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Abstract: FTY720 (fingolimod), a modulator of sphingosine-1-phosphate receptors, is known to
produce the immunomodulatory actions and to be beneficial for treating the relapsing multiple
sclerosis. However, whether it exerts any effects on membrane ion currents in immune cells remains
largely unknown. Herein, the effects of FTY720 on ionic currents in Jurkat T-lymphocytes were
investigated. Cell exposure to FTY720 suppressed the amplitude of delayed-rectifier K+ current (IK(DR))
in a time- and concentration-dependent manner with an IC50 value of 1.51 µM. Increasing the FTY720
concentration not only decreased the IK(DR) amplitude but also accelerated the inactivation time
course of the current. By using the minimal reaction scheme, the effect of FTY720 on IK(DR) inactivation
was estimated with a dissociation constant of 3.14 µM. FTY720 also shifted the inactivation curve
of IK(DR) to a hyperpolarized potential with no change in the slope factor, and recovery from IK(DR)

became slow during the exposure to this compound. Cumulative inactivation for IK(DR) in response
to repetitive depolarizations was enhanced in the presence of FTY720. In SEW2871-treated cells,
FTY720-induced inhibition of IK(DR) was attenuated. This compound also exerted a stimulatory action
on the activity of intermediate-conductance Ca2+-activated K+ channels in Jurkat T-lymphocytes.
However, in NSC-34 neuronal cells, FTY720 did not modify the inactivation kinetics of KV3.1-encoded
IK(DR), although it suppressed IK(DR) amplitude in these cells. Collectively, the perturbations by
FTY720 on different types of K+ channels may contribute to the functional activities of immune cells,
if similar findings appear in vivo.

Keywords: FTY720; lymphocytes; delayed-rectifier K+ current; inactivation kinetics;
intermediate-conductance Ca2+-activated K+ channel

1. Introduction

FTY720 (Fingolimod, Glienya®, 2-Amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol) is a potent
immunosuppressive agent that was originally derived from myriocin, a sphingosine-like fungal
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metabolite [1,2]. This compound is thought to possess encouraging efficacy profiles in different
experimental autoimmune disorders and for the treatment of multiple sclerosis [1,3,4]. From another
perspective, FTY720 can act to work through its binding to S1P receptor subtype 1 (S1P1), which can
prevent the egress of lymphocytes from lymph nodes [5,6]. However, it is unclear whether this
compound exerts its effect as a regulator of ion channels [7,8]. The KV1.3-encoded currents, which exhibit
unique gating properties and voltage dependency, largely constitute the delayed-rectifier K+ currents
(IK(DR) enriched in immune cells [9–11]. These currents, which can be functionally expressed in the
plasma membrane and the inner mitochondrial membrane, have been demonstrated to perform key
functions in the immune system such as lymphocyte activation [10–15]. In particular, the KV1.3
phenotype has been previously demonstrated to be specifically expressed in ion myelin-specific
activated cells from patients with multiple sclerosis and not detected in T cells activated with other
antigens [16]. KV1.3+ cells secrete considerable amounts of interferon-γ and tumor necrotic factor-α [17]
and KV1.3 inhibitors potently suppress experimental autoimmune encephalitis [18,19]. The inhibitors
of KV1.3 channels indeed represent a potentially therapeutic approach to the diseases including
multiple sclerosis [2,4,15]. Additionally, it was noticed that the activity of intermediated-conductance
Ca2+-activated K+ channels (i.e., KCa3.1-encoded channels) was functionally expressed in immune
cells [20,21].

The Jurkat T cell line is a CD45-deficient clone derived from the E6-1 clone of the Jurkat human
T-cell leukemic cell line, and it has been previously demonstrated to express KV1.3-type IK(DR) [9,11,20].
This cell line is recognized as a suitable model for investigations of lymphocytic functions such as
cellular activation and apoptosis [12]. The macroscopic IK(DR) in Jurkat T lymphocytes is encoded
by KCNA3 gene giving rise to a native KV1.3 channel [9]. In these cells, recent studies have also
demonstrated the presence of KV1.3 channels in the inner mitochondrial membrane, which is strongly
linked to lymphocyte apoptosis because of the Bax-KV1.3 interaction [12,21–23].

Therefore, the goal of this study was to evaluate the effect of FTY720 on ionic current in Jurkat
T-lymphocytes, particularly at IK(DR) and IKCa channels. Unexpectedly, in these cells, we found that
FTY720 not only diminished the peak amplitude of IK(DR) (KV1.3-encoded current) but also shortened
the time course of current inactivation in response to rapid membrane depolarization. Additionally,
this agent was also effective at increasing the activity of IKCa channels in Jurkat T-lymphocytes.
Therefore, it is anticipated that those actions caused by FTY720 may synergistically act to influence the
recognition processes and subsequently to perturb the functional activities of immune cells and the
immunological synapses in cell culture or in vivo [20,24].

2. Results

2.1. Inhibitory Effect of FTY720 on Delayed-Rectifier K+ Current (IK(DR)) Measured from Jurkat T-Lymphocytes

In this study, we initially evaluated the effect of FTY720 on IK(DR) in Jurkat T-lymphocytes
under whole-cell current recordings. As Jurkat cells were bathed in Ca2+-free Tyrode’s solution,
the IK(DR) in response to a 1-sec ramp voltage-clamp pulse from −90 to +90 mV could be readily
elicited. This population of K+ currents has been previously identified as IK(DR) and to resemble
the KV1.3-encoded currents [9–11]. After cells were exposed to FTY720 at different concentrations,
the amplitude of IK(DR) evoked by the 1-sec long ramp pulse became progressively decreased (Figure 1).
For example, at the level of +60 mV, FTY720 at a concentration of 3 µM significantly reduced IK(DR)

amplitude by 61 ± 3 % from 298 ± 13 to 122 ± 8 pA (n = 11, P < 0.05). After the washout of
FTY720, the current amplitude returned to 282 ± 11 pA (n = 7). Additionally, nonactin (10 µM),
a K+-selective neutral ionophore [25], could reverse FTY720-mediated inhibition of IK(DR) seen in
Jurkat T-lymphocytes.



Molecules 2020, 25, 4525 3 of 15

Figure 1. Inhibitory effect of FTY720 on delayed-rectifier K+ current (IK(DR)) in Jurkat T-lymphocytes.
In these experiments, cells were immersed in Ca2+-free Tyrode’s solution, the recording pipette was
filled with a K+-containing solution, and the ramp pulses from −90 to +90 mV with a duration of 1 sec
were applied. (A) Superimposed current traces in response to ramp pulse obtained in the absence (a)
and presence of 0.3 µM, 1 µM and 3 µM FTY720. (B) Concentration-response curve of FTY720-induced
inhibition of IK(DR) appearing in these cells. The smooth line represents the best fit to the modified Hill
equation as described under Materials and Methods. The IC50 value, maximally inhibited percentage
of IK(DR), and Hill coefficient for FTY720-induced inhibition of IK(DR) were 1.51 µM, 95% (i.e., a = 0.05)
and 1.1, respectively. Each point represents the mean ± SEM (n = 9–13).

The relationship between the FTY720 concentration and the relative amplitude of IK(DR) was
determined and then constructed. In these experiments, the examined cell was held at −50 mV,
the ramp pulse from −90 to +90 mV with a duration of 1 sec was applied, and the IK(DR) amplitudes
were measured at the level of +60 mV in the presence of different FTY720 concentrations. As illustrated
in Figure 1, FTY720 suppressed IK(DR) amplitude in a concentration-dependent manner. By virtue of
a non-linear least-squares fit to the data [26–28], the IC50 value required for the inhibitory effect of
FTY720 on IK(DR) in Jurkat T-lymphocytes was calculated to be 1.51 µM. These results reflect that FTY
is capable of exerting a depressant action on IK(DR) in these cells.

2.2. Kinetic Studies of FTY720-Induced Block of IK(DR)

Because the IK(DR) inactivation in response to rapid and long-lasting depolarization tends to be
enhanced (Figure 2), it is pertinent to evaluate the kinetics of FTY720-induced block seen in Jurkat
T-lymphocytes. As illustrated in Figure 2, when cells were rapidly depolarized from −50 to +50 mV
with a duration of 1 sec, it can be noted that exposure to FTY720 produced a reduction in the τinact

value in a concentration-dependent fashion. Therefore, findings from these results strongly suggest
that inhibitory effects of FTY720 on IK(DR) in Jurkat T-lymphocytes can be explained in a satisfactory
way by the state-dependent blocking where it can bind to the open state of the channel according to
the first-order blocking scheme:

where α and β are kinetic constants for the opening and closing of KV channel, and k+1 and k−1 are those
for forward and reverse rate constants of the FTY720 binding. “Closed”, “Open”, and “Inactivated”
represent the closed, open, and inactivated states of the channel, respectively. Forward and reverse
rate constants, k+1 and k−1, were estimated from the values of τinact for FTY720-induced modification
in the trajectory of IK(DR) inactivation (Figure 2). In agreement with the kinetic scheme described
under Materials and Methods, the relationship between k+1 and [B] was noted to become linear with
a correlation coefficient of 0.96 (Figure 2C). The forward and reverse rate constants obtained from
8 to 10 different cells were calculated to be 1.0046 sec−1µM−1 and 3.1558 sec−1, respectively. On the
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basis of these rate constants, a value of 3.14 µM for the dissociation constant (KD = k−1/k+1) of this
compound was derived. This value was found to be in agreement with the IC50 value determined by
the concentration-response curve (Figure 1B).

Figure 2. Evaluation of the inactivation kinetics of FTY720-induced block of IK(DR) in Jurkat
T-lymphocytes. In (A), the time courses of current inactivation in the absence (a) and presence
of 0.3 µM (b), 1 µM (c) and 3 µM (d) FTY720 were well fitted by a single exponential as indicated in
(B). Inset in (A) indicates the voltage protocol used. In (C), the kinetics of FTY-720-induced block of
IK(DR) in Jurkat T-lymphocytes was evaluated. The reciprocal of inactivation time constant of IK(DR)

(i.e., 1/τinact) taken by exponential fits of the trajectory of IK(DR) inactivation was constructed and
plotted as a function of the FTY720 concentration (mean ± SEM; n = 8–10 for each point). Data points
were well fitted by linear regression, indicating that FTY720-induced blocking tends to occur with a
molecularity of 1. Blocking (k+1) and unblocking (k−1) rate constants, respectively derived from the
slope and the y-axis intercept of the interpolated line, were estimated to be 1.0046 sec−1µM−1 and
3.1558 sec−1, respectively.

2.3. Steady-State Inactivation of IK(DR) During the Exposure to FTY720

To further characterize the inhibitory effect of FTY720 on IK(DR), we next investigated the voltage
dependence of the effect of FTY720 on IK(DR) in Jurkat T-lymphocytes by using a two-step voltage
protocol. Figure 3 illustrates the steady-state inactivation curve of IK(DR) with or without the addition
of 3 µM FTY720. In these experiments, a 1-sec conditioning pulse to different potentials preceded the
test pulse to +50 mV from a holding potential of −50 mV. The relationship between the conditioning
potentials and the normalized amplitudes of peak IK(DR) were constructed and fitted with a Boltzmann
function, as described in Materials and Methods. In the control (i.e., in the absence of FTY720),
the voltages for half-maximal inactivation (V1/2) and corresponding slope factor (k) were −5.4 ± 0.2 mV
and 5.31 ± 0.02 mV (n = 9), respectively, while in the presence of 3 µM FTY720, the values of V1/2

and k were -18.5 ± 0.9 mV and 5.32 ± 0.02 mV (n = 8), respectively. It is clear from these results that
the addition of FTY720 (3 µM) significantly shifted the midpoint of the inactivation curve toward
hyperpolarizing voltage by approximately 13 mV (P < 0.05); however, no discernible change in the
slope factor (i.e., k) was observed in the presence of this compound. Therefore, in Jurkat T-lymphocytes,
there was a voltage-dependence of the steady-state inactivation curve of IK(DR) during cell exposure
to FTY720.



Molecules 2020, 25, 4525 5 of 15

Figure 3. Effect of FTY720 on steady-state inactivation of IK(DR) recorded from Jurkat T-lymphocytes.
(A) Superimposed current traces obtained in the control. The conditioning voltage pulses with a
duration of 1 sec to various membrane potentials ranging from −50 to +30 mV in 10-mV increments
were applied from a holding potential of −50 mV. Following each conditioning pulse, a test pulse to
+50 mV with a duration of 1 sec was applied to elicit IK(DR). The upper part indicates the voltage
protocol applied. (B) Steady-state inactivation curves of IK(DR) taken in the absence (�) and presence
(�) of 3 µM FTY720 (mean ± SEM; n = 7–10 for each point). Note that the presence of FTY720 shifts
the midpoint of the inactivation curve toward hyperpolarizing voltage with no clear change in the
slope factor.

2.4. Effect of FTY720 on the Recovery of IK(DR) from Inactivation

The effect of FTY720 on the recovery of IK(DR) from inactivation was further determined with
another two-pulse protocol consisting of a first (conditioning) depolarizing pulse, which was enough
to enable the block to reach a steady state. In this set of experiments, the membrane potential was
initially taken to +50 mV from −50 mV for a duration of 150 msec, after which a second depolarizing
pulse (test pulse) was then applied at the same potential as the conditioning pulse (Figure 4). The ratios
of the peak amplitude of IK(DR) evoked in the response to the test and the conditioning pulses were
then determined as a measure of recovery from block, and plotted against the interpulse interval.
As depicted in Figure 4, the time course of recovery from inactivation in the control was fitted to a
single exponential function with a time constant of 1.8 ± 0.1 sec (n = 9). As FTY720 at a concentration
of 1 and 3 µM was applied, the time constant was significantly prolonged to 3.1 ± 0.2 (n = 7, P < 0.05)
and 4.8 ± 0.2 sec (n = 7, P < 0.05). Therefore, the recovery of IK(DR) from inactivation observed in
Jurkat T-lymphocytes clearly became slowed in the presence of FTY720. The delayed recovery of IK(DR)

caused by FTY720 was most likely due to the open channel block.
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Figure 4. Effect of FTY720 on the recovery of IK(DR) from inactivation in Jurkat T-lymphocytes.
Changes in currents were measured under two-step voltage-clamp conditions. Cells were depolarized
from −50 to +50 mV with a duration of 150 msec and various interpulse durations were applied.
(A) Superimposed current traces obtained in the presence of 3 µM FTY720. The upper part indicates
the voltage protocol used. (B) Time courses for the recovery of IK(DR) from inactivation obtained in the
absence (�) and presence of 1 µM (�) and 3 µM (#) FTY720. Each point represents the mean ± SEM
(n = 6–8). Each smooth line is the best fit to the data.

2.5. FTY720-Induced Increase in Cumulative Inhibition of IK(DR) Inactivation

In another set of experiments, we sought to determine whether FTY720 can alter the time course of
IK(DR) inactivation in response to repetitive stimuli in Jurkat T-lymphocytes. Under control condition,
a single 1-sec depolarizing step to +50 mV from a holding potential produced an exponential decline
with a time constant of 352 ± 12 msec (n = 11). However, the time constant for 1-sec repetitive pulses to
+50 mV, each of which lasted 40 msec with 10-msec interval at −50 mV between the depolarizing pulses,
was significantly reduced to 326 ± 11 msec (n = 10). Moreover, as depicted in Figure 5, there was a
progressive increase in the decline of IK(DR) in response to rapid depolarizing stimuli. As the cells were
exposed to FTY720, the value of time constant taken from such train of short repetitive pulses was
further decreased. The addition of 1 and 3 µM FTY720 significantly decreased the time constant to
212 ± 8 msec (n = 8, P < 0.05) and 156 ± 8 msec (n = 8, P < 0.05), respectively. Therefore, findings
from these results indicate that an excessive accumulative inactivation of IK(DR) during cell exposure to
FTY720 can be detected.

Figure 5. Excessive accumulative inactivation of IK(DR) during repetitive stimuli in the absence (#)
and presence of 1 µM (�) and 3 µM (4) FTY720 recorded from Jurkat T-lymphocytes. Currents were
obtained during 1-sec repetitive depolarizations to +50 mV from a holding potential of −50 mV. Notably,
the presence of FTY720 increases the rate of excessive accumulative inactivation of IK(DR) in response to
repetitive stimuli.
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2.6. Effect of FTY720 on IK(DR) in Jurkat T-Lymphocytes Treated with SEW2781

FTY720 was recognized to be an agent involving modulation of S1P receptors on lymphocytes [5,6].
We next evaluate whether binding to the S1P receptor can influence the FTY720-induced block of IK(DR)

in Jurkat T-lymphocytes. In this set of experiments, Jurkat cells were preincubated with SEW2871
(3 µM) for 5 h. SEW2871 is a selective agonist of the S1P1 receptor [29]. In SEW2871-treated cells,
the inhibitory effect of FTY720 on IK(DR) was attenuated (Figure 6). Distinguishable from the results
from control cells (i.e., SEW2871 was not pre-treated), the inactivation time course of IK(DR) remained
unaltered in the presence of FTY720. Similar actions occurred in Jurkat T-lymphocytes treated with S1P
(10 µM). The magnitude of FTY720-induced inhibition of IK(DR) was diminished with no modification
in activation or inactivation kinetics of this current. These results led us to propose that the inhibitory
effect of FTY720 on IK(DR) in these cells tends to be associated with its binding to the S1P1 receptor.

Figure 6. Effect of FTY720 on IK(DR) in Jurkat T-lymphocytes treated with SEW2871. Cells were
preincubated with SEW2871 (3 µM) for 5 h. (A) Superimposed IK(DR) traces obtained in the (a) absence
and presence of (b) 1 and (c) 3 µM FTY720. Inset indicates the voltage protocol used. (B) Averaged I-V
relationships of IK(DR) in the absence (�) and presence (�) of 3 µM FTY720 (mean ± SEM; n = 8–10 for
each point). In each cell examined, IK(DR) was elicited from −50 mV to different voltages ranging from
−50 to +50 mV in 10-mV increments.

2.7. Stimulatory Effect of FTY720 on the Activity of IKCa Channels in Jurkat T-Lymphocytes

In another set of experiments, we sought to determine whether FTY720 exerts any effect on the
activity of IKCa channels in these cells. Cell-attached current recordings were performed and cells were
bathed in high K+-solution containing 1.8 mM CaCl2. As shown in Figure 7, under our experimental
conditions, the activity of IKCa channels, which was sensitive to block by TRAM-34 and to stimulation
by 9-phenanthrol, was readily detected as described previously in different types of cells [25,30,31].
As FTY720 was applied to the bath, the probability of IKCa-channel openings was progressively raised.
For example, the addition of FTY720 at a concentration of 1 and 3 µM significantly increased the channel
open probability measured at -60 mV to 0.0035 ± 0.007 and 0.0047 ± 0.009, respectively, from control of
0.0013 ± 0.0005 (n = 11, P < 0.05). Conversely, no clear change in single-channel conductance of IKCa

channels was found in the presence of FTY720 (48 ± 2 pS [control] versus 49 ± 2 pS [3 µM FTY720],
n = 9, P > 0.05). In the continued presence of FTY720 (3 µM), subsequent addition of TRAM-34 (1 µM)
reversed the probability of channel openings, as evidenced by the significant decrease of channel
activity to 0.0018 ± 0.0005 (n = 9, P < 0.05). However, paxilline (1 µM), known to be a blocker of BKCa

channels, did not produce any effect on FTY720-induced increase of IKCa-channel activity. Therefore,
apart from the inhibition of IK(DR), FTY720 is effective at stimulating the activity of IKCa channels in
Jurkat T-lymphocytes.
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Figure 7. Effect of FTY720, 9-phenanthrol and FTY720 plus TRAM-34 on the activity of IKCa channels
recorded from Jurkat T-lymphocytes. Cells were bathed in a high-K+ bathing solution containing 1.8 mM
CaCl2. In these experiments, cell-attached current recordings were performed and the probabilities
of channel openings at −60 mV with or without the addition of various agents were measured and
compared. (A) Original single-channel current traces obtained in the control and during exposure
to 1 µM or 3 µM FTY720. Downward deflection indicates the opening event of the IKCa channel.
(B) Summary of the data showing the effect of FTY720, 9-phenanthrol, and FTY720 plus TRAM-34 on
IKCa-channel activity in Jurkat T-lymphocytes. Values are means ± SEM for n = 8–11 cells in each bar.
* Significantly different from control (P < 0.05) and # significantly different from FTY720 (3 µM) alone
group (P < 0.05).

2.8. Effect of FTY720 on IK(DR) Recorded from NSC-34 Neuronal Cells

In a final set of experiments, we further investigated whether this compound had any effect on
IK(DR) in other types of cells (e.g., NSC-34 neuronal cells). Cells were bathed in Ca2+-free Tyrode’s
solution containing 1 µM tetrodotoxin and 0.5 mM CdCl2 and the recording pipette was filled
with K+-containing solution. Tetrodotoxin and CdCl2 were used to block Na+ and Ca2+ currents,
respectively. Under this condition, the macroscopic IK(DR) in response to membrane depolarization
has been previously described in these cells and identified primarily as KV3.1-encoded current [32].
Unexpectedly, when cells were exposed to FTY720 (3 µM), the amplitude of IK(DR) was slightly
decreased; however, neither activation nor inactivation time course of IK(DR) in response to membrane
depolarization was changed in its presence (Figure 8). These data are clearly distinguishable from
those observed in Jurkat T-lymphocytes described above.

Figure 8. Effect of FTY720 on IK(DR) in NSC-34 neuronal cells. Cells were bathed in Ca2+-free Tyrode’s
solution containing 1 µM tetrodotoxin and 0.5 mM CdCl2 and the recording pipette was filled with
K+-containing solution. (A) Superimposed IK(DR) traces obtained in the absence (a) and presence of 1 µM
(b) and 3 µM (c) FTY720. The inset indicates the voltage protocol used. (B) Averaged I-V relationship
of IK(DR) in the absence (•) and presence (#) of 3 µM FTY720 (mean ± SEM; n = 7–10 for each point).
The IK(DR) amplitude was measured at the end of each depolarizing pulse. Notably, cell exposure to
FTY slightly deceased IK(DR) amplitude with no modifications in activation or inactivation kinetics of
the current.
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3. Discussion

In this study, we provide the evidence to show that in Jurkat T-lymphocytes, FTY720 produces
an inhibitory effect on IK(DR) in a concentration-, voltage- and state-dependent fashion. According
to both the concentration-dependent relationship and minimal reaction scheme described herein,
the values of IC50 and KD required for FTY720-mediated inhibition of IK(DR) were measured from Jurkat
T-lymphocytes were calculated to be 1.51 and 3.14 µM, respectively. The steady-state inactivation
curve of IK(DR) in the presence of FTY720 (3 µM) produced a leftward shift by approximately 13 mV,
indicating that such inhibitory action is voltage-dependent. There might thus be a pertinent link
between its effects on lymphocytes and the inhibitory effect on IK(DR) (i.e., KV1.3-encoded current).
However, whether the ability of this compound to suppress mitochondrial KV1.3-encoded channels
and to perturb the Bax-KV1.3 interaction [21–23] has yet to be clearly demonstrated.

The rate of IK(DR) inactivation was considerably enhanced as the FTY720 concentration increased.
In our study, recovery from inactivation in the presence of FTY720 apparently became slow, because
more than 10 sec was required for the channel to recover completely. It is thus possible that KV1.3
channel, once open, can be subsequently plugged by the FTY720 molecule in solution. Assuming
that periodical changes in membrane potential of inner mitochondrial membranes may occur [33],
the issue of whether blockade of mitochondrial KV1.3 channels caused by FTY720 is responsible for
its effects on Bax-KV1.3 interactions [21–23] is worthy of being investigated. FTY720 has indeed been
reported to mediate cytochrome c release from mitochondria in rat thymocytes [34]. Nonetheless,
because of the importance of IK(DR) (i.e., KV1.3-encoded current) in contributing to functional activities
of lymphocytes such as apoptosis [12,34], the effects of FTY720 presented herein could provide novel
insights into pharmacological or immunological properties of FTY720 and other structurally related
compounds [15,35].

After daily administration of FTY720 over 1 week (5 mg/day), the blood concentration of
FTY720 could be around 18.2 ng/mL (0.053 µM) [36]. Together with a quantitative description of the
inactivation time course of IK(DR) in response to rapid depolarization during cell exposure to different
FTY720 concentrations, our results provide the evidence to indicate the FTY720 molecule can act as a
state-dependent open-channel blocker of KV channels enriched in Jurkat T-lymphocytes. Any changes
of IK(DR) amplitude or kinetics caused by FTY720 depend not only on the FTY720 concentration given,
but also on membrane potential and intracellular Ca2+ concentrations. The inhibitory effect of FTY720
on the amplitude and gating of IK(DR) in lymphocytes may thus occur at a concentration achievable in
humans. However, this compound exerted a slight inhibition of KV3.1-encoded IK(DR) and did not
modify the inactivation kinetics of this current in NSC-34 neuronal cells.

FTY720 is recognized as a modulator of S1P receptors. In this study, in Jurkat T-lymphocytes
preincubated with either SEW2871 or S1P, the magnitude of FTY-induced block of IK(DR) was diminished
with no change in activation or inactivation kinetics of this current. SEW2871 was previously reported
to be an agonist of the S1P1 receptor [29]. It is thus tempting to speculate that FTY720-mediated
changes in the amplitude and gating of IK(DR) are strongly linked to its binding to S1P receptors
inherently in Jurkat cells. In Coppi and colleagues’ work, through inhibiting potassium currents and
positively modulating S1P synthesis, A2B receptor (A2BR) suppressed cell differentiation in cultured
oligodendrocytes progenitor cells [37]. S1P inhibits delayed rectifier potassium current of guinea pigs’
ventricular myocytes. Nevertheless, there is no previous literature reporting the effects of S1P on
IK(DR) of immune cells which may potentially contribute to the immune-modulation. Alternatively,
whether the presence of FTY720 can perturb ionic currents in lymphocytes derived from KV1.3 null
mice remains to be interestingly explored.

Another noteworthy finding in this study is that in Jurkat T-lymphocytes, the activity of IKCa

(or KCNN4-encoded) channels was functionally expressed and subject to stimulation by 9-phenanthrol
and to inhibition by TRAM-34 [25,30,31,38]. Additionally, the exposure to FTY720 was effective at
enhancing the activity of IKCa channels with no change in the single-channel conductance of these
channels. TRAM-34, still in the continued presence of FTY720, suppressed FTY720-mediated increase
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of IKCa-channel activity; however, paxilline did not exert any effect on FTY720-induced stimulation of
IKCa channels. Consistent with previous observations in neutrophils [39,40], we found that the activity
of BKCa channels was absent in Jurkat T-lymphocytes. However, to what extent FTY720-induced
activation of IKCa channels found in this study is capable of exerting its effects on the activity of
T lymphocytes remains to be further investigated.

Additionally, in this study, the KV3.1-encoded current, most of which constitute IK(DR) in NSC-34
neuronal cells, was relatively insensitive to blocking by FTY720. Neither the activation nor inactivation
time course of IK(DR) in NSC-34 cells was altered during the exposure to FTY720. FTY720-induced
effects on the amplitude and gating of KV1.3-encoded IK(DR) observed in Jurkat T-lymphocytes thus
tends to be selective and can have therapeutic relevance.

In human T-lymphocytes, cell exposure to FTY720 also suppressed IK(DR) amplitude as well
as shortened the inactivation time course of the current. The FTY720-induced inhibition of IK(DR)

was attenuated post the treatment of SEW2871. It speculated that FTY720-mediated changes in the
amplitude and gating of IK(DR) are associated with its binding to S1P receptors inherently. The graphic
abstract summarized the major findings that through perturbing different types of K+ channels
FTY720 may contribute to the functions of immune cells and result in an immune-modulating effect.
Taken together, despite the detailed mechanism of FTY720 actions on these KV channels being unclear,
if similar findings are experimentally made in lymphocytes occurring in cell culture or in vivo to those
presented herein, the additional actions of FTY720 or its structurally related agents described here will
result in significant additional changes in immune reactions [3,5,15]. Since this compound is regarded
as an immune modulator [6,7], the FTY720-perturbed effects on ionic currents demonstrated herein
could potentially participate in various clinical disorders, such as multiple sclerosis.

4. Materials and Methods

4.1. Drugs and Solutions

FTY720 (Fingolimod, Gilenya®, 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol hydrochloride,
C19H33NO2), phytohemagglutinin (PHA), sphingosine-1-phosphate (S1P), tetrodotoxin and trypan
blue were obtained from Sigma-Aldrich (St. Louis, MO, USA), nonactin, 9-phenanthrol, SEW2871
(5-[4-phenyl-5-(trifluoromethyl) thiophen-2-yl]-3-[3-(trifluoromethyl)phenyl]1,2,4-oxadiazole) and
TRAM-34 (1-((2-chlorophenyl)(diphenyl))methyl)-1H-pyrazole) were from Tocris Cookson Ltd.
(Bristol, UK), and paxilline was from Alomone Labs (Jerusalem, Israel). Chlorotoxin and margatoxin
were kindly provided by Dr. Woei-Jer Chuang, (Department of Biochemistry, National Cheng
Kung University Medical College, Tainan, Taiwan). Tissue culture media, fetal bovine serum (FBS),
L-glutamine, trypsin/EDTA and penicillin-streptomycin were obtained from Invitrogen (Carlsbad,
CA, USA). All other chemicals including CdCl2 were commercially available and of reagent grade.
The twice-distilled water that had been de-ionized through a Milli-Q water purification system
(APS Water Services Inc., Van Nuys, CA, USA) was used in all experiments.

The composition of normal Tyrode’s solution was 136.5 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl2,
0.53 mM MgCl2, 5.5 mM glucose, and 5.5 mM HEPES-NaOH buffer; pH 7.4. To measure whole-cell
K+ currents or membrane potential, a patch pipette was filled with the following solution: 140 mM
KCl, 1 mM MgCl2, 3 mM Na2ATP, 0.1 mM Na2GTP, 0.1 mM EGTA, and 5 mM HEPES-KOH buffer;
pH 7.2. To avoid possible contamination of Cl− currents, Cl− ions inside the pipette solution was
replaced with aspartate. For the recordings of BKCa- or IKCa-channel activity, a high K+-bathing
solution contained 145 mM KCl, 0.53 mM MgCl2, and 5 mM HEPES-KOH buffer; pH 7.4, and the
pipette solution contained 145 mM KCl, 2 mM MgCl2 and 5 mM HEPES-KOH buffer; pH 7.2.

4.2. Cell preparations

The Jurkat T cell line, a human T cell lymphoblast-like cell line (clone E6-1), was obtained from the
Bioresource Collection and Research Center (BCRC-60255; Hsinchu, Taiwan). Cells were routinely grown
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in a RPMI-1640 medium supplemented with 10% heat-inactivated FBS (v/v), 100 U/mL penicillin and
10 µg/mL streptomycin. They were maintained at 37 ◦C in a 95% air and 5% CO2 humidified atmosphere.
In a separate set of experiments, Jurkat T-lymphocytes were incubated with S1P (10 µM) or SEW2871
(3 µM) at 37 ◦C for 5 h. NSC-34 neuronal cells were produced by the fusion of motor neuron-enriched,
embryonic mouse spinal cords with mouse neuroblastoma. They were maintained in a 1:1 mixture
of DMEM and Ham’s F12 medium supplemented with 10% FBS and 1% penicillin-streptomycin.
To slow cell proliferation and enhance their maturation towards a differentiated state, before confluence,
NSC-34 cells were grown in 1:1 DMEM plus Ham’s F12 medium supplemented with 1% FBS for 48 h.
The viability of these cells was often evaluated by the trypan blue-exclusion test. The experiments were
made five or six days after cells had been cultured (60–80% confluence).

For preparations of human T-lymphocytes, CD3+ and CD4+ lymphocytes were isolated from
healthy donors by E-rosetting (StemCell Technology, Vancouver, BC, Canada) and Ficoll-Plaque
density-gradient centrifugation (ICN Biomedicals, Aurora, OH, USA). Freshly isolated human
T-lymphocytes were preactivated with 4 µg/mL PHA for about four hours. Blood intended for
isolation of T-lymphocytes was obtained from healthy volunteers.

4.3. Electrophysiological Measurements

Jurkat T-lymphocytes or NSC-34 neuronal cells were harvested with 1% trypsin/EDTA solution
prior to the experiments and a small aliquot of cell suspension was transferred to a home-made
recording chamber positioned on the stage of a DM-IL inverted microscope (Leica Microsystems,
Wetzlar, Germany) coupled to digital video system (DCR-TRV30; Tokyo, Japan) with a magnification
of up to 1500×. Cells were immersed at room temperature (20–25 ◦C) in normal Tyrode’s solution
containing 1.8 mM CaCl2. The recording pipettes were pulled from Kimax-51 glass capillaries
(#34500; Kimble Glass, Vineland, NJ) using either a PP-83 puller (Narishige, Tokyo, Japan) or a horizontal
puller (Sutter Instruments model P-97; Novato, CA, USA), and their tips were then fire-polished with
a microforge (MF-83; Narishige). As the pulled pipettes were filled with different internal solutions
described above, their resistance commonly ranged between 3 and 5 MΩ. During each experiment,
the pipette mounted maneuvered by using a WR-98 hydraulic micromanipulator (Narishige, Amityville,
NY, USA). Current signals recorded under cell-attached, inside-out, or whole-cell configuration were
measured with the standard patch-clamp technique by use of either an RK-400 amplifier (Bio-Logic,
Claix, France) or an Axopatch-200B amplifier (Molecular Devices, Sunnyvale, CA, USA) [11,25].
Liquid junction potential existing between the internal pipette solution and the extracellular medium
was corrected immediately before seal formation was made.

4.4. Data Recordings

The signals, consisting of potential and current traces, were stored online on a TravelMate-6253
laptop computer (Acer, Taipei, Taiwan) at 10 kHz through a Digidata-1550A interface (Molecular Devices).
During the experiments, the latter device is controlled by pCLAMP 10.2 software (Molecular Devices,
San Jose, CA, USA). Current signals were low-pass filtered at 3 kHz. Through digital-to-analogue
conversion, the voltage-step profiles of rectangular or ramp pulses created from pCLAMP 10.2 were
commonly used to determine the current–voltage (I–V) relations for different types of ionic currents
(e.g., IK(DR)). Some signals digitally stored through either wired USB or wireless Bluetooth were further
analyzed using different analytical tools which include OriginPro 2016 (OriginLab, Northampton, MA,
USA), Labchart 7.0 program (AD Instruments; Gerin, Tainan, Taiwan) and custom-made macros built
in an Excel 2013 spreadsheet under Windows 7 (Microsoft, Redmond, WA, USA). The details of data
analyses were listed in Supplementary Materials.

4.5. Analyses of Single IKCa-channel Currents

Single BKCa- or IKCa-channel currents were analyzed using pCLAMP 10.2 software (Molecular
Devices, San Jose, CA, USA). Single-channel amplitudes were determined by fitting Gaussian
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distributions to the amplitude histograms of the closed and open states. The probabilities of channel
openings were broadly estimated using an iterative process to minimize the χ2 values calculated with
a sufficiently large number of independent events. Channel activity was defined as N·PO, the product
of the channel number (N) and open probability (PO). Single-channel conductance of IKCa channels
with or without the addition of FTY720 was determined by linear regression using mean values of
current amplitudes measured at different potentials. The lifetime distributions of open or closed states
were fitted with logarithmically scaled bin width [25].

4.6. Statistical Analyses

By using the least-squares minimization procedure [26], linear or nonlinear curve-fitting to
experimental data in this study was performed with pCLAMP 10.2 (Molecular Devices, San Jose, CA,
USA), the “Solver” add-in bundled with Excel 2013 (Microsoft, Redmond, WA, USA), or OriginPro
2016 (OriginLab, Northampton, MA, USA). The macroscopic and single-channel current data are
expressed as the mean ± SEM with sample sizes (n) indicating the number of cells from which the
results were taken, and error bars are plotted as SEM. The paired or unpaired Student’s t-test and
one-way analysis of variance of the least-significant-difference method for multiple comparisons were
used to evaluate the statistical difference among means. Statistical analyses were performed using
IBM SPSS version 20.0 (IBM Corp., Armonk, NY, USA). A P value of less than 0.05 was considered to
indicate the statistical difference.

Supplementary Materials: The details of data analyses were listed in supplement materials which are available online.
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BKCa channel large-conductance Ca2+-activated K+ channel
DMEM Dulbecco’s modified Eagle’s medium
FBS fetal bovine serum
IC50 the concentration required for 50% inhibition
IKCa channel intermediate-conductance Ca2+-activated K+ channel
IK(DR) delayed-rectifier K+ current
I-V current versus voltage
KD dissociation constant
KV channel voltage-gated K+ channel
PHA phytohemagglutinin
S1P sphingosine-1-phosphate
SEM standard error of the mean
τinact inactivation time constant
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