure, which can be de- 
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Fig. 11. Depiction of the distances between Evo_1 and (A) Met49 (black), Tyr54 (red), Asn142 (green), His163 (blue) and Met165 (yellow), (B) Glu166 (orange), Leu167 

(violet), Arg188 (brown) and Thr190 (cyan). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. The root mean square fluctuation (RMSF) values of (A) free ACE2 (green), ACE2- ZINC14976187 (Training Set Lowest Ki) (black) and ACE2-ZINC12562757 (red), (B) 

free MPro (blue), MPro-112,260,215 (black), MPro-Cinanserin (red) and MPro-Evo_1 (green) complexes. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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uced from the lower RMSF over the simulation period. Fig. 12 B, 

n the other hand, shows that Cinanserin causes more fluctuations 

n residues of MPro than other inhibitors and that the Evo_1 com- 

ound results in less flexibility and greater stability in the MPro 

tructure. The results of the RMSF analysis of the two enzymes 

onfirm the data of the RMSD analysis. This result supports the 

ndings of the previous study [61] . 

The H-bond analysis was carried out to determine the inter- 

olecular interactions and binding strength of the ligands to the 

ctive sites of enzymes ACE2 and MPro [58] . Fig. 13 A shows that

INC12562757 establishes 2 to 7 hydrogen bonds with the residues 

n the active site of the ACE2, whereas ZINC14976187 creates a 

aximum of 5 hydrogen bonds throughout the simulation. This 

ight indicate a stronger binding power on the ZINC12562757 

han the ZINC14976187. Moreover, as shown in Fig. 13 B, the 

inanserin and 112,260,215 compounds were able to establish a 

aximum of 3 hydrogen bonds with the active site residues of 

he MPro, while the Evo_1 compound generated 7 bonds, and a 
15 
aximum of 8 hydrogen bonds with the active site of the MPro in 

ost simulation times, indicating the outstanding power of Evo_1 

n binding process and inhibition of the MPro. The capability of hy- 

rogen bond formation plays a major role in ligand bioactivity [62] . 

s shown in Table 6 , ACE2 ′ s Arg273, Glu375, and Arg518 residues 

ad the highest percentage of H-bond occupancy during simu- 

ation time when forming hydrogen bonds with ZINC14976187. 

is345, Pro346, and Arg514 also hold the largest share of H- 

ond occupancy in hydrogen bond formation with ZINC12562757. 

INC12562757 had the highest percentage of H-bond occupan- 

ies with key residues Pro346 and His345, while Arg518 and 

lu375 played the most roles for ZINC14976187 residues, which 

ay indicate the reason for ZINC12562757 ′ s higher strength than 

INC14976187 in ACE2 inhibition. Furthermore, in the formation of 

ydrogen bonds with MPro active site, residues Glu166 and Gln189, 

n bonding with Cinanserin and residues Glu166 and Asp187 in 

onnection with 112,260,215, showed the highest percentage of H- 

ond occupancy, respectively, which Cinanserin and 112,260,215 
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Fig. 13. H-bond values of (A) ACE2-ZINC14976187 (Training Set Lowest Ki) (black) and ACE2-ZINC12562757 (red), (B) MPro-112,260,215 (black), MPro-Cinanserin (red) and 

MPro-Evo_1 (green) complexes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 6 

Hydrogen bond occupancy between residues of ACE2, MPro and ligands (ZINC14976187, ZINC12562757, Cinanserin, 112,260,215, Evo_1) complexes. 

Name Hydrogen bond occupancies 

ACE2-ZINC14976187 Arg273 (10.6%), Glu375 (20.4%), Arg518 (34.9%) 

ACE2-ZINC12562757 His345 (21.9%), Pro346 (57%), Arg514 (18.8%) 

MPro-Cinanserin Glu166 (41.7%), Gln189 (12%) 

MPro-112,260,215 Glu166 (39.4%), Asp187 (22.1%) 

MPro-Evo_1 His41 (62.1%), Asn142 (19.7%), Gly143 (39%), Ser144 (24.2%), Cys145 (58.6%), Glu166 (36.4%), Gln189 (76.1%) 
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stablished these hydrogen bonds with one and two key residues 

f the MPro active site, respectively; thus this could be one of 

he reasons why the compound 112,260,215 has more potency in 

nhibiting MPro than Cinanserin. On the other hand, H-bond oc- 

upancies demonstrated that the residues His41, Asn142, Gly143, 

er144, Cys145, Glu166, and Gln189 were the major contributors to 

he formation of H-bond with Evo_1, most of which were the key 

esidues of the active site of the MPro. This result strongly supports 

he Evo_1 greater inhibitory activity relative to the other MPro in- 

ibitors. The results of the H-bond occupancy analysis are in good 

greement with the docking findings; however, the number and 

ype of hydrogen bonding residues are slightly different in the two 

ethods, which may be due to the ligand and protein dynamics 

nd conformation changes over time of MD simulation. 

DSSP analysis was carried out in the next step to investigate 

he alterations in the enzyme’s secondary structure. Fig. 14 shows 

hat by comparing the structure of free ACE2, ACE2-ZINC14976187, 

nd ACE2-ZINC12562757, the changes in the secondary structures 

re not very noticeable and the secondary structure of the pro- 

eins is preserved during simulation time, except in limited areas. 

y exploring the details, it can be said that the key residues of 

he enzyme ACE2 active site, including Arg273 and Phe274 in free 

CE2 and ACE2-ZINC14976187, were constantly changing from the 

oil to bend during simulation, while those changes were rare in 

CE2-ZINC12562757. Residues of His345 and Pro346 in free ACE2 

nd ACE2-ZINC14976187 have been changed from the coil to bend 

t different times, while there is no structural change in these 

esidues in ACE2-ZINC12562757. The His505 and Tyr510 residues 

emained unchanged in all three ACE2 modes over the simulation 

ime. These results confirm the results of RMSD and RMSF and in- 

icate that ACE2 is more stable in binding to ZINC12562757. The 

mino acids Met165 and Glu166 jointly played a key role in bind- 

ng to Cinanserin, 112,260,215, and Evo_1 at the active site of the 

Pro. In Fig. 15 , by examining these amino acids, it can be seen
 p

16 
hat the secondary structure of these 2 amino acids fluctuates be- 

ween coil and β-sheet structures at different times of simula- 

ion in free MPro, MPro-112,260,215, and MPro-Cinanserin, most of 

hich are dedicated to the coil. However, these amino acids are 

ften β-sheet and less coil-modified, in MPro-Evo_1. The results of 

his analysis confirm the results of RMSD and RMSF, and indicate 

he higher strength of Evo_1 in inhibiting and stabilizing the en- 

yme structure than other MPro inhibitors. 

.6. Gibbs free energy estimation 

Although the calculation of the binding energies of protein- 

igand complexes enjoys considerable accuracy, using the CDOCKER 

olecular docking algorithm, more accurate calculations may be 

seful in achieving more reliable results due to the limitations of 

his technique [63] . Furthermore, since the MD induces dynamic 

nd conformational changes in the structure of the study com- 

lexes, the measurement of protein-ligand binding energies at the 

nd of the MD and its comparison with the results of molecu- 

ar docking form the basis for comparison, as accurately as pos- 

ible on the assessment of the findings [64] . Hence, 500 final 

rames of each MD complex were used in this study, using the 

MPBSA method, to calculate the binding free energy, as shown 

n Table 7 , the binding energy for the ACE2-ZINC14976187 com- 

lex was −8.202 ± 26.78, while the ZINC12562757 with a binding 

nergy of −63.002 ± 27.25 has interacted with the active site of 

CE2. 

The Cinanserin compound had binding energy of −79.65 ± 8.75 

or binding to MPro, while it was −92.66 ± 13.02 and 

159.83 ± 96.42, respectively, for compounds 112,260,215 and 

vo_1. The results confirm the docking data for ACE2, and indi- 

ate a stronger binding strength of Evo_1 to MPro than other com- 

ounds concerning the MPro, as seen in docking. 
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Fig. 14. The secondary structure as a function of the simulation time for (A) free ACE2, (B) ACE2- ZINC14976187 (Training Set Lowest Ki), and (C) ACE2-ZINC12562757 

complexes. 

Fig. 15. The secondary structure as a function of the simulation time for (A) free MPro, (B) MPro-Cinanserin, (C) MPro-112,260,215, and (D) MPro-Evo_1 complexes. 

Table 7 

Binding free energy results of ACE2 and MPro complexes using MM-PBSA calculations. All energies in kJ mol −1. SASA Solvent accessible surface area. 

ACE2-ZINC14976187 ACE2-ZINC12562757 MPro-Cinanserin MPro-112,260,215 MPro-Evo_1 

van der Waal energy −0.001 ± 0.000 KJ/mol −178.430 ± 11.073 −129.295 ± 8.287 −216.432 ± 13.238 −140.280 ± 74.119 

Electrostatic energy −0.510 ± 0.248 −57.183 ± 7.739 −18.660 ± 5.469 −82.249 ± 13.746 −198.036 ± 90.239 

Polar solvation energy −8.034 ± 26.723 199.815 ± 27.036 83.137 ± 7.448 228.615 ± 11.642 193.749 ± 75.883 

SASA energy 0.342 ± 1.939 −15.527 ± 0.958 −14.832 ± 0.813 −22.600 ± 0.849 −15.263 ± 8.151 

Binding energy −8.202 ± 26.784 −63.002 ± 27.256 −79.650 ± 8.757 −92.668 ± 13.025 −159.830 ± 96.427 
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.7. FEL analysis 

Since the more targeted inhibition of SARS-CoV-2, by the prohi- 

ition of its specific enzyme (MPro), compared to other virus drug 

argeting, appears to be a logical approach, thus the MPro has been 

onsidered as the target for resumption of the computations. Also, 

s the MD and MMPBSA techniques confirmed the molecular dock- 

ng results, and in addition to the fact that the two compounds 

12,260,215 and Evo_1 showed the best results in binding to MPro, 
17 
he two complexes MPro-112,260,215 and MPro-Evo_1 were se- 

ected for FEL calculations and then QM-MM analysis. 

As shown in Fig. 16 , the dark blue sections in the 2D and 3D

iagrams in Figures A and B are MPro conformations, which had 

he lowest Gibbs free energy levels during the simulation time. 

ince QM-MM calculations are very accurate, we decided to con- 

ider the most stable conformations as the inputs for QM-MM 

alculations for the two complexes. According to the FEL calcula- 

ions, the frames 47,060 ps for Evo_1 ( Fig. 14 A), and 46,366 ps for
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Fig. 16. The 2D and 3D free energy landscape of (A) MPro-Evo_1 and (B) MPro-112,260,215 complexes depicted as a function of the radius of gyration and RMSD, and 

representative structure with minimal energy. 

Table 8 

The HOMO (eV), LUMO (eV), Energy gap, and binding energies (kJ/mol) of 112,260,215 and Evo_1 in complex with MPro. 

HOMO LUMO Energy Gap Binding Energy 

MPro-112,260,215 −0.1183 0.0541 0.1724 −1666.81 

MPro-Evo_1 −0.1135 0.0419 0.1554 −2275.51 
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12,260,215 ( Fig. 14 B), respectively, show these two representative 

onformations. Subsequently, their PDB structures were extracted, 

sing the GROMACS 2018.4 gmx trjconv tool and applied in the 

ext step. 

.8. QM-MM studies 

MD’s most stable output snapshots, identified via the FEL 

nalysis, were applied in QM-MM. The QM-MM hybrid method 

as used to more accurately examine the interactions between 

12,260,215 and Evo_1 ligands and the active site residues of 

he MPro [65] . Molecular frontier orbitals, including HOMO and 

UMO, were calculated for each ligand. Also, the binding energy 

f protein-ligand was calculated after the complete optimization of 

he complexes. Computational studies have shown that the use of 

rontier molecular orbitals, including HOMO and LUMO, is useful 

or describing molecule’s biological activity and structural proper- 

ies [ 66 , 67 ]. HOMO and LUMO play an important role in the trans-

er of charge in chemical reactions. 

The higher the molecule HOMO energy, the stronger the nu- 

leophiles will be, and the lower the LUMO energy, makes the 

olecule a stronger electrophile [68] . As shown in Table 8 , the 

ap energy of 112,260,215 is 0.17, while the gap energy of Evo_1 

s 0.15. The smaller the energy gap, the more likely it is that the 

onformation will change to create more interactions, and thus 

he molecule will become more stable [69] . Moreover, it was ob- 

erved that the binding energy of the MPro-112,260,215 complex 

s −16 6 6.81, while that of the MPro-Evo_1 is −2275.51. The results 

how therefore greater stability of the complex MPro-Evo_1 and 

igher power of Evo_1, compared to the compound 112,260,215, 

n stabilizing the conformation of the active site residues of MPro, 

nd finally, more inhibitory power of Evo_1. 

. Conclusion 

The world’s high rate of outbreaks and deaths caused by SARS- 

oV-2 infection requires that an effective drug be produced as 

oon as possible, and embedded into treatment protocols around 

he world. In this study, we found a potential drug for inhibiting 

r reducing SARS-CoV-2 activity, using 3D-QSAR pharmacophore 

odeling, virtual screening, molecular docking, de novo evolution 
18 
esign, MD simulation, MMPBSA, FEL, and QM-MM techniques. 

hese in silico techniques are capable of identifying lead com- 

ounds that can inhibit human ACE2 as the virus entry pathway, 

nd the virus’s MPro as the specific enzyme of the SARS-CoV-2. 

en pharmacophore models were generated, using several well- 

nown inhibitors of the ACE2. Hypo1, which was selected as the 

est model based on the criteria for evaluation and validation of 

harmacophores, was used to screen over 1.2 million ligands. Fol- 

owing the virtual screening and calculation of the ADMET, Lip- 

nski, and Veber descriptors, 81 compounds were identified and 

ocked with the active site of ACE2. About 73 compounds with 

igher docking energy than the ACE2 standard inhibitor were then 

ocked with the active site of MPro. Twenty-nine compounds were 

ble to inhibit both targets together. 

The compounds ZINC12562757 and 112,260,215 were selected 

s the best potential inhibitors of the ACE2 and MPro, respec- 

ively. Then, 10 de novo compounds were designed based on the 

tructure of the best MPro inhibitor (112,260,215), and among 

hem, Evo_1 was selected with the highest docking energy of 

ll MPro inhibitors. The ACE2-ZINC12562757, ACE2-ZINC14976187, 

Pro-112,260,215, MPro-Cinanserin, and MPro-Evo_1 complexes 

ere simulated for 50 ns. Results of RMSD, RMSF, H-bond, and 

SSP analyzes have shown that among ACE2 and MPro inhibitors, 

INC12562757 and Evo_1 have established the highest structural 

tability and hydrogen bond formation, and the least changes in 

he related enzyme active site key residues secondary structure, 

espectively. Furthermore, the results of MMPBSA indicate strong 

inding energies between ligands and enzymes further confirmed 

ur docking results. Finally, the most stable conformation, result- 

ng from the simulation of the two MPro-112,260,215 and MPro- 

vo_1 complexes, was extracted, using FEL analysis and submitted 

n QM-MM. The results from the QM-MM show a lower energy gap 

nd binding energy than the Evo_1, compared to the compound 

12,260,215, which indicates that the Evo_1 has more potential to 

pecifically inhibit the MPro. 

A significant number of in silico studies have found po- 

ential drugs to inhibit SARS-CoV-2, but our study has shown 

 novel insight into finding potential drugs with respect to 

he application of 3D-QSAR pharmacophore modeling, de novo 

volution ligand design, free energy landscape, and QM-MM. 

he results of this study can be served as a useful strat- 
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