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Abstract: This work aims to explain the behavior of the multi-drug resistance (MDR) percentage of
Pseudomonas aeruginosa in Europe, through multivariate statistical analysis and machine learning
validation, using data from the European Antimicrobial Resistance Surveillance System, the World
Health Organization, and the World Bank. We ran a multidimensional data panel regression analysis
and used machine learning techniques to validate a pooling panel data case. The results of our
analysis showed that the most important variables explaining the MDR phenomena across European
countries are governance variables, such as corruption control and the rule of law. The models
proposed in this study showed the complexity of the antibiotic drugs resistance problem. The efforts
controlling MDR P. aeruginosa, as a well-known Healthcare-Associated Infection (HCAI), should be
focused on solving national governance problems that impact resource distribution, in addition to
individual guidelines, such as promoting the appropriate use of antibiotics.
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1. Introduction

Antimicrobial resistance (AMR) is an ever-growing concern in medicine and public
health globally. Patients infected by AMR bacteria require extended hospital stays and
costly and multiple treatments that result in an economic impact on both the patients and
the healthcare system [1].

Several pathogens have started to develop AMR, particularly that to first-line, in-
expensive, broad-spectrum antibiotics, while the introduction of new drugs (e.g., fluoro-
quinolones) has been followed by the emergence and dissemination of resistant strains [2,3].

Although single resistance is an important public health problem, MDR is a more
critical and growing problem in the world. MDR tuberculosis caused 1.5 million deaths
in 2018 (251,000 with HVI) [4]. In the United States (US), two of three deaths related to
antibiotic-resistant pathogens are caused by MDR organisms commonly associated with
healthcare [5].

P. aeruginosa [6,7] is a Gram-negative bacterium widely recognized as a microorganism
related to HCAI. It is a ubiquitous environmental bacterium that causes opportunistic
human infections, such as urinary tract infections, respiratory system infections, dermatitis,
soft tissue infections, bacteremia, bone and joint infections, gastrointestinal infections, and
a variety of systemic infections, particularly in patients with severe burns, and in cancer
and AIDS patients who are immunosuppressed [6].
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The eradication of P. aeruginosa has become increasingly difficult due to its remarkable
capacity to resist antibiotics, which includes biofilm-mediated resistance and the formation
of multidrug-tolerant persisted cells [8].

The European Antimicrobial Resistance Surveillance Network (EARS-Net) claims that
P. aeruginos a remains one of the major causes of healthcare-associated infection in Europe
because of its ubiquitous nature and potential virulence [9]. In 2019, EARS-Net reported
that 30.8% of the P. aeruginosa isolates were resistant to at least 1 of the 5 antimicrobial
groups under regular surveillance (piperacillin-tazobactam, ceftazidime, fluoroquinolones,
aminoglycosides, and carbapenems) across the European Union (EU) and European Eco-
nomic Area (EEA) countries and reported a 12.1% population-weighted mean resistance in
2015–2019 to at least 3 antimicrobial groups [9] or MDR P. aeruginosa [10].

MDR P. aeruginosa (or MDR-Pa) is an important determinant of a higher rate of
intensive care unit (ICU) admission and hospital mortality [11] and an increase in patient
morbidity due to a higher incidence of surgery and longer duration of hospital stays [10].
Despite the enormous impact of MDR-Pa, the resistant mechanism is a complex and not
fully understood phenomenon; several studies have described some of these mechanisms,
which include well-described molecular phenomena, such as antibiotic-mediated selection,
horizontal gene transfer, and others [12], even though there are very few models that study
the factors favoring MDR over simple AMR, in general [13].

Although MDR and AMR phenomena occur in the molecular scenario, those mecha-
nisms may be fostered and pushed by different social and behavioral determinants. Several
studies have found that the general and imprudent consumption of antimicrobials, antimi-
crobial misuse, and overuse in hospitals—when inappropriate initial antibiotic therapy
is prescribed—are the main causes for resistance [12–14]. However, some factors have
been suggested as conditional factors to those well known in clinical settings, such as
socioeconomic and political factors across countries, mainly those related to governance
and regulation, which are usually poorly understood and minimally taken into account as
leading factors in MDR and AMR phenomena [15].

Multiple studies have observed a pattern of AMR distribution across European coun-
tries, showing greater resistance in southern and eastern countries and lower resistance
in northern and western countries. Researchers have suggested that this phenomenon
is related to in-hospital and out-of-hospital imprudent antibiotic use practices [16] and
underdeveloped action plans against AMR in southeastern European countries [17].

Additionally, there is evidence of higher AMR rates in low-income and middle-income
countries, in comparison with high-income countries [18–20]. Although this effect has been
related to much lower community consumption of antibiotics in high-income countries
than middle–low income countries [19], this also could be related to differences in national
health policies, since the control of AMR is generally centralized in policies, with national
initiatives and commitments [21].

The quality of government and socioeconomic development are key elements of
people’s well-being and health. Thus, these indicators have been a priority among EU
policy makers for decades. However, there are remarkable differences in socioeconomic
and governance performances across political communities over time in EU/EAA [22]:
those differences are consistent with the AMR patterns in Europe. Stronger governance
performance has been seen in northwestern over southeastern regions. The same differ-
ential pattern has been in socioeconomic performance. Additionally, there are important
income differences between southeastern (lower income) and northwestern (higher income)
EU/EAA countries [23].

Following these particular patterns across EU/EAA countries, we suggest that there
are other non-consumption-related variables, such as the quality of governance, poverty,
education, and community infrastructure, which affect health outcomes as structural deter-
minants [15,20], also influencing MDR. In this context, we explore the MDR in P. aeruginosa,
given that its resistance is less related to out-of-hospital care and antibiotic consumption
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per person, and more related to variables that could affect the institutional dynamics and
the health system, in terms of resource distribution and national health policies.

For this purpose, firstly we performed a clustering analysis to determine the countries
across Europe that contribute the most to the MDR-Pa. We identified three clusters, and
found that the two that contribute the most to the MDR-Pa are shaped mainly by countries
from the southeastern region.

Then, assuming the differences between these countries are mainly dependent on
governance and socioeconomic factors, we ran a multidimensional data panel regression
analysis for 30 EU/EAA countries from 2005 to 2018, including worldwide socioeconomic
and governance indicators. Our results show that governance indicators are the variables
that better fit our model in explaining the MDR-Pa variance across countries and over
time. These results were validated by two machine learning methods (XGBoost and
random forest).

Through our models, we show the complexity of the antibiotic resistance problem.
Geographical and temporal differences of MDR-Pa across EU/EEA countries could be
explained by governance factors, such as corruption control, the rule of law, and other
economic factors. Our findings provide another layer (macro-level) of factors for under-
standing MDR-Pa, including governance and socioeconomic factors, which are related to
MDR-Pa. Thus, interventions focused on controlling MDR-Pa should be country-specific
interventions; moreover, in addition to individual guidelines, such as promoting the ap-
propriate use of antibiotics, these interventions should be focused on solving national
governance problems that impact resource distribution and create health inequalities across
countries, especially in southeastern countries.

2. Materials and Methods

All codes and source data used in this study can be found at the following Github link:
retrieved on 5 July 2021 from https://github.com/jpatirom3/Governance_socioeconomic_
resistance—for a detailed review

2.1. Study Area

Europe contains around 50 countries, 27 of which are part of the European Union (EU),
and some of the others are members of the European Economic Area (EEA). The EU/EEA
is an economic and political union of 30 countries. It operates an internal (or single) market,
which allows for the free movement of goods, capital, services, and people between member
states [24]. A common geographical distribution of the EU/EEA countries into four regions:
Northern Europe, Southern Europe, Eastern Europe, and Western Europe [25]. Table A1
(see Appendix A) shows the geographical distribution of the countries of the EU/EEA
regions that were used in this study.

2.2. Data Collection

The data were collected from the European Antimicrobial Resistance Surveillance
System (EARSS), the World Health Organization (WHO), and the World Bank. Their
datasets are available through the European Centre for Disease Prevention and Control
(ECDC) (https://www.ecdc.europa.eu/en, accessed on 5 July 2021), the World Health
Organization (WHO) (https://www.who.int/health-topics/, accessed on 5 July 2021),
and the Worldwide Governance Indicators (WGI) project (https://info.worldbank.org/
governance/wgi/, accessed on 5 July 2021).

We used the EARSS dataset, corresponding to the resistance percentages and MDR
percentages to P. aeruginosa. The original dataset contained information collected from
2000 to 2018, of 8 bacteria, namely: Acinetobacter spp.; Enterococcus faecalis; Enterococcus
faecium; Escherichia coli.; Klebsiella pneumoniae; Pseudomonas aeruginosa; Staphylococcus aureus;
Streptococcus pneumoniae. This dataset corresponded to the 30 EU/EEA countries.

For this study, MDR-Pa was defined as 1 isolate resistant to at least 3 antibiotic
classes [10,26]; therefore, the data for P. aeruginosa reported by EARS was restricted to the
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percentage of resistance of combined resistance to at least 3 antibiotic groups, reported out
of piperacillin/tazobactam, carbapenems, fluoroquinolones, ceftazidime, and aminoglyco-
sides, per country, from 2005 to 2018.

Then, non-informative data was removed and the socioeconomic variables were
incorporated; this was to classify the obtained regions of the European continent and match
the data by country. After an exhaustive data curation and reorganization, 401 observations
(for 30 geographical units: countries (i1–30) and 14 periods of time (t2005–2018)), 12 variables,
8 independent variables (GDP_total, GOV_effect, GDP_health, CTRL_corrup, Rule_law,
Per_cap_US, Out_pocket_exp, HDI), 1 dependent variable (R_multi or MDR), a temporal
variable (Year), and a cross-section variable (Country) were obtained. The region variable
was included to classify the most affected countries by MDR-Pa. The final variables
considered in this study are specified in Table 1.

Table 1. Study variables: description.

Variable Name Definition

R_multi (or MDR-Pa)

Antimicrobial multi-drug resistance MDR percentages. Defined as
combined resistance to at least three antibiotics groups reported by
EARSS out of piperacillin-tazobactam, ceftazidime, fluoroquinolones,
aminoglycosides, and carbapenems.

Year Years from 2005 to 2018 (time in data panel (t2005–2018))

Country Country name (cross-section geographical units in data panel (i1–30))

Region Region name (eastern, northern, southern, western)

GDP_total Gross domestic product

GOV_effect Government effectiveness index (−2.5 weak; 2.5 strong)

GDP_health Gross domestic product for health

CTRL_corrup Control of corruption index (2.5 weak; 2.5 strong)

Rule_law Rule of law (2.5 weak; 2.5 strong)

Per_cap_US Current health expenditure per capita in the US

Out_pocket_exp Out-of-pocket expense

HDI Human development index (0–1)

2.3. k-Means Clustering

Through a k-means clustering, we analyzed the correlation between the EU/EEA
countries with respect to the resistance percentage to P. aeruginosa. This technique was
applied to group the percentage of the resistance data, to identify how the countries are
grouped in relation to the resistance percentages. The Mojena criterion [27] was used to
determine the optimal number of clusters. Once the best number of clusters was determined,
the k-means technique was applied to group the data.

2.4. Panel Data Analysis

The multidimensional data panel regression analysis was run in the software EViews
v12. This approach provided us with observations on cross-section units (in this case:
geographical unites = countries), i = 1, 2, I, N, over repeated time periods, t = 1I..., T (in
this case: years). Meanwhile, we found difficulty in obtaining information over time for
the individual countries. Due to the amount of missing data, and in order to maintain the
homogeneity of the data, a polynomial interpolation of the missing data was performed.

However, it was not possible to make up for the lack of data from the EARSS dataset
(only with the resistance percentage information), which forced the construction of unbal-
anced panel data (i.e., when there are missing elements that result in an incomplete data
series for an individual, or individuals are absent in some years for a given variable), with
i = 30 and t ∈ [8, 14], Slovakia being the country with the fewest periods (t = 8), followed



Antibiotics 2022, 11, 212 5 of 15

by Belgium (t = 10), and with most of them (20) having periods of 14. According to
Hsiao [28], although many statistical proposals are built from the consideration of balanced
panels, most of the empirical studies and the data that can be used only enable unbalanced
panels, such as the one presented in this study.

We used the two-way fixed effects method (TWFE), fixing cross-section units and
periods. Thus, it was necessary to apply a transformation of the data to eliminate the
unobserved heterogeneity, which allowed the fixed effects estimator to take the form of an
ordinary least squares (OLS) estimator. Finally, we proposed the TWFE model for MDR
percentage across EU countries included in our dataset.

2.5. Pooling Panel Data Analysis Using Machine Learning

For the machine learning (ML) validation, we used models such as those used in the
references [29–31]. We used the Scikit-learn package in Python 3.1.2 (Netherlands). Firstly,
we ran a Hausman test and an F-test to choose our model (pooled OLS or fixed effects).
We modeled the relationship between the input (independent) variables, x1, x2, ..., xn,
or features, and the output (dependent) variable, y, or target variable, as a non-linear
relationship with the polynomial of degree, m, called the complexity on the ML framework,
on the variables x1, x2, ..., xn, as follows:

y = d0 + d1x1 + . . . + dnxn + dn+1x1x2 + . . . + dn+m1 xm
1 + dn+m1+1xm

2 ...dn+Mxm
n (1)

Then, we used a polynomial of degree m = 3, 4, 5 of the Polynomial (1) and
built the covariance matrix of these polynomial variables, x1, ..., xl1

i xl2
j xl3

k , ..., xm
n , such that

l1 + l2 + l3 = m, with respect the target variable, y, and have selected the polynomial
variables, xi, the covariance value of which concerns the target variable, (xi, y) , which has
a greater value than a threshold value, δ = {0.3, 0.5, 0.6}.

Next, we split our data, as follows: 80% was used as training data and 20% was used as
testing data. We retrieved the results of the R2 and R2

adjusted on the test data for polynomial
degrees m = 3, 4, 5 and the threshold values δ = {0.3, 0.5, 0.6} were selected.

We also used different types of variable filters. We first used the low variance filter,
which consists of eliminating the variables whose variance is less than a threshold value,
η. Apart from the linear regression (LR) algorithm, we have used the k-nearest neighbors
(kNN) and the decision tree (DT) algorithms. The hyperparameters for the KNN are k = 5
neighbors, and n = 5 for the decision trees.

Furthermore, we applied the k best variable selection (kBVS) and the recursive feature
elimination (RFE) methods as other filter techniques of the polynomial features. The k best
variable selection method selected the k best variables, based on the Fisher test.

Finally, we used the XGBoost and the random forest algorithms as two more options
for the pooling method, with the combination of the Shapley additive explanations (SHAP)
package [32]. The latter package was used to formulate some plots which could better
explain the models. We used the following hyperparameters for the XGBoost: η = 0.3,
max_dept = 3, subsample = 0.5, iterations = 10, 000.

3. Results
3.1. k-Means Clustering Analysis

Running the k-means classification method, we obtained three clusters, which are
shown in Figure 1. Here, we observed that the Eastern European countries contribute the
most in MDR-Pa in Greece, Slovakia, and Romania (Figure 1, cluster in yellow). Addition-
ally, the second cluster (Figure 1, cluster in gray) that contributes to MDR-Pa is shaped
mainly by countries in the eastern and southern regions of Europe (except for France).
Finally, the countries that contribute the least are mainly from the northern and western
regions of Europe (Figure 1, cluster 1 in blue).
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3.2. Panel data Analysis

Table A2 (see Appendix A) shows the results of the initial data panel analysis, before
we removed those coefficients that were not significant (p-value > 0.05: this included GDP
total per country, HDI, and GOV effect). Finally, the following model for MDR-Pa was
obtained from the more significant variables’ coefficients, as given in Table 2:

MDR− Pa = d1Ctrlcorrupit + d2Rulelawit + d3OutPocketexpit + d4PerCapUsit

+d5Gdp_healthit + µi + yt + εit
(2)

Table 2. Coefficients for the final panel data for the TWFE of the MDR-Pa model.

Variable Coef (d .
l
) SE p CI 95%

Gdp_health −0.018 0.0065 0.0061 *** [−0.0311, −0.0052]
Ctrl_corrup −0.079 0.0270 0.0035 *** [−0.1325, −0.0263]
Rule law 0.1177 0.0317 0.0002 *** [0.0552, 0.1801]
Per_cap_US 2.58 × 10−5 9.28 × 10−6 0.0056 *** [7.60 × 10−6, 4.41 × 10−5]
Out_pocket_ exp 0.0053 0.0018 0.0052 *** [0.0015, 0.009]

*** p-value < 0.05.

Table A3 (see Appendix A) shows the results of the validation statistics for the final
TWFE of the MDR-Pa model. In this sense, we could conclude that there is no residual auto-
correlation (Durbin–Watson: p-value < 0.05), and reject the assumption of homoscedasticity
(Breusch–Pagan: p-value < 0.05). On the other hand, the Jarque–Bera test for the residuals
showed that they do not behave under the assumption of normality (p-value < 0.05). How-
ever, due to the number of observations, under a standard regression model, and subject to
certain regularity conditions, the residuals will behave asymptotically normal.

In Model (2), the most significant coefficients (p-value < 0.05), in their respective order
of significance, corresponded to two governance variables (Rule_law and Ctrl_corrupt) and
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three health expenditure variables (GDP_health, Per_cap_US, and Out_pocket_exp). There
is an inverse relationship between the MDR-Pa and the variables Ctrl_corrup, Gdp_health,
and a positive relationship of the remaining variables with our model. The MDR-Pa model
presented an R2 = ∼ 0.82 (see Appendix: Table A4), which indicates that the variables
obtained represent approximately 82% of the antibiotic MDR-Pa.

Additionally, we obtained effects for the geographic unit (Figure 2); these results were
consistent with the results obtained in the cluster analysis, where it could be established that
the countries that contribute the most to MDR-Pa are those found mainly in the southeastern
region of Europe, particularly Greece, Slovakia, and Romania (Figure 1, cluster in yellow).
Croatia was added through this model. The countries that contribute the least to antibiotic
resistance are the northern (Norway, Iceland, Sweden, Denmark, and Finland) and the
western countries (see Figure 2). It is striking how Cyprus, being a southeastern country, is
one that contributes the least to MDR-Pa, in our model, and that France is a unique western
country that contributes the most in the MDR-Pa phenomena in both the cluster analysis
and data panel analysis.
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3.3. Pooling Panel Data Analysis Using Machine Learning

The results of the Hausman test and the F-test results are given in Tables A5 and A6
(see Appendix A), respectively. Similar results are obtained using a Hausman test between
the pooled OLS and the fixed-effects model. Since the F-test’s result showed that we must
opt for a pooled OLS model, we opted to use ML without considering heterogeneity across
time and countries.

The ML model was developed by applying the polynomial features technique given
in Equation (1), using the XGBoost method and the random forest algorithm. Table A7
(see Appendix A) show the performance comparison of polynomial features and the thresh-
old value, δ, concerning the covariance value, Cov(x_i,y), on the target variable, MDR-Pa.
We could observe that the highest value of R2 (~0.88 train, ~0.637 test, ESMR: 0.07) on the
test data is obtained with the combination m = 3, δ = 0.3 for the output variable MDR-Pa.

Table A8 (see Appendix A) present the results obtained with the low variance filter. We
observed that the highest R2 value on the validation set was obtained with the combination
of m = 3 degrees of the polynomial, algorithm set to LR, and η = 0.3 (selected features equal
to 84) on the MDR-Pa variable

Furthermore, applying kBVS and RFE methods as filter techniques of the polyno-
mial features, we obtained (Table A9) the highest R2 value on the validation set, with
0.759 obtained with the k-best variable selection.

Thus, the final model validation showed that both models, XGBoost and random forest,
provide MDR-Pa. Highest R2(∼ 0.93) was provided by the training dataset XGBoost model
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(RMSE: 0.034), the testing dataset obtained the lower R2(∼ 0.77 ) and RMSE—highest
at 0.063. The random forest MDR-Pa model obtained R2 = ∼ 0.80 and RMSE: 0.055
(see Appendix A: Table A10).

We trained a final model (on XGBoost and random forest algorithm) with all the
governance and socioeconomic variables available in our dataset, to provide insight into the
relative importance of each feature. We calculated the impact of the model output through
the Shapley values (SHAP) for each feature. The XGboost model (Figure 3a,c) includes
in the top features two governance variables (Ctrl_corruption and Rule_Law) and one
socioeconomic variable (HDI)—the less important features in this model were Per_cap_US
and Out_pocket_exp. The random forest model (Figure 4) shows the same behavior;
however, the top feature in this model was a governance variable: Ctrl_corruption.
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Figure 3. Machine learning using the XGBoost method. (a) Feature importance measured by SHAP
values in the training dataset on the target variable MDR-Pa, respectively. (c) Feature importance
measured by SHAP values in the testing dataset on the target variable MDR-Pa. (b–d) Impact of
features for SHAP values for each feature for the XGBoost method in training (b) and testing (d) the
dataset. Every observation is represented by one dot in each feature. The dot’s position on the x-axis
represents the impact of that feature on the model’s prediction for the observation, and the dot’s color
represents the value of that feature for the observation.

Using the final XGboost model, we plotted SHAP for every observation across our
dataset train and test dataset. In Figure 3b,d, each dot represents one observation, and the
color represents the actual value of the feature from low values in blue to high values in red.
The features are sorted by the mean of SHAP value. The positions on the x-axis represent
the difference between prediction and observation—positive means the feature generates
improvement in the prediction and negative corresponds to a worsened prediction.
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The train and test dataset shows that the most important features are inversely propor-
tional to the MDR-Pa, the countries with lower corruption index, rule of law index, or HDI
index have a greater impact of MDR-Pa. On the other hand, Per_cap_US, Out_pocket_exp,
GDP_total, show high and low values surrounding the mean; therefore, those are not inter-
pretable results. Interestingly, the characteristics that have the most importance in the XG-
Boost and random forest models are the governance variables: especially Ctrl_corruption,
which fits with the results of our data panel model. ML models differ from the data panel
model, in that both show that HDI could be an important variable, explaining the variance
of MDR-Pa across EU/EAA countries and across time.

4. Discussion

P. aeruginosa is a well-known microorganism related to HCAI. In this context, control
strategies based on the reasonable and adequate use of intra-hospital antibiotics, especially
on patients in critical care, have been proposed. This problem has also led to extreme
measures, such as the creation of new types of therapies or new antibiotics [33]. Here, we
provided insights into the macro-level factors, across EU/EEA countries, related to MDR-Pa.
To date, studies have been exclusively performed to identify the in-hospital factors [11,14]
and the molecular mechanisms [28,34] related to MDR-Pa as strategies to understand this
phenomenon. Our findings provide another layer of understanding both the transnational
and temporal variances of MDR-Pa, defined by governance and socioeconomic variables,
which work as possible conditional factors for appropriate institutional dynamics and
adequate distribution of resources within the health systems across EU/EEA countries.

Other authors [18–23] have seen the southeastern (higher)–northwestern (lower) pat-
tern, especially as it is associated with AMR. Few studies have shown this effect in MDR.
Gunther et al. [35] indicates that Eastern Europe shows a high incidence of multidrug-
resistant Mycobacterium tuberculosis, with a low incidence in Western Europe. To the best
of the authors’ knowledge, this is the first study applying clustering methods to reveal
differences in MDR-Pa between southeastern and northwestern EU/EA countries. These
results increase the evidence about how national differences in a community as large as
the EU could be related to public health problems, such as MDR. Although these differ-
ences could be related to antibiotic usage between countries, as private practices carried
out by providers and consumers [36,37], here, we moved forward, proposing that these
dynamics are conditioned across countries and over time by macro-level factors, such as
the government quality and the socioeconomic characteristics of the countries.

In 2015, Collignon et al. [15] showed that factors other than antibiotic usage, such as
the quality of governance and private health expenditures, are potentially very important in
explaining the different levels of AMR seen in different EU countries. The authors include
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antibiotic usage as community consumption; however, P. aeruginosa is an HCAI-related
microorganism—antibiotic resistance is poorly impacted by this factor. Here, we propose a
clean model, validated by ML algorithms, with similar results for MDR-Pa, which avoid
the community consumption effect.

Control corruption was the most important variable explaining the MDR-Pa variance
across countries and over time in our data panel model. Our model shows that, the lower
the control corruption is in a country, the higher the MDR-Pa. ML models show that the
control corruption explains most of the variation of MDR-Pa, with this indicator becoming
the most important in the ML validation. Data panel and ML models exclude total GDP as
an important variable explaining MDR-Pa; these results question the presumed relation
between poverty and higher AMR [19].

On the other hand, our results show that gross domestic product for health (GDP_hea-
lth) is an important factor. GDP for health has been shown to have a positive correlation
with health outcomes [38]. In this context, the higher GDP for health in a country, the
lesser the MDR-Pa. The corruption in a nation impacts the resource distribution for dealing
with important health public issues, such as MDR-Pa. Factor and Kang [39], observing 133
countries, concluded that corruption is associated with lower levels of health expenditure.
Thus, following our findings, the control of corruption is essential to guarantee the adequate
distribution of the resources intended to cover the basic health needs of the population,
so that, in a country where the control of corruption is lower, there is less probability of
adequate spending on health to respond to problems, such as antimicrobial resistance, and
there is also less confidence on the part of the population in their institutions.

Private health expenditure, such as current health expenditure per capita in the U.S.
and out-of-pocket expenses, were included as part of the final data model as positively
related factors. However, the XGBoost and random forest models show these variables
are the less important features. High private health expenditure in a country suggests that
healthcare is being delivered predominantly in the private sector, this means fewer controls
and supervision. This impacts the health sector, resulting in fewer controls on antimicrobial
distribution, time of drug therapy, and the volumes used [15]. This is true for community-
level antimicrobial usage. Nevertheless, in the case of MDR-Pa, the ML algorithms results
are expected, because MDR-Pa is mainly related to hospital-regulated factors.

Interestingly, the rule of law (Rule_law) governance indicator, which evaluates the
confidence in, and abides by, the rules of society, is negatively associated with MDR-Pa. The
rule of law could be seen as a social determinant of health [40], in several ways, in a com-
munitarian institution such as the EU/EAA. Implementing transnational health policies,
improving skills of government health policymakers and providers, and the dissemination
of information and experience across countries requires trust, not only in national institu-
tions, but also in transnationals, such as the EU [41]. Here, we propose that countries with
higher confidence in transnational institutions are more likely to follow the action plans
against MDR, promoted by the EU [17,41]. Although there is a generally favorable view of
the EU across EU countries [41], Greece, Czech Republic, Italy (southeastern countries), and
France (western country), which are the countries that contribute the most in our MDR-Pa
data panel model, have the largest proportion of unfavorable views of the EU. Even Italy,
France, and Slovakia have deteriorated over time in their opinions of the EU. On the other
hand, most of the northwestern countries (except France) had maintained or increased their
favorability on the EU [42].

To our knowledge, this is the first study to include the human development index
(HDI) as an integrated socioeconomic determinant to explain MDR. Strikingly, our data
panel model excludes this variable, because we accept a p-value < 0.05 (it was significant
for a p-value < 0.1 (0.0702)); however, the XGBoost model shows HDI as an important
feature and inversely related MDR-Pa—that is, the higher human development in a country,
the lower the MDR-Pa. This indicator includes three variables that must be taken into
account: life expectancy at birth, schooling (expected years and mean years schooling), and
GNI (gross national income) per capita. Since life expectancy at birth is an indirect health
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status, and quality of health is expected, in this context, MDR-Pa could be associated with
lower quality health care systems, an association which has increased MDR threat to life
expectancy, reducing neonatal survival in critical care settings [43,44]. On the other hand,
increased use of emergency and hospitalization services due to lower health literacy [45]
can increase the risk of infection for an MDR-Pa. Recently, Zhen et al. [46] found that GDP
per capita is positively spatiotemporally related with antibiotic resistance in China, which,
according to the authors, may be related to higher consumption of antibiotics. GNI per
capita could be interpreted in the same way, but more studies are required to understand
the importance of this variable.

As far as we know, this is the first study that compares different multivariate methods
(data panel and ML algorithms) to evaluate the impact of socioeconomic and governance
indicators as macro-level factors explaining the MDR-Pa. Our findings increase the knowl-
edge surrounding MDR, especially concerning such a rarely studied microorganism as
P. aeruginosa. Additionally, this study provides another layer (macro-level) of factors in
understanding MDR-Pa, including governance and socioeconomic factors explaining the
variance of MDR-Pa across EU/EAA countries over time.

Thus, interventions focused on controlling MDR-Pa should be country-specific; in
addition to individual guidelines, such as those promoting the appropriate use of antibiotics,
these interventions should be focused on solving national governance problems that impact
resource distribution, and which also create health inequalities across countries, especially
in southeastern countries.

A limitation of this study was the impossibility to include the in-hospital antibiotic
consumption variable. European Surveillance of Antimicrobial Consumption Network
(ESAC-Net) does not have complete data on the period and countries here studied. This
hindered us from concluding that the governance and socioeconomic variables have a
greater impact on the MDR than the antibiotic usage variable. It also reveals the need for
better MDR surveillance systems in clinical settings to test this hypothesis.

We explored these patterns in exclusively EU/EAA countries because of the robust
ESAC-Net surveillance system, and because it is a continent where good data are available
from multiple countries. Since MDR is growing, it is necessary to be able to access better
and better data to determine the factors related to MDR and to improve the antibiotic
resistance surveillances systems, promoting action plans against this serious health public
issue. Likewise, ML methods are becoming recursive, robust, and important technics to
deal with the complexity of health problems. Here, we used two algorithms that revealed
governance indicators as the most important determinants of MDR-Pa. However, the
amount of data used (402 observations) could have restricted the power of the ML-based
approximations; however, these results are supported by our data panel. This shows the
strength of mixed methods in understanding and dealing with complex problems, such
as MDR.
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Appendix A

Table A1. Geographical distribution of the countries of the EU/EEA regions used in this study.

Region Countries

Northern Estonia, Finland, Ireland, Iceland, Norway, Sweden, United
Kingdom, Lithuania, Latvia, Denmark.

Southern Cyprus, Greece, Spain, Croatia, Malta, Slovenia, Italy, Portugal.
Eastern Bulgaria, Czechia, Hungary, Poland, Romania, Slovakia.
Western Austria, Germany, France, Luxembourg, Netherlands, Belgium.

Table A2. Coefficients for the initial panel data for the TWFE of the MDR-Pa model.

Variable Coef (d .
l
) SE p-Value CI 95%

Gdp_health −0.0259 0.0106 0.0149 *** [−0.0468, −0.0468]
GDP_total −1.07 × 10−6 1.59 × 10−6 0.5019 [−4.18 × 10−6, 2.05 × 10−6

HDI −1.0664 0.5871 0.0702 * [−2.2212, 0.0883]
GOV_effect 0.02323 0.0272 0.3936 [−0.0302,0.0767]
Ctrl_corrup −0.0818 0.0278 0.0035 *** [−0.1365, −0.0271]
Rule law 0.1139 0.034 0.0009 *** [0.0468, 0.1809]
Per_cap_US 4.02 × 10−5 1.79 × 10−6 0.0249 *** [5.09 × 10−6, 7.54 × 10−5

Out_pocket_ exp 0.006 0.0019 0.0023 *** [0.0021, 0.0098]
*** p-value < 0.05, * p-value < 0.1.

Table A3. Two-way fixed effects (TWFE) of the final MDR model validation tests.

Test Statistic p-Value

Durbin–Watson 1.366244 0.0000 ***
Breusch–Pagan 649.0717 0.0000 ***
Jarque–Bera 822.4368 0.0000 ***

*** p-value < 0.05.

Table A4. R2 and R2
adjusted for the final TWFE of the MDR-Pa model.

R2 0.816533

R2
adjusted 0.792106

Table A5. Hausman test between fixed and random effects.

ξ2 DF p-Value

96.50 9 2.2 × 10−16 ***
*** p-value < 0.05.

Table A6. F-test between pooled OLS and fixed effects.

F DF1 DF2 p-Value

1.099 29 362 0.3342

Table A7. Performance comparison of polynomial features and the threshold value δ concerning the
covariance value (xi, y) on the target variable y = MDR− Pa.

m δ Selected Vars R2 (Test) RMSE (Test) R2 (Train) R_adjusted2 (Train)

3 0.5 68 0.392 0.094 0.778 0.718
3 0.3 111 0.637 0.073 0.876 0.810
4 0.4 83 0.222 0.107 0.805 0.737
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Table A7. Cont.

m δ Selected Vars R2 (Test) RMSE (Test) R2 (Train) R_adjusted2 (Train)

4 0.6 34 −0.417 0.144 0.722 0.688
5 0.7 6 0.496 0.086 0.627 0.620
5 0.5 207 −7.278 0.349 0.931 0.803
2 0.3 11 0.510 0.085 0.662 0.650
2 0.2 19 0.558 0.080 0.705 0.686
2 0.1 33 0.567 0.079 0.730 0.699

Table A8. Performance comparison of polynomial features, type of algorithm, and the threshold
value η on the target variable y = MDr− Pa.

m Algorithm η
Selected
Vars R2 (Test) RMSE (Test)

3 LR 0.01 125 0.739 0.062
3 kNN 0.01 125 0.734 0.062
3 DT 0.01 125 0.538 0.082
3 LR 0.03 84 0.747 0.061
3 kNN 0.03 84 0.732 0.062
3 DT 0.03 84 0.563 0.080
3 LR 0.05 42 0.603 0.076
3 kNN 0.05 42 0.738 0.062
3 DT 0.05 42 0.381 0.095
2 LR 0.01 41 0.547 0.081
2 kNN 0.01 41 0.733 0.062
2 DT 0.01 41 0.608 0.076
2 LR 0.03 35 0.564 0.080
2 kNN 0.03 35 0.735 0.062
2 DT 0.03 35 0.527 0.083
5 LR 0.05 77 0.576 0.079
5 kNN 0.05 77 0.732 0.062
5 DT 0.05 77 0.406 0.093

LR: linear regression algorithm; KNN: k-nearest neighbors algorithm; DT: decision tree (DT) algorithm.

Table A9. Performance of the k-best variable selection and the recursive feature elimination methods
on the target variable y = MDR− Pa.

m Algorithm Filter Method Selected Vars R2 (Test) RMSE (Test)

3 LR kBVS 60 0.653 0.071
3 kNN kBVS 60 0.749 0.060
3 DT kBVS 60 0.547 0.081
3 LR kBVS 70 0.672 0.069
3 kNN kBVS 70 0.759 0.059
3 DT kBVS 70 0.669 0.069
3 LR kBVS 80 0.699 0.066
3 kNN kBVS 80 0.765 0.058
3 DT kBVS 80 0.657 0.071
5 LR kBVS 60 0.639 0.069
5 kNN kBVS 60 0.713 0.065
5 DT kBVS 60 0.671 0.077
3 LR RFE 55 0.717 0.077
3 DT RFE 7 0.662 0.084
5 LR RFE 36 0.715 0.077
5 DT RFE 64 0.716 0.077

LR: Linear regression algorithm; KNN: k-nearest neighbors algorithm; DT: decision tree (DT) algorithm; kBVS:
k-best variable selection; RFE: recursive feature elimination.
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Table A10. R2 and root mean square error (RMSE) for the ML XGBoost and random forest
algorithms models.

Train (XGBoost) Test (XGBoost) Random Forest

R2 0.92738 0.76828 0.80342
RMSE 0.03417 0.06279 0.05564
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